Taylor's Inequality for Linear Approximations

Taylor's Inequality states that the error, which is the difference between the actual value f(x) and the approximate value $T_1(x)$ is bounded by

$$|f(x) - T_1(x)| \le \frac{M|x-b|^2}{2}$$

where M is an upper bound for |f''(t)| for t between b and x.

- 1. Let $f(x) = e^x$ and b = 0. Then $f''(t) = e^t$ and $|e^t| = e^t$ because the exponential function is always positive. Now, e^t is an **increasing function**, so it will have a maximum value with t to the right of the interval.
 - (a) If x = 0.2, then t will be in [0, 0.2] so we can take M to be the maximum value of e^t on [0, 0.2] which is

Using

$$|x - b| =$$

complete Taylor's inequality

$$\left|e^{0.2} - T_1(0.2)\right| \le \frac{M|x-b|^2}{2} =$$
.

(b) If x = -0.2, then t will be in [-0.2, 0] so we can take M to be the maximum value of e^t on [-0.2, 0] which is

$$M =$$
 .

Using

$$|x-b| = \qquad ,$$

complete Taylor's inequality

$$\left|e^{-0.2} - T_1(-0.2)\right| \le \frac{M|x-b|^2}{2} =$$

(c) If x in in the interval [-0.3, 0.3], (This version is most common with x in an interval centered at b), then t could be anywhere in the **same** interval [-0.3, 0.3] so we can take M to be the maximum value of e^t on [-0.3, 0.3] which is

Using

$$|x-b| \leq$$

complete Taylor's inequality

$$|e^x - T_1(x)| \le \frac{M|x-b|^2}{2} \le$$
 .

(d) If x in the interval [-a, a], where a > 0, then t could be anywhere in the **same** interval [-a, a] so we can take M to be the maximum value of e^t on [-a, a] which is (here M depends on a)

Using

$$|x-b| \le \qquad ,$$

(which should also depend on a) complete Taylor's inequality

$$|e^x - T_1(x)| \le \frac{M|x-b|^2}{2} \le$$
.

- 2. Let $f(x) = \ln(1+x)$ and b = 0. Then $f''(t) = -\frac{1}{(1+t)^2}$ and $\left|-\frac{1}{(1+t)^2}\right| = \frac{1}{(1+t)^2}$ because $(1+t)^2$ is non-negative. Now, $\frac{1}{(1+t)^2}$ is a **decreasing function** (WHY?), so it will have a maximum value with t to the left of the interval.
 - (a) If x = 0.2, then t will be in [0, 0.2] so we can take M to be the maximum value of $\frac{1}{(1+t)^2}$ on [0, 0.2] which is

Using

$$|x-b| = \qquad ,$$

complete Taylor's inequality

$$|\ln(1+0.2) - T_1(0.2)| \le \frac{M|x-b|^2}{2} =$$

(b) If x = -0.2, then t will be in [-0.2, 0] so we can take M to be the maximum value of $\frac{1}{(1+t)^2}$ on [-0.2, 0] which is

$$M=$$
 .

Using

$$|x - b| =$$

complete Taylor's inequality

$$|\ln(1-0.2) - T_1(-0.2)| \le \frac{M|x-b|^2}{2} =$$
.

(c) If x in in the interval [-0.3, 0.3], then t could be anywhere in the **same** interval [-0.3, 0.3] so we can take M to be the maximum value of $\frac{1}{(1+t)^2}$ on [-0.3, 0.3] which is

$$M =$$
 .

Using

$$|x-b| \leq$$

complete Taylor's inequality

$$|\ln(1+x) - T_1(x)| \le \frac{M|x-b|^2}{2} \le$$
.

(d) If x in in the interval [-a, a], where a > 0. Then t could be anywhere in the **same** interval [-a, a] so we can take M to be the maximum value of $\frac{1}{(1+t)^2}$ on [-a, a] which is (here M depends on a)

$$M=$$
 .

Using

$$|x-b| \leq$$

(which should also depend on a) complete Taylor's inequality

$$\left|\ln(1+x) - T_1(x)\right| \le \frac{M|x-b|^2}{2} \le$$
.

- (e) Use part (d) above to find the largest interval [-a, a] such that Taylor's Inequality guarantees that $|\ln(1 + x) T_1(x)| \le 0.001$ for all x in that interval. Note that this is very similar to a question in the homework. What is different?
- 3. Let $f(x) = \sin(x)$ and b = 0. Then $f''(t) = -\sin(t)$ and $|-\sin(t)| = |\sin(t)|$. Here we get lazy and regardless of the interval simply use

$$M=1$$

since $|\sin t| \le 1$ for any t.

(a) If x = 0.2, then

$$|x-b| =$$

so Taylor's inequality will be

$$|\sin(0.2) - T_1(0.2)| \le \frac{M|x-b|^2}{2} =$$
.

(b) If x in in the interval [-0.3, 0.3]. Then,

$$|x-b| \leq$$

so Taylor's inequality will be

$$|\sin(x) - T_1(x)| \le \frac{M|x-b|^2}{2} \le$$
.

(c) If x in in the interval [-a, a], where a > 0, then

$$|x-b| \leq$$

(which depends on a) so Taylor's inequality will be

$$|\sin(x) - T_1(x)| \le \frac{M|x-b|^2}{2} \le$$

(d) Use part (d) above to find the largest interval [-a, a] such that Taylor's Inequality guarantees that $|\sin x - x| \le 0.001$ for all x in that interval.