Taylor's Inequality for Taylor Polynomials

Taylor's Inequality states that the error, which is the difference between the actual value $f(x)$ and the approximate value $T_{n}(x)$ is bounded by

$$
\left|f(x)-T_{n}(x)\right| \leq \frac{M|x-b|^{n+1}}{(n+1)!}
$$

where $T_{n}(x)$ is the nth degree Taylor Polynomial approximating $f(x)$ near b and M is an upper bound for $\left|f^{(n+1)}(t)\right|$ for t between b and x.

1. Let $f(x)=e^{x}$ and $b=0$. Then,

$$
f^{(n+1)}(t)=
$$

for any n. If x in in the interval $[-1,1]$, and then, for any n we can take
\square
(a) Using Taylor's Inequality, an upper bound for the error for approximating $f(x)=e^{x}$ using its

$$
T_{4}(x)=
$$

is

$$
\left|e^{x}-T_{4}(x)\right| \leq \frac{M|x-b|^{5}}{5!} \leq
$$

Compare this error bound with, for example, $\left|e^{0.9}-T_{4}(0.9)\right|$ on your calculator.
(b) Using Taylor's Inequality, an upper bound for the error for approximating $f(x)=e^{x}$ using its $T_{n}(x)$ is.

$$
\left|e^{x}-T_{n}(x)\right| \leq \frac{M|x-b|^{n+1}}{(n+1)!} \leq
$$

Here, the answer will depend on n.
(c) If you want to approximate e^{x} with a Taylor polynomial so that $\left|e^{x}-T_{n}(x)\right|<0.0005$, when x is in $[-2,2]$, which n should you use? Hint: Using the answer to part (b) does not give not an equation you can solve for n (since it contains a factorial), so you do this by trying $n=5, n=6 \ldots$ (you can see $n=4$ does not work from part (a)) with the result of part (b) and stopping when you get the desired answer.
2. (This is a step by step version of a homework problem.) Let $f(x)=\ln (1-x)$ and $b=0$. Then, take several derivatives
$f^{\prime}(t)=$

$$
f^{\prime \prime \prime}(t)=
$$

$$
f^{i v}(t)=
$$

$$
f^{v i}(t)=
$$

to get (guess) the formula for

$$
f^{(n+1)}(t)=
$$

Your answer should depend on n, should involve a factorial, and should match with your derivatives for the values of $n=1,2,3,4,5$.
Now, let x be in the interval $[-0.5,0.5]$. decide whether $\left|f^{(n+1)}(t)\right|$ is increasing of decreasing in the interval $[-0.5,0.5]$ and then find an M which bounds $\left|f^{(n+1)}(t)\right|$ (possibly the maximum value)

$$
\left|f^{(n+1)}(t)\right| \leq \quad=M
$$

Your answer will have n in it.
(a) Using Taylor's Inequality, an upper bound for the error for approximating $f(x)=\ln (1-x)$ using its $T_{4}(x)$ is

$$
\left|\ln (1-x)-T_{4}(x)\right| \leq \frac{M|x-b|^{5}}{5!} \leq
$$

(b) Using Taylor's Inequality, an upper bound for the error for approximating $f(x)=\ln (1-x)$ using its $T_{n}(x)$ is

$$
\left|\left|\ln (1-x)-T_{n}(x)\right| \leq \frac{M|x-b|^{n+1}}{(n+1)!} \leq\right.
$$

Here, the answer will depend on n.
(c) If you want to approximate $\ln (1-x)$ with a Taylor polynomial so that $\left|\ln (1-x)-T_{n}(x)\right| \leq 0.05$, when x is in $[-0.5,0.5]$, which n should you use? Note that acceptable error in this part is different from the homework question.
3. Let $f(x)=\cos x$ and $b=0$. Then

$$
\left|f^{(n+1)}(t)\right|=
$$ or

so we can take

$$
M=
$$

regardless of the interval x belongs to.
(a) Using Taylor's Inequality, an upper bound for the error for approximating $f(x)=\cos x$ using its

$$
T_{4}(x)=
$$

when x is in $[-0.5,0.5]$ is

$$
\left|\cos x-T_{4}(x)\right| \leq \frac{M|x-b|^{5}}{5!} \leq
$$

(b) Using Taylor's Inequality, an upper bound for the error for approximating $f(x)=\cos x$ using its

$$
T_{5}(x)=
$$

when x is in $[-0.5,0.5]$ is

$$
\left|\cos x-T_{5}(x)\right| \leq \frac{M|x-b|^{6}}{6!} \leq
$$

(c) Using Taylor's Inequality, an upper bound for the error for approximating $f(x)=\cos x$ using its $T_{n}(x)$ is

$$
\left|\cos x-T_{n}(x)\right| \leq \frac{M|x-b|^{n+1}}{(n+1)!} \leq
$$

Here, the answer will depend on n.
(d) If you want to approximate $\cos x$ with a Taylor polynomial so that $\left|\cos x-T_{n}(x)\right| \leq 10^{-7}$, when x is in $[-0.5,0.5]$, which n should you use? Hint: Using the answer to part (b) does not give not an equation you can solve for n, so you do this by trying $n=6, n=7 \ldots$ with the result of part (b) and stopping when you get the desired answer.

