Graphing Polar Curves

The aim of this worksheet is to help you familiarize with the polar coordinate system. In particular, how the angle θ increases counter-clockwise and how the radius r increases going away from the origin. In the first examples, you can make a table of values and plot them. As you get more comfortable, you start thinking whether $|r|$ is increasing (spiraling outward) or decreasing (sprinkling inward). You also have to keep track of the sign of r.

1. Graph $r=\theta$ by filling out the table using your calculator. Each circular tick corresponds to 1 unit on the scale of r as shown.

θ	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π	$\frac{5 \pi}{2}$	3π	$\frac{7 \pi}{2}$	4π
$r=\theta$									

2. Graph $r=1+\sin \theta$ by filling out this table of values and plotting on the graph. The graph is scaled so that the radius of the complete circle is 3 units.

3. Graph $r=1+\cos \theta$ by using the table and information below. The scaling is the same as above. When r increases, it spirals away from the origin. When r decreases, it spirals towards the origin.

θ	0				$\frac{3 \pi}{2}$		2π		
$r=1+\cos \theta$	2	decreasing	1	decreasing	0	increasing	1	increasing	2

Both graphs have the same shape with different orientations. They have symmetry with respect to the x or y axes.
4. Graph $r=4+2 \cos \theta$ below by completing the following table in a way similar to the previous graph. For the values in between multiples of $\pi / 2$, make a note of whether r is increasing or decreasing and then use that information to graph the polar curve. The graph is scaled so the whole circle has radius 6 , the maximum possible value for r.

θ	0		$\frac{\pi}{2}$		π		$\frac{3 \pi}{2}$		2π
$r=4+2 \cos \theta$									

5. Graph $r=2+4 \sin \theta$ below by completing the following table. Compute the r values for the given θ. For the values in between, just make a note of whether $|r|$ is increasing (spiraling out) or decreasing (spiraling in) and then graph the polar curve. Note that r takes negative values between $\frac{7 \pi}{6}$ and $\frac{11 \pi}{6}$

The graphs in Questons 2-5 are from the family of cardioids. They have equations of the form $r=$ $a+b \cos \theta$ or $r=a+b \sin \theta$, with $a, b>0$. You get one of the three shapes you drew depending on whether $a>b$ (Question 4), $b<a$ (Question 5) or $b=a$ (Questions 2 and 3). The other popular family of polar curves are the roses with equations $r=a \cos (n \theta)$ or $r=a \sin (n \theta)$ where $n>1$ is a positive integer. You can use the polar graphs below to draw some examples from the book or sketch your homework problems. Scale the r as appropriate.

