Solutions to Math 124 C Spring 2023 Midterm I

1. Differentiate the following functions. You do not have to simplify your answers, but make sure your use of parentheses is correct.
(a) $f(x)=0.3 x^{2}-\frac{1}{2 x^{3}}+e^{2 x}+3 \sqrt{x}+\pi$ $f^{\prime}(x)=0.6 x+\frac{3}{2 x^{4}}+2 e^{2 x}+\frac{3}{2 \sqrt{x}}$
(b) $g(x)=\frac{5 \sin (6 x)+7 \cos (8 x)}{9 e^{x}-x^{10}}$ $g^{\prime}(x)=\frac{(30 \cos (6 x)-56 \sin (8 x))\left(9 e^{x}-x^{10}\right)-(5 \sin (6 x)+7 \cos (8 x))\left(9 e^{x}-10 x^{9}\right)}{\left(9 e^{x}-x^{10}\right)^{2}}$
(c) $h(x)=\left(3 x^{3}+5\right) \tan \left(e^{x}\right)$
$h^{\prime}(x)=\left(9 x^{2}\right) \tan \left(e^{x}\right)+e^{x}\left(3 x^{3}+5\right) \sec ^{2}\left(e^{x}\right)$
2. (a) (i) $\lim _{h \rightarrow 0} \frac{\sqrt{(5+h)^{2}-16}-3}{h} \cdot \frac{\sqrt{(5+h)^{2}-16}+3}{\sqrt{(5+h)^{2}-16}+3}=\lim _{h \rightarrow 0} \frac{(5+h)^{2}-25}{h\left(\sqrt{(5+h)^{2}-16}+3\right)}$

$$
=\lim _{h \rightarrow 0} \frac{h(10+h)}{h\left(\sqrt{(5+h)^{2}-16}+3\right)}=\lim _{h \rightarrow 0} \frac{10+h}{\sqrt{(5+h)^{2}-16}+3}=\frac{10}{\sqrt{5^{2}-16}+3}=\frac{10}{3+3}=\frac{5}{3}
$$

(ii) $f(x)=\sqrt{x^{2}-16}, a=5, f^{\prime}(x)=\frac{x}{\sqrt{x^{2}-16}}, f^{\prime}(a)=f^{\prime}(5)=\frac{5}{\sqrt{25-16}}=\frac{5}{3}$
(b) $\lim _{x \rightarrow 5} \frac{x^{2}-25}{x^{2}-9 x+20}=\lim _{x \rightarrow 5} \frac{(x-5)(x+5)}{(x-5)(x-4)}=\lim _{x \rightarrow 5} \frac{x+5}{x-4}=10$

OR

$$
\lim _{x \rightarrow 5} \frac{x^{2}-25}{x^{2}-9 x+20}={ }^{\mathrm{LH}} \lim _{x \rightarrow 5} \frac{2 x}{2 x-9}=\frac{10}{1}=10
$$

3. (a) The point of tangency is $(0, y(0))=(0,1)$ and from

$$
y^{\prime}=e^{x}\left(x^{2}+x+1\right)+e^{x}(2 x+1)=e^{x}\left(x^{2}+3 x+2\right)
$$

the slope is $y^{\prime}(0)=2$ so the tangent line L_{1} is given by

$$
y-1=2(x-0)
$$

or $y=2 x+1$.
(b) The tangent line L_{2} must have slope $-\frac{1}{2}$ since it is perpendicular to L_{1}, so

$$
y^{\prime}=-2 x+\frac{3}{2}=-\frac{1}{2}
$$

so the point of tangency has $x=1$ and $y=-1+\frac{3}{2}+7=\frac{15}{2}$. Therefore, the equation of the tangent line L_{2} is

$$
y-\frac{15}{2}=-\frac{1}{2}(x-1)
$$

or $y=-\frac{1}{2} x+8$.
(c) Solve

$$
2 x+1=-\frac{1}{2} x+8
$$

to get $x=\frac{14}{5}=2.8$ and $y=2 \cdot \frac{14}{5}+1=\frac{33}{5}=6.6$
4. This was not graded for work shown, but the parts needed some lines to be drawn for the answers.

(a) The velocity of the object at $t=2$ (See blue tangents above)
(b) -1.2 (See red tangent above)
(c) $t=4,8$ (See green tangents above)
(d) $(4,8)$
(e) $s^{\prime}(6)<s^{\prime}(4)<s^{\prime}(9.4)<s^{\prime}(0.5)$ (See orange tangents below)

