Partial Derivatives and Slopes

The questions below use the function

$$
f(x, y)=\frac{12}{6+3 x^{2}+2 y^{2}}
$$

1. The first example is about understanding $f_{x}(a, b)$ as a slope. You will compute $f_{x}(0.5,0.3)$.

The surface $z=f(x, y)$ and the plane $y=0.3$

$z=f(x, 0.3)$
(a) Graph the line (as best as you can) on the plane $y=0.3$, tangent to the curve at $x=0.5$ on the picture on the left. The slope of this line computed as $\frac{\Delta z}{\Delta x}$ is $f_{x}(0.5,0.3)$.
(b) The curve on the right is the same as the curve of intersection of the surface $z=f(x, y)$ and the plane $y=0.3$ on the left. You can think about the $x z$ - axes on the right as the plane $y=0.3$ on the left. Graph the line tangent to the curve at $x=0.5$ on the picture on the right. Compute its slope (approximately) from the graph.
(c) Now let $g(x)=f(x, 0.3)$ and simplify. This is the graph you see on the right. Compute $g^{\prime}(x)$ and $g^{\prime}(0.5)$.
(d) Compute $f_{x}(x, y)$ and $f_{x}(0.5,0.3)$.
(e) Now, using that same slope you computed three times in parts (b)-(d), write a vector that is in the same direction as the tangent line on the right. Modify that vector by adding a y-component to write a vector parallel to the tangent line you drew on the left.

Again, the function is

$$
f(x, y)=\frac{12}{6+3 x^{2}+2 y^{2}}
$$

2. The second example is about understanding $f_{y}(a, b)$ as a slope. You will compute $f_{y}(0.5,0.3)$.

The surface $z=f(x, y)$ and the plane $x=0.5$

$z=f(0.5, y)$
(a) Graph the line on the plane $x=0.5$, tangent to the curve at $(0.5,0.3, f(0.5,0.3)$ on the picture on the left. The slope of this line computed as $\frac{\Delta z}{\Delta y}$ is $f_{y}(0.5,0.3)$.
(b) Graph the line tangent to the curve at $y=0.3$ on the picture on the right. Compute its slope (approximately) from the graph.
(c) Now let $g(y)=f(0.5, y)$ and simplify. Compute $g^{\prime}(y)$ and $g^{\prime}(0.3)$.
(d) Compute $f_{y}(x, y)$ and $f_{y}(0.5,0.3)$.
(e) Now, using that same slope you computed three times in parts (b)-(d), write a vector that is in the same direction as the tangent line on the right. Modify that vector by adding an x-component to write a vector parallel to the tangent line you drew on the left.

Copy your derivative from Question 1:
$f_{x}(x, y)=$
3. $f_{x x}$ tells how f_{x} changes when y is (still) kept constant and x increases. Therefore, it measures how the slopes change.

(a) On the left, draw the lines on the plane $y=0.3$ which are tangent to the curve of intersection at $(0.2,0.3, f(0.2,0.3))$ and $(0.5,0.3, f(0.5,0.3))$. These will be approximate as you cannot clearly see the x values.
(b) On the right, draw the lines which are tangent to the curve at $x=0.2$ and $x=0.5$. These are the same lines but easier to see, draw and work with.
(c) By just looking, can you tell if the slope increased or decreased from $x=0.2$ to $x=0.5$?
(d) Now compute $f_{x x}(x, y)$ and $f_{x x}(0.2,0.3)$ and compare the sign of $f_{x x}(0.2,0.3)$ with your answer above.

Copy your derivative from Question 1:
$f_{y}(x, y)=$
4. $f_{y y}$ tells how f_{y} changes when x is (still) kept constant and y increases just a little bit. Therefore, it measures how the slopes change.

(a) On the left, draw the lines on the plane $x=0.3$ which are tangent to the curve of intersection at $y=0.2$ and 0.5 . These will be approximate as you cannot clearly see the y values.
(b) On the right, draw the lines which are tangent to the curve at $y=0.2$ and $y=0.5$. These are easier to see and work with.
(c) By just looking, can you tell if the slope increased or decreased from $y=0.2$ to $y=0.5$?
(d) Now compute $f_{y y}(x, y)$ and $f_{y y}(0.5,0.2)$ and compare the sign of $f_{y y}(0.5,0.2)$ with your answer above.
5. $f_{y x}$ is trickier to see. It shows how the slopes f_{y} change when x changes.

The surface $z=f(x, y)$ and the planes $y=0.3$ and $y=0.8$

$\mathrm{z}=\mathrm{f}(\mathrm{x}, 0.3)$ (top) and $\mathrm{z}=\mathrm{f}(\mathrm{x}, 0.8)$ (bottom)
(a) Draw the the two lines on the planes $y=0.2$ and $y=0.8$ tangent to the surface (and hence to the two curves of intersection) at $x=0.2$. These will be approximate drawings.
(b) Draw the the tangent lines to both curves at $x=0.2$. Did the slope increase as you went from the top curve (which we got by setting $y=0.3$) to the bottom (which we got by setting $y=0.8$)? Do you think $f_{x y}$ is positive or negative?
(c) Compute $f_{x y}(0.2,0.3)$ and compare with your answer above.

Thinking about $f_{x y}$ is left as an exercise. If you still have time left, do this question:
6. Use your answers to $1(\mathrm{~d})$ and $2(\mathrm{~d})$ to write the equation of the tangent plane to the surface $z=f(x, y)$ at the point $(0.5,0.3, f(0.3,0.5))$. The tangent plane is the plane that contains the two tangent lines you drew in Questions 1 and 2.

