
Taylor’s Inequality for Linear Approximations

Taylor’s Inequality states that the error, which is the difference between the actual value f(x) and the
approximate value T1(x) is bounded by

|f(x)− T1(x)| ≤ M |x− b|2

2

where M is an upper bound for |f ′′(t)| for t between b and x.

1. Let f(x) = ex and b = 0. Then f ′′(t) = et and |et| = et because the exponential function is always
positive. Now, et is an increasing function, so it will have a maximum value with t to the right of
the interval.

(a) If x = 0.2, then t will be in [0, 0.2] so we can take M to be the maximum value of et on [0, 0.2]
which is

M= .

Using

|x− b| = ,

complete Taylor’s inequality

∣∣e0.2 − T1(0.2)
∣∣ ≤ M |x− b|2

2
= .

(b) If x = −0.2, then t will be in [−0.2, 0] so we can take M to be the maximum value of et on
[−0.2, 0] which is

M= .

Using

|x− b| = ,

complete Taylor’s inequality

∣∣e−0.2 − T1(−0.2)
∣∣ ≤ M |x− b|2

2
= .

(c) If x in in the interval [−0.3, 0.3], (This version is most common with x in an interval centered at
b), then t could be anywhere in the same interval [−0.3, 0.3] so we can take M to be the maximum
value of et on [−0.3, 0.3] which is

M= .

Using

|x− b| ≤ ,

1



complete Taylor’s inequality

|ex − T1(x)| ≤ M |x− b|2

2
≤ .

(d) If x in in the interval [−a, a], where a > 0, then t could be anywhere in the same interval [−a, a]
so we can take M to be the maximum value of et on [−a, a] which is (here M depends on a)

M= .

Using

|x− b| ≤ ,

(which should also depend on a) complete Taylor’s inequality

|ex − T1(x)| ≤ M |x− b|2

2
≤ .

2. Let f(x) = ln(1 + x) and b = 0. Then f ′′(t) = − 1

(1 + t)2
and

∣∣∣∣− 1

(1 + t)2

∣∣∣∣ =
1

(1 + t)2
because (1 + t)2

is non-negative. Now,
1

(1 + t)2
is a decreasing function (WHY?), so it will have a maximum value

with t to the left of the interval.

(a) If x = 0.2, then t will be in [0, 0.2] so we can take M to be the maximum value of
1

(1 + t)2
on

[0, 0.2] which is

M= .

Using

|x− b| = ,

complete Taylor’s inequality

|ln(1 + 0.2)− T1(0.2)| ≤ M |x− b|2

2
= .

(b) If x = −0.2, then t will be in [−0.2, 0] so we can take M to be the maximum value of
1

(1 + t)2
on

[−0.2, 0] which is

M= .

Using

2



|x− b| = ,

complete Taylor’s inequality

|ln(1− 0.2)− T1(−0.2)| ≤ M |x− b|2

2
= .

(c) If x in in the interval [−0.3, 0.3], then t could be anywhere in the same interval [−0.3, 0.3] so we

can take M to be the maximum value of
1

(1 + t)2
on [−0.3, 0.3] which is

M= .

Using

|x− b| ≤ ,

complete Taylor’s inequality

|ln(1 + x)− T1(x)| ≤ M |x− b|2

2
≤ .

(d) If x in in the interval [−a, a], where a > 0. Then t could be anywhere in the same interval [−a, a]

so we can take M to be the maximum value of
1

(1 + t)2
on [−a, a] which is (here M depends on

a)

M= .

Using

|x− b| ≤ ,

(which should also depend on a) complete Taylor’s inequality

|ln(1 + x)− T1(x)| ≤ M |x− b|2

2
≤ .

(e) Use part (d) above to find the largest interval [−a, a] such that Taylor’s Inequality guarantees
that | ln(1 + x) − T1(x)| ≤ 0.001 for all x in that interval. Note that this is very similar to a
question in the homework. What is different?

3. Let f(x) = sin(x) and b = 0. Then f ′′(t) = − sin(t) and |− sin(t)| = |sin(t)|. Here we get lazy and
regardless of the interval simply use

M=1

since | sin t| ≤ 1 for any t.
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(a) If x = 0.2, then

|x− b| = ,

so Taylor’s inequality will be

|sin(0.2)− T1(0.2)| ≤ M |x− b|2

2
= .

(b) If x in in the interval [−0.3, 0.3]. Then,

|x− b| ≤ ,

so Taylor’s inequality will be

|sin(x)− T1(x)| ≤ M |x− b|2

2
≤ .

(c) If x in in the interval [−a, a], where a > 0, then

|x− b| ≤ ,

(which depends on a) so Taylor’s inequality will be

|sin(x)− T1(x)| ≤ M |x− b|2

2
≤ .

(d) Use part (d) above to find the largest interval [−a, a] such that Taylor’s Inequality guarantees
that | sinx− x| ≤ 0.001 for all x in that interval.
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