Taylor's Inequality for Taylor Polynomials

Taylor's Inequality states that the error, which is the difference between the actual value f(x) and the approximate value $T_n(x)$ is bounded by

$$|f(x) - T_n(x)| \le \frac{M|x - b|^{n+1}}{(n+1)!}$$

where $T_n(x)$ is the *n*th degree Taylor Polynomial approximating f(x) near *b* and *M* is an upper bound for $|f^{(n+1)}(t)|$ for *t* between *b* and *x*.

1. Let $f(x) = e^x$ and b = 0. Then,

$$f^{(n+1)}(t) =$$

for any n. If x in in the interval [-1, 1], and then, for any n we can take

$$M =$$

(a) Using Taylor's Inequality, an upper bound for the error for approximating $f(x) = e^x$ using its

 $T_4(x) =$.

is

$$|e^x - T_4(x)| \le \frac{M|x-b|^5}{5!} \le$$

Compare this error bound with, for example, $|e^{0.9} - T_4(0.9)|$ on your calculator.

(b) Using Taylor's Inequality, an upper bound for the error for approximating $f(x) = e^x$ using its $T_n(x)$ is.

$$|e^x - T_n(x)| \le \frac{M|x - b|^{n+1}}{(n+1)!} \le$$

Here, the answer will depend on n.

(c) If you want to approximate e^x with a Taylor polynomial so that $|e^x - T_n(x)| < 0.0005$, when x is in [-2, 2], which n should you use? Hint: Using the answer to part (b) does not give not an equation you can solve for n (since it contains a factorial), so you do this by trying n = 5, n = 6... (you can see n = 4 does not work from part (a)) with the result of part (b) and stopping when you get the desired answer.

1

2. (This is a step by step version of a homework problem.) Let $f(x) = \ln(1-x)$ and b = 0. Then, take several derivatives

f'(t) =	$f^{\prime\prime}(t) =$	$f^{\prime\prime\prime}(t) =$
$f^{iv}(t) =$	$f^v(t) =$	$f^{vi}(t) =$

to get (guess) the formula for

$$f^{(n+1)}(t) =$$

Your answer should depend on n, should involve a factorial, and should match with your derivatives for the values of n = 1, 2, 3, 4, 5.

Now, let x be in the interval [-0.5, 0.5]. decide whether $|f^{(n+1)}(t)|$ is increasing of decreasing in the interval [-0.5, 0.5] and then find an M which bounds $|f^{(n+1)}(t)|$ (possibly the maximum value)

$$|f^{(n+1)}(t)| \le = M$$

Your answer will have n in it.

(a) Using Taylor's Inequality, an upper bound for the error for approximating $f(x) = \ln(1-x)$ using its $T_4(x)$ is

$$|\ln(1-x) - T_4(x)| \le \frac{M|x-b|^5}{5!} \le$$
 .

(b) Using Taylor's Inequality, an upper bound for the error for approximating $f(x) = \ln(1-x)$ using its $T_n(x)$ is

$$\left|\ln(1-x) - T_n(x)\right| \le \frac{M|x-b|^{n+1}}{(n+1)!} \le$$

Here, the answer will depend on n.

(c) If you want to approximate $\ln(1-x)$ with a Taylor polynomial so that $|\ln(1-x) - T_n(x)| \le 0.05$, when x is in [-0.5, 0.5], which n should you use? Note that acceptable error in this part is different from the homework question. 3. Let $f(x) = \cos x$ and b = 0. Then

$$\left|f^{(n+1)}(t)\right| = \qquad \text{or}$$

so we can take

$$M =$$

regardless of the interval x belongs to.

(a) Using Taylor's Inequality, an upper bound for the error for approximating $f(x) = \cos x$ using its

$$T_4(x) = \qquad .$$

when x is in [-0.5, 0.5] is

$$|\cos x - T_4(x)| \le \frac{M|x-b|^5}{5!} \le$$

(b) Using Taylor's Inequality, an upper bound for the error for approximating $f(x) = \cos x$ using its

$$T_5(x) =$$
 .

when x is in [-0.5, 0.5] is

$$|\cos x - T_5(x)| \le \frac{M|x-b|^6}{6!} \le$$

(c) Using Taylor's Inequality, an upper bound for the error for approximating $f(x) = \cos x$ using its $T_n(x)$ is

$$|\cos x - T_n(x)| \le \frac{M|x-b|^{n+1}}{(n+1)!} \le$$

Here, the answer will depend on n.

(d) If you want to approximate $\cos x$ with a Taylor polynomial so that $|\cos x - T_n(x)| \le 10^{-7}$, when x is in [-0.5, 0.5], which n should you use? Hint: Using the answer to part (b) does not give not an equation you can solve for n, so you do this by trying n = 6, n = 7... with the result of part (b) and stopping when you get the desired answer.