Solutions to Math 124 G Fall 2023 Midterm I

1. (a) $f^{\prime}(x)=12 x^{3}+\frac{\pi}{x^{2}}+4 \pi x^{4 \pi-1}-\frac{35}{2} \sqrt{x^{3}}$
(b) $g^{\prime}(x)=\left(9 x^{2}-16 x^{3}\right)\left(5 \tan x-6 e^{x}+9\right)+\left(3 x^{3}-4 x^{4}\right)\left(5 \sec ^{2} x-6 e^{x}\right)$
(c) $h^{\prime}(x)=\frac{\left(9 x^{2}-7\right)(x \cos x)-\left(3 x^{3}-7 x+1\right)(\cos x-x \sin x)}{(x \cos x)^{2}}$
2. (a) $\lim _{t \rightarrow 0} \frac{2 \cos t-\sqrt{4 \cos ^{2} t+13 \sin ^{2} t}}{23 \sin ^{2} t}=\lim _{t \rightarrow 0} \frac{2 \cos t-\sqrt{4 \cos ^{2} t+13 \sin ^{2} t}}{23 \sin ^{2} t} \cdot \frac{2 \cos t+\sqrt{4 \cos ^{2} t+13 \sin ^{2} t}}{2 \cos t+\sqrt{4 \cos ^{2} t+13 \sin ^{2} t}}$
$=\lim _{t \rightarrow 0} \frac{4 \cos ^{2} t-4 \cos ^{2} t-13 \sin ^{2} t}{23 \sin ^{2} t\left(2 \cos t+\sqrt{4 \cos ^{2} t+13 \sin ^{2} t}\right)}=\lim _{t \rightarrow 0} \frac{-13}{23\left(2 \cos t+\sqrt{4 \cos ^{2} t+13 \sin ^{2} t}\right)}=-\frac{13}{92}$
(b) $\lim _{t \rightarrow 7} \frac{t-7}{t^{2}-49}=\lim _{t \rightarrow 7} \frac{t-7}{(t-7)(t+7)}=\lim _{t \rightarrow 7} \frac{1}{t+7}=\frac{1}{14}$
(c) $\lim _{x \rightarrow \infty} \frac{\sqrt{5 x^{2}+1}}{7 x+8}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{5 x^{2}+1}}{x}}{\frac{7 x+8}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{5 x^{2}+1}{x^{2}}}}{\frac{7 x}{x}+\frac{8}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{5 x^{2}}{x^{2}}+\frac{1}{x^{2}}}}{7+\frac{8}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{5+\frac{1}{x^{2}}}}{7+\frac{8}{x}}=\frac{\sqrt{5}}{7}$
3. (a) We have $f(1)=-2, f^{\prime}(x)=3 x^{2}-4 x+3$, and $f^{\prime}(1)=2$ so the tangent to f has equation

$$
y+2=2(x-1) .
$$

The tangent to g has the same point, but slope $-1 / 2$ so its equation is

$$
y+2=-\frac{1}{2}(x-1)
$$

(b) From

$$
-2=g(1)=\frac{a}{b+1}
$$

we get $a=-2(b+1)$. From

$$
g^{\prime}(x)=-\frac{a}{(b+x)^{2}}
$$

and

$$
-\frac{1}{2}=g^{\prime}(1)=-\frac{a}{(b+1)^{2}}
$$

we get $a=\frac{1}{2}(b+1)^{2}$. Solving, we get $b=-1$ or $b=-5 / 2$. We see that $b=-1$ makes g undefined at $x=1$ which is not the case. So $b=-5, a=8$ and

$$
g(x)=\frac{8}{-5+x}
$$

(c) The graph of $y=f(x)$ is given by $\mathbf{1}$ and the graph of $y=g(x)$ is given by $\mathbf{4}$. The tangent line to $y=f(x)$ is $\mathbf{2}$ and has equation $y=2 x-4$. The tangent line to $y=g(x)$ is $\mathbf{3}$ and has equation $y=-\frac{1}{2} x-\frac{3}{2}$.
4. (a) $x=-2,7$
(b) $x=0,4$
(c) $(-\infty,-2),(-2,0),(4,7)$
(d) $(2,7)$

