Solutions to Math 124 F Winter 2023 Midterm I

1. (a) $\lim _{x \rightarrow 2} \frac{x^{3}-4 x}{x^{2}+x-6}=\lim _{x \rightarrow 2} \frac{x(x-2)(x+2)}{(x-2)(x+3)}=\lim _{x \rightarrow 2} \frac{x(x+2)}{x+3}=\frac{8}{5}$.
(b) $\lim _{t \rightarrow \frac{\pi}{2}} \frac{\sqrt{\sin ^{2} t+a \cos ^{2} t}-\sin t}{\cos ^{2} t} \cdot \frac{\sqrt{\sin ^{2} t+a \cos ^{2} t}+\sin t}{\sqrt{\sin ^{2} t+a \cos ^{2} t}+\sin t}=\lim _{t \rightarrow \frac{\pi}{2}} \frac{\sin ^{2} t+a \cos ^{2} t-\sin ^{2} t}{\cos ^{2} t\left(\sqrt{\sin ^{2} t+a \cos ^{2} t}+\sin t\right)}$

$$
=\lim _{t \rightarrow \frac{\pi}{2}} \frac{a}{\sqrt{\sin ^{2} t+a \cos ^{2} t}+\sin t}=\frac{a}{2}
$$

(c) No. Horizontal asymptotes are determined by computing the limits $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ so there cannot be more than two.
2. (a) $f(x)=\frac{2}{3} e^{x}+2 x^{-1 / 2}-\frac{5}{6} x^{-2}+7 x^{e}$ so $f^{\prime}(x)=\frac{2}{3} e^{x}-x^{-3 / 2}+\frac{5}{3} x^{-3}+7 e x^{e-1}$
(b) From $g^{\prime}(x)=\frac{\left(6 x^{2}+4 \sec ^{2} x\right)\left(5 x^{6}+7 \cos x\right)-\left(2 x^{3}+4 \tan x\right)\left(30 x^{5}-7 \sin x\right)}{\left(5 x^{6}+7 \cos x\right)^{2}}$ we have $g^{\prime}(0)=\frac{4}{7}$.

Since $g(0)=0$ the tangent line is $y=\frac{4}{7} x$.
(c) $\lim _{x \rightarrow a} \frac{\tan x-\tan a}{x-a}=\left.\frac{d}{d x} \tan x\right|_{x=a}=\sec ^{2} a$.
3. First,

$$
\frac{x^{3}-27}{x-3}=\frac{(x-3)\left(x^{2}+3 x+9\right)}{x-3}=x^{2}+3 x+9, \quad \text { when } \quad x<3 .
$$

So, continuity at $x=3$ gives

$$
3^{2}+3 \cdot 3+9=\frac{3 b+1}{2 \cdot 3-1}+a
$$

Then,

$$
f^{\prime}(x)= \begin{cases}2 x+3, & x<3 \\ \frac{-b-2}{(2 x-1)^{2}}, & x>3 .\end{cases}
$$

So, differentiability at $x=3$ gives

$$
2 \cdot 3+3=\frac{-b-2}{(2 \cdot 3-1)^{2}} .
$$

Solving these equations for a and b we get $a=163$ and $b=-227$.
4. If $\left(x, x^{3}-x+1\right)$ is the point of tangency, writing the slope in two ways, as the slope of the tangent line using the derivative and as rise over run we get the equation

$$
3 x^{2}-1=\frac{x^{3}-x+1-3}{x+2}
$$

which simplifies to

$$
2 x^{3}+6 x^{2}=0
$$

giving us $x=0$ or $x=-3$ with slopes $m=-1$ and $m=26$, respectively. So the equations of the tangent lines are

$$
y-3=-(x+2) \quad \text { and } \quad y-3=26(x+2)
$$

