Taylor's Inequality for Linear Approximations

Taylor's Inequality states that the error, which is the difference between the actual value $f(x)$ and the approximate value $T_{1}(x)$ is bounded by

$$
\left|f(x)-T_{1}(x)\right| \leq \frac{M|x-b|^{2}}{2}
$$

where M is an upper bound for $\left|f^{\prime \prime}(t)\right|$ for t between b and x.

1. Let $f(x)=e^{x}$ and $b=0$. Then $f^{\prime \prime}(t)=e^{t}$ and $\left|e^{t}\right|=e^{t}$ because the exponential function is always positive. Now, e^{t} is an increasing function, so it will have a maximum value with t to the right of the interval.
(a) If $x=0.2$, then t will be in $[0,0.2]$ so we can take M to be the maximum value of e^{t} on $[0,0.2]$ which is

$$
M=
$$

Using

$$
||x-b|=
$$

complete Taylor's inequality

$$
\left|e^{0.2}-T_{1}(0.2)\right| \leq \frac{M|x-b|^{2}}{2}=
$$

(b) If $x=-0.2$, then t will be in $[-0.2,0]$ so we can take M to be the maximum value of e^{t} on $[-0.2,0]$ which is

$$
M=
$$

Using

$$
||x-b|=
$$

complete Taylor's inequality

$$
\left|e^{-0.2}-T_{1}(-0.2)\right| \leq \frac{M|x-b|^{2}}{2}=
$$

(c) If x in in the interval $[-0.3,0.3]$, (This version is most common with x in an interval centered at b), then t could be anywhere in the same interval $[-0.3,0.3]$ so we can take M to be the maximum value of e^{t} on $[-0.3,0.3]$ which is

Using

$$
|x-b| \leq
$$

complete Taylor's inequality

$$
\left|e^{x}-T_{1}(x)\right| \leq \frac{M|x-b|^{2}}{2} \leq
$$

(d) If x in in the interval $[-a, a]$, where $a>0$, then t could be anywhere in the same interval $[-a, a]$ so we can take M to be the maximum value of e^{t} on $[-a, a]$ which is (here M depends on a)

$$
M=
$$

Using

$$
|x-b| \leq
$$

\square
(which should also depend on a) complete Taylor's inequality

$$
\left|e^{x}-T_{1}(x)\right| \leq \frac{M|x-b|^{2}}{2} \leq
$$

2. Let $f(x)=\ln (1+x)$ and $b=0$. Then $f^{\prime \prime}(t)=-\frac{1}{(1+t)^{2}}$ and $\left|-\frac{1}{(1+t)^{2}}\right|=\frac{1}{(1+t)^{2}}$ because $(1+t)^{2}$ is non-negative. Now, $\frac{1}{(1+t)^{2}}$ is a decreasing function (WHY?), so it will have a maximum value with t to the left of the interval.
(a) If $x=0.2$, then t will be in $[0,0.2]$ so we can take M to be the maximum value of $\frac{1}{(1+t)^{2}}$ on $[0,0.2]$ which is

$$
M=
$$

Using

$$
||x-b|=
$$

complete Taylor's inequality

$$
\left|\ln (1+0.2)-T_{1}(0.2)\right| \leq \frac{M|x-b|^{2}}{2}=
$$

(b) If $x=-0.2$, then t will be in $[-0.2,0]$ so we can take M to be the maximum value of $\frac{1}{(1+t)^{2}}$ on $[-0.2,0]$ which is

$$
M=
$$

Using

$$
||x-b|=
$$

complete Taylor's inequality

$$
\left|\ln (1-0.2)-T_{1}(-0.2)\right| \leq \frac{M|x-b|^{2}}{2}=
$$

(c) If x in in the interval $[-0.3,0.3]$, then t could be anywhere in the same interval $[-0.3,0.3]$ so we can take M to be the maximum value of $\frac{1}{(1+t)^{2}}$ on $[-0.3,0.3]$ which is

$$
M=
$$

Using

$$
|x-b| \leq
$$

complete Taylor's inequality

$$
\left|\ln (1+x)-T_{1}(x)\right| \leq \frac{M|x-b|^{2}}{2} \leq
$$

(d) If x in in the interval $[-a, a]$, where $a>0$. Then t could be anywhere in the same interval $[-a, a]$ so we can take M to be the maximum value of $\frac{1}{(1+t)^{2}}$ on $[-a, a]$ which is (here M depends on a)

$$
M=
$$

Using

$$
|x-b| \leq
$$

(which should also depend on a) complete Taylor's inequality

$$
\left|\ln (1+x)-T_{1}(x)\right| \leq \frac{M|x-b|^{2}}{2} \leq
$$

(e) Use part (d) above to find the largest interval $[-a, a]$ such that Taylor's Inequality guarantees that $\left|\ln (1+x)-T_{1}(x)\right| \leq 0.001$ for all x in that interval. Note that this is very similar to a question in the homework. What is different?
3. Let $f(x)=\sin (x)$ and $b=0$. Then $f^{\prime \prime}(t)=-\sin (t)$ and $|-\sin (t)|=|\sin (t)|$. Here we get lazy and regardless of the interval simply use

$$
M=1
$$

since $|\sin t| \leq 1$ for any t.
(a) If $x=0.2$, then

$$
||x-b|=
$$

so Taylor's inequality will be

$$
\left|\sin (0.2)-T_{1}(0.2)\right| \leq \frac{M|x-b|^{2}}{2}=
$$

(b) If x in in the interval $[-0.3,0.3]$. Then,

$$
||x-b| \leq
$$

so Taylor's inequality will be

$$
\left|\sin (x)-T_{1}(x)\right| \leq \frac{M|x-b|^{2}}{2} \leq
$$

(c) If x in in the interval $[-a, a]$, where $a>0$, then

$$
|x-b| \leq
$$

(which depends on a) so Taylor's inequality will be

$$
\left|\sin (x)-T_{1}(x)\right| \leq \frac{M|x-b|^{2}}{2} \leq
$$

(d) Use part (d) above to find the largest interval $[-a, a]$ such that Taylor's Inequality guarantees that $|\sin x-x| \leq 0.001$ for all x in that interval.

