Let G be a bipartite graph with two equal-sized classes X and Y $(|X| = |Y| = n)$. Assume that all vertices of G have degree at least $n/2$. Show the following.

a) For any set $S \subset X$ of size $|S| > \frac{n}{2}$, $N_G(S) = Y$.

b) Show that G has a perfect matching.

Let m, n be positive integers and let A_1, \ldots, A_m be a partition of $[mn] = \{1, 2, \ldots, mn\}$ such that $|A_i| = n$ for all i. Let now B_1, \ldots, B_m be a second partition of $[mn]$ such that $|B_i| = n$ for all i. Show that there exists a permutation σ of $[n]$ such that $A_i \cap B_{\sigma(i)} \neq \emptyset$ for all i.

Recall that a Euler closed trail is a trail which uses each edge of the graph exactly once.

a) Let

$$A_G = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
\end{bmatrix}$$

be the adjacency matrix for the graph G. Does G have an Euler closed trail?

b) Now let

$$A_{G'} = \begin{bmatrix}
0 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 2 \\
1 & 0 & 0 & 1 & 2 & 0 \\
\end{bmatrix}$$

be the adjacency matrix for the graph G'. Does G have an Euler closed trail?

Let T be a finite tree in which each vertex has degree either 1 or 3. Prove that

a) the number of edges is odd, and

b) more than half of the vertices are leaves.

Let G be an undirected connected graph with at least 2 vertices. Prove that there is some vertex v of G such that we can remove it, along with all of the edges incident to it (coming into it), and the resulting graph is connected.
P6 Let K_n be the complete graph on n vertices. How many of its spanning trees have n as a leaf? (Note: you will need Cayley’s theorem.)

P7 How many spanning trees does the graph in the picture have? (Hint: when you calculate the Laplacian matrix, choose the vertex you decide to leave out wisely.)

P8* How many spanning trees does the graph in the picture have?

P9 Give an example, or state why one cannot be found. Read carefully and think before you answer.

a) A disconnected graph with 10 vertices and chromatic number 9.

b) A graph with 7 vertices that is not K_7, but has chromatic number 7.

c) (for arbitrary $n \geq 6$) A graph with n vertices and the degree of each vertex less than or equal to 2, and with chromatic number 3.
d) A planar graph with 10 vertices, 10 edges, 3 faces.

\textit{P10}^* Calculate the chromatic number of \(C_4 \); calculate the chromatic number of the wheel \(W_n \).

\textbf{P11}

a) Is the bipartite graph \(K_{2,n} \) planar? If so, draw a planar representation of the graph.

b) Do the same for the complete tripartite graph \(K_{2,2,2} \).

\textbf{P12} Let \(Q_n \) be the \(n \)-dimensional hypercube, i.e., the graph with vertex set

\[V(Q_n) = \{ x : x \text{ is a length } n \text{ string of 0s and 1s} \} . \]

For example, \(Q_2 \) has vertices 00, 01, 10, and 11. We connect two vertices if they differ in \textit{exactly} 1 position; e.g., for \(Q_2 \), we connect 00 to 01 and 10, 01 connects to 00 and 11, etc. and we get that \(Q_2 \) is the square (similarly, \(Q_3 \) is the cube).

1. What is the chromatic number of \(Q_n \)?

2. What is the chromatic polynomial of \(Q_2 \)?

\textbf{P13} (essentially Problem 26, chapter 11) Let \(S = [n] = \{1, 2, \ldots, n\} \). Let \(k \) be an integer so that \(\frac{n-1}{2} \geq k \). Let \(X_k \) and \(Y_k \) be the sets of all subsets of \(S \) with \(k \) elements, respectively, with \(k + 1 \) elements. Construct a bipartite graph with \(X \) and \(Y \) as classes, and draw an edge between vertices \(x \in X_k \) and \(y \in Y_k \) if \(x \subset y \).

Show that there exists a perfect matching from \(X \) into \(Y \).

\textbf{P14}

a) Mark the minimum spanning tree on Figure 1 (next page), and calculate its total weight.

b) Suppose that a weighted graph \(G \) has 10 minimum spanning trees. Let \(T \) be one of them, and let \((u, v) \) be an edge in \(T \). Suppose we construct the graph \(G' \), which can be obtained from \(G \) by removal of the edge \((u, v) \). How many spanning trees is \(G' \) guaranteed to have?
Figure 1: $AC = 10$, $AE = 6$, $BC = 8$, $BD = 16$, $BF = 13$, $CD = 7$, $CE = 17$, $CF = 11$, $DE = 5$, $EF = 14$