Math 124, Spring 2022, Solutions to Midterm II

1. (a)

$$
y^{\prime}=\cos \left(4^{x}+\sqrt{1-e^{2 x}}\right)\left(\ln 4 \cdot 4^{x}-\frac{2 e^{2 x}}{2 \sqrt{1-e^{2 x}}}\right)
$$

(b)

$$
\begin{gathered}
\ln y=\ln \left(\left(x^{2}+5\right)^{\ln x}\right)=(\ln x) \ln \left(x^{2}+5\right) \\
\frac{y^{\prime}}{y}=\frac{1}{x} \ln \left(x^{2}+5\right)+(\ln x) \frac{2 x}{x^{2}+5} \\
y^{\prime}=\left(\frac{\ln \left(x^{2}+5\right)}{x}+\frac{2 x \ln x}{x^{2}+5}\right)\left(x^{2}+5\right)^{\ln x}
\end{gathered}
$$

(c) Implicit differentiation:

$$
5\left(3 x^{2}+4 y^{2}\right)^{4}\left(6 x+8 y y^{\prime}\right)=12 x-14 y y^{\prime}
$$

Now solve for y^{\prime} :

$$
\begin{gathered}
30 x\left(3 x^{2}+4 y^{2}\right)^{4}+40 y y^{\prime}\left(3 x^{2}+4 y^{2}\right)^{4}=12 x-14 y y^{\prime} \\
30 x\left(3 x^{2}+4 y^{2}\right)^{4}-12 x=-14 y y^{\prime}-40 y y^{\prime}\left(3 x^{2}+4 y^{2}\right)^{4}=-\left(14 y+40 y\left(3 x^{2}+4 y^{2}\right)^{4}\right) y^{\prime} \\
y^{\prime}=-\frac{30 x\left(3 x^{2}+4 y^{2}\right)^{4}-12 x}{14 y+40 y\left(3 x^{2}+4 y^{2}\right)^{4}}
\end{gathered}
$$

2. Finding the t that corresponds to $P(1,2)$:

$$
1=5 t^{2}-5 t+1 \quad 2=2 t^{3}-4 t^{2}+t+2
$$

From the first simpler equation

$$
0=5 t^{2}-5 t \quad \text { so } \quad t=0 \text { or } t=1
$$

Checking the y value:

$$
2 \neq 2-4+1+2 \quad 2=2 \cdot 0-4 \cdot 0+0+2
$$

So, $t=0$. The slope of the tangent is given by

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{6 t^{2}-8 t+1}{10 t-5}
$$

the slope at P is

$$
\left.\frac{6 t^{2}-8 t+1}{10 t-5}\right|_{t=0}=-\frac{1}{5}
$$

Equation of ℓ_{1} is

$$
y-2=-\frac{1}{5}(x-1)
$$

To find the Q solve

$$
2 t^{3}-4 t^{2}+t+2-2=-\frac{1}{5}\left(5 t^{2}-5 t+1-1\right)
$$

which simplifies to

$$
10 t^{3}-15 t^{2}=5 t^{2}(2 t-3)=0
$$

So at Q we have $t=3 / 2$. It has coordinates

$$
5(3 / 2)^{2}-5(3 / 2)+1=\frac{19}{4} \quad 2(3 / 2)^{3}-4(3 / 2)^{2}+(3 / 2)+2=\frac{5}{4}
$$

The slope is

$$
\left.\frac{6 t^{2}-8 t+1}{10 t-5}\right|_{t=3 / 2}=\frac{1}{4}
$$

So the equation of ℓ_{2} is

$$
y-\frac{5}{4}=\frac{1}{4}\left(x-\frac{19}{4}\right)
$$

3. We need to tangent line to $f(x)=\sqrt{x}$ at $x=16$ for the approximation:

$$
\begin{array}{lr}
f(x)=\sqrt{x} & f(16)=\sqrt{16}=4 \\
f^{\prime}(x)=\frac{1}{2 \sqrt{x}} & f^{\prime}(16)=\frac{1}{2 \sqrt{16}}
\end{array}
$$

So the tangent line is

$$
y-4=\frac{1}{8}(x-16)
$$

and the approximation is

$$
\sqrt{15}-4 \approx \frac{1}{8}(15-16)=-0.125
$$

so $\sqrt{15} \approx 3.875$.
4. On the right is the cross-section of the tank. Using similar triangles: $\frac{0.6}{x}=\frac{2.7}{h}$ so $x=\frac{2 h}{9}$.
The volume of water in the tank is

$$
V=\frac{1}{2} 2 x h(5)=5 h\left(\frac{2 h}{9}\right)=\frac{10 h^{2}}{9}
$$

Differentiate to get

$$
\frac{d V}{d t}=\frac{20 h}{9} \frac{d h}{d t}
$$

When $V=2.5=\frac{10 h^{2}}{9}, h=1.5$ so

$$
4.5=\frac{20(1.5)}{9} \frac{d h}{d t}
$$

so $\frac{d h}{d t}=\frac{27}{20}$ meters per minute.

