Math 124 C Fall 2022 Solutions to Midterm I

1. (a)

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{9+x}-3}{4-\sqrt{16+2 x}}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{9+x}-3}{\sqrt{x}}}{\frac{4-\sqrt{16+2 x}}{\sqrt{x}}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{9+x}{x}}-\frac{3}{\sqrt{x}}}{\frac{4}{\sqrt{x}}-\sqrt{\frac{16+2 x}{x}}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{9}{x}+1}-\frac{3}{\sqrt{x}}}{\frac{4}{\sqrt{x}}-\sqrt{\frac{16}{x}+2}}=\frac{\sqrt{1}-0}{0-\sqrt{0+2}}=-\frac{1}{\sqrt{2}}
$$

(b)

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{2(3+h)+1}-\sqrt{7}}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{2 h+7}-\sqrt{7}}{h} \cdot \frac{\sqrt{2 h+7}+\sqrt{7}}{\sqrt{2 h+7}+\sqrt{7}} \\
=\lim _{h \rightarrow 0} \frac{2 h+7-7}{h(\sqrt{2 h+7}+\sqrt{7})}=\lim _{h \rightarrow 0} \frac{2 h}{h(\sqrt{2 h+7}+\sqrt{7})}=\lim _{h \rightarrow 0} \frac{2}{(\sqrt{2 h+7}+\sqrt{7})}=\frac{2}{(\sqrt{7}+\sqrt{7})}=\frac{1}{\sqrt{7}}
\end{gathered}
$$

(c)

$$
\lim _{x \rightarrow \frac{\pi}{6}} \frac{\sin \left(\frac{\pi}{6}\right)-\sin x}{\frac{\pi}{6}-x}=\left.\frac{d}{d x} \sin x\right|_{x=\frac{\pi}{6}}=\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}
$$

2. (a) $f^{\prime}(x)=\frac{3 e^{x}}{5}+\frac{1}{\sqrt{x}}+\frac{6}{x^{3}}+e x^{e-1}+13$.
(b) $g^{\prime}(x)=\frac{48 x^{5}(5+4 \sqrt[3]{x})-\left(8 x^{6}+7\right)\left(\frac{4}{3} x^{-2 / 3}\right)}{(5+4 \sqrt[3]{x})^{2}} g^{\prime}(1)=\frac{48(5+4)-(8+7)\left(\frac{4}{3}\right)}{(5+4)^{2}}=\frac{412}{81}$
(c) The parabola and the tangent line share the point $(1,1)$ and the slope 5 :

$$
1=A \cdot 1^{2}+B
$$

and

$$
y^{\prime}(1)=2 A \cdot 1=5
$$

So $A=5 / 2$ and $B=1-5 / 2=-3 / 2$.
3. Since $f(x)=\frac{x}{x^{2}+x-6}=\frac{x}{(x+3)(x-2)}$
(a)

$$
\lim _{x \rightarrow 2^{+}} f(x)=\infty \quad \lim _{x \rightarrow 2^{-}} f(x)=-\infty \quad \lim _{x \rightarrow \infty} f(x)=0 \quad \lim _{x \rightarrow-\infty} f(x)=0
$$

and

$$
f^{\prime}(x)=\frac{x^{2}+x-6-x(2 x+1)}{\left(x^{2}+x-6\right)^{2}} \quad f^{\prime}(0)=-\frac{1}{6}
$$

(b) The graph of the function $y=f(x)$ is given by picture \mathbf{D}, matching the vertical asymptote $x=2$, the horizontal asymptote $y=0$ and the negative derivative at $x=0$.
4. We write the slope of the tangent at the point $\left(a, a^{2}-6 a+11\right)$ in two ways:

$$
2 a-6=\frac{a^{2}-6 a+11-7}{a-0}
$$

giving us the quadratice equation

$$
a^{2}-4=0
$$

Since $a>0$ in the picture, we have $a=2$. So the slope is $2 a-6=-2$, the y-coordinate is $a^{2}-6 a+11=3$, the tangent line is

$$
y-3=-2(x-2)
$$

which has x-intercept $x=7 / 2$, giving the area of the triangle to be $49 / 4=12.25$.

