Solutions to Midterm I

1. (a) $f^{\prime}(x)=6 x+\frac{1}{2 x^{3 / 2}}+5 e^{x}$.
(b) $g^{\prime}(t)=\frac{6 t(t \cos t+\sin t)-\left(3 t^{2}-1\right)(\cos t-t \sin t+\cos t)}{(t \cos t+\sin t)^{2}}$.
(c) Use the limit definition of the derivative to compute .

$$
\begin{aligned}
& \frac{d}{d x} \sqrt{x+3}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h+3}-\sqrt{x+3}}{h} \cdot \frac{\sqrt{x+h+3}+\sqrt{x+3}}{\sqrt{x+h+3}+\sqrt{x+3}}=\lim _{h \rightarrow 0} \frac{x+h+3-(x+3)}{h(\sqrt{x+h+3}+\sqrt{x+3})} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h+3}+\sqrt{x+3})}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h+3}+\sqrt{x+3}}=\frac{1}{\sqrt{x+3}+\sqrt{x+3}}=\frac{1}{2 \sqrt{x+3}}
\end{aligned}
$$

(d) A graph of $y=f(x)$ with domain $(-2,9.5)$ is given on the right.
(i) Note that $f^{\prime}(1)=0, f^{\prime}(8)=-20, f^{\prime}(3)>f^{\prime}(8)$ because it is less steep and negative, and $f^{\prime}(-1)>f^{\prime}(0)$ because it is steeper and positive. So

$$
f^{\prime}(8)<f^{\prime}(3)<f^{\prime}(1)<f^{\prime}(0)<f^{\prime}(-1)
$$

(ii) At $x=6$ where there is a "corner" $\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h} \neq \lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h}$.
2. (a) $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0$ by the Sandwich/Squeeze theorem as

$$
-|x|^{2} \leq x^{2} \sin \left(\frac{1}{x}\right) \leq|x|^{2}
$$

and $\lim _{x \rightarrow 0}|x|^{2}=0$.
(b) $\lim _{t \rightarrow \infty} \frac{3+t^{2}}{5 t^{2}+\sqrt{1+9 t^{4}}}=\lim _{t \rightarrow \infty} \frac{\frac{3+t^{2}}{t^{2}}}{\frac{5 t^{2}+\sqrt{1+9 t^{4}}}{t^{2}}}=\lim _{t \rightarrow \infty} \frac{\frac{3}{t^{2}}+1}{5+\frac{\sqrt{1+9 t^{4}}}{\sqrt{t^{4}}}}=\lim _{t \rightarrow \infty} \frac{\frac{3}{t^{2}}+1}{5+\sqrt{\frac{1}{t^{4}}+9}}=\frac{1}{8}$
(c) $\lim _{h \rightarrow 0}\left(\frac{1}{h}-\frac{1}{h^{2}+h}\right)=\lim _{h \rightarrow 0}\left(\frac{h+1}{h(h+1)}-\frac{1}{h^{2}+h}\right)=\lim _{h \rightarrow 0}\left(\frac{h+1-1}{h(h+1)}\right)=\lim _{h \rightarrow 0} \frac{1}{h+1}=1$
(d) When $x=2$, the denominator $(x-1)(x-2)$ is 0 . If the numerator were not zero, this limit would have been $\infty,-\infty$ or DNE. So to get the limit to be 7 , we must have the numerator evaluate to 0 at $x=2$:

$$
2^{2}+2 a-10=0
$$

so $a=3$. Now, we compute the limit and make sure it is 7 (and not some other number):

$$
\lim _{x \rightarrow 2} \frac{x^{2}+3 x-10}{x^{2}-3 x+2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+5)}{(x-1)(x-2)}=\lim _{x \rightarrow 2} \frac{x+5}{x-1}=7
$$

3. (a) $\frac{h(2)-h(0)}{2-0}=\frac{-12.5 \cdot 4+80 \cdot 2+12-12}{2}=\frac{110}{2}=55$ meters per second.
(b) The derivative $h^{\prime}(t)=-25 t+80$ so $h^{\prime}(2)=-50+80=30$ meters per second. It is going up because the height is increasing.
(c) When the velocity is -30 meters per second:

$$
-30=-25 t+80
$$

so at $t=110 / 25=4.4$ seconds.
(d) $h^{\prime \prime}(t)=-25$ meters per second squared.
(e) It momentarily stops before falling down, so 0 .
(f) When $-25 t+80=0, t=80 / 25=3.2$ seconds. Then, $h(3.2)=140$ meters.
4. The slopes of the tangent lines must be $-7 / 9$ because they are perpendicular to the given line with slope $9 / 7$. Since

$$
y^{\prime}=\frac{5(2 x-1)-(5 x+1) \cdot 2}{(2 x-1)^{2}}=-\frac{7}{(2 x-1)^{2}}
$$

at the point of tangency $(a, y(a))$ we must have

$$
-\frac{7}{9}=\frac{7}{(2 a-1)^{2}}
$$

so $2 a-1= \pm 3$ giving:

At $a=2, y(2)=11 / 3$ and the equation of the line is

$$
y-\frac{11}{3}=-\frac{7}{9}(x-2)
$$

At $a=-1, y(-1)=4 / 3$ and the equation of the line is

$$
y-\frac{4}{3}=-\frac{7}{9}(x+1) .
$$

