Solutions to Math 124 C Spring 2023 Midterm II

1. (a) $y^{\prime}=\frac{7 \sin ^{6}\left(e^{x}\right) \cdot \cos \left(e^{x}\right) \cdot e^{x}}{2 \sqrt{1+\sin ^{7}\left(e^{x}\right)}}$
(b)

$$
\begin{gathered}
\sec ^{2}(x+y) \cdot\left(1+y^{\prime}\right)-12 x^{2} y^{2}-8 x^{3} y y^{\prime}=e^{x y}\left(y+x y^{\prime}\right) \\
\left(\sec ^{2}(x+y)-8 x^{3} y y^{\prime}-x e^{x y}\right) y^{\prime}=-\sec ^{2}(x+y)+12 x^{2} y^{2}+y e^{x y} \\
y^{\prime}=\frac{-\sec ^{2}(x+y)+12 x^{2} y^{2}+y e^{x y}}{\sec ^{2}(x+y)-8 x^{3} y y^{\prime}-x e^{x y}}
\end{gathered}
$$

(c)

$$
\begin{gathered}
\ln y=5 x \cdot \ln \left(1+x^{2}\right) \\
\frac{y^{\prime}}{y}=5 \ln \left(1+x^{2}\right)+5 x \cdot \frac{2 x}{1+x^{2}} \\
y^{\prime}=\left(5 \ln \left(1+x^{2}\right)+\frac{10 x^{2}}{1+x^{2}}\right)\left(1+x^{2}\right)^{5 x}
\end{gathered}
$$

2. (a) We evaluate the derivative

$$
\frac{d y}{d x}=\frac{3 t^{2}-12}{4 t}
$$

at the t value where $\left(2 t^{2}-40, t^{3}-12 t\right)=(-38,-11)$. Since the x coordinate is a quadratic, it is easier to solve

$$
-38=2 t^{2}-40
$$

to get $t \pm 1$. Only $t=1$ works for $t^{3}-12 t=-11$ so $t=1$. The slope of the tangent line is

$$
\left.\frac{d y}{d x}\right|_{t=1}=\left.\frac{3 t^{2}-12}{4 t}\right|_{t=1}=-\frac{9}{4}
$$

so the equation of the tangent line is

$$
y+11=-\frac{9}{4}(x+38)
$$

or $y=-\frac{9}{4} x-\frac{298}{4}$.
(b) Intersection the tangent line with the corve

$$
t^{3}-12 t+11=\frac{9}{4}\left(2 t^{2}-40+38\right)
$$

which simplifies to

$$
4 t^{3}+18 t^{2}-48 t+26=0
$$

Since $t=1$ is a root we get

$$
(t-1)\left(4 t^{2}+22 t-26\right)=0
$$

In fact, $t=1$ is a double root

$$
(t-1)^{2}(4 t+26)=0
$$

so the second point of intersection is when $t=-13 / 2$ and the point is $\left(\frac{89}{2},-\frac{1573}{8}\right)=(44.5,-196.625)$
3. First to write the tangent line at $(1, P(1))=(1,-4)$ we compute

$$
p^{\prime}(x)=12 x^{2}-2 x+3
$$

So the slope is $p^{\prime}(1)=13$ and the tangent line is given by

$$
y+1=13(x-1)
$$

Now we use approximation:

$$
0+1 \approx 13(x-1)
$$

to get $x \approx 14 / 13$. To see if it is more or less, we look at the second derivative

$$
p^{\prime \prime}(x)=24 x-2 x
$$

and $p^{\prime \prime}(1)-22>0$. So, near the point $(1,-1)$ we have a concave up increasing picture:

where the gold tangent stays below and to the right of the purple curve so the approximation is more than the actual value.
4. Given $\frac{d x}{d t}=-4$ meters per second, to find $\frac{d \theta}{d t}$

we use the equation

$$
\tan \theta=\frac{x}{2000}
$$

The derivative with respect to t is

$$
\sec ^{2} \theta \cdot \frac{d \theta}{d t}=\frac{1}{2000} \cdot \frac{d x}{d t}
$$

When $x=3$ kilometers, the hypotenuse would be $\sqrt{13}$ so $\sec \theta=\frac{\sqrt{13}}{2}$. Then,

$$
\left(\frac{\sqrt{13}}{2}\right)^{2} \frac{d \theta}{d t}=\frac{1}{2000} \cdot(-4)
$$

so $\frac{d \theta}{d t}=\frac{1}{1625}$ radians per second or $\frac{60}{3250 \pi}$ revolutions per minute.

