P1 Let A_n be the graph obtained from K_n by deleting an edge. How many spanning trees does A_n have?

P2 How many spanning trees does the complete bipartite graph $K_{m,n}$ have?

P3 Let G be a bipartite graph in which each vertex has degree exactly d. Show that there are at least d different perfect matchings in G.

P4* An $n \times n$ matrix is called a permutation matrix if all its entries are equal to 0 or 1, and there is precisely one 1 in each row and in each column. (For example, the identity matrix I_n is a permutation matrix.)

a) Given a permutation matrix P, consider the bipartite graph G whose left class X is indexed by the rows and the right class Y is indexed by the columns of P, and for which (x,y) with $x \in X$ and $y \in Y$ is an edge if and only if $P_{xy} = 1$.

What kind of bipartite graph is G?

b) Show that if M is an $n \times n$ matrix with all entries equal to 0 or 1 and with exactly m 1s in each row and exactly m 1s in each column, then M can be written as a sum of m permutation matrices.

P5 There are n applicants for some set of m jobs. Assume that for any $2 \leq k \leq n$, every k applicants have applied to at least $k - 2$ jobs. Show that it is possible to match $n - 2$ or more of applicants to jobs they applied for.

P6 (Supplementary Exercise 19, chapter 11) A graph is called color critical if it has chromatic number k, but if we delete any vertex of the graph together with its incident edges, we get a graph of chromatic number $k - 1$.

a) Give an example of a color-critical graph for $k = 3$. The example should not be K_3.

b) Given a non-complete graph example of a color-critical graph for $k = 4$. The example should not be K_4.

P7* Let G be a graph on 11 vertices, and G^c be its complement. Show that at least one of G and G^c is not planar.

P8

a) Suppose we delete two edges from K_6. Is the resulting graph planar? What about if we delete three edges?
b) A planar graph G has 16 vertices and 40 edges. How many triangular regions are there in the planar drawing of G, if all the regions (including the unbounded one) are either triangles or quadrilaterals?

P9 Consider a group of 8 people, each pair of which are either friends or enemies. Show that if some person in the group has at least 6 friends in the group, then either there are 4 people who are mutual friends or 3 people who are mutual enemies.

P10 Suppose that n people attend a party. In any group of 3 guests, there are two who do not like each other. In any group of 7 guests, there are two who do like each other. At the end of the party, each person gives a gift to all the people they like.

Show that at most $6n$ gifts have been given at the party.

P11 Given the complete graph on $2n$ vertices K_{2n}, show that there exists a coloring of the edges on K_{2n} with n colors which has fewer than $4n/3$ monochromatic triangles.

P12 Consider the graph K_n, and pick a uniformly random 2-coloring of its edges. How many monochromatic K_4s do we expect G to have?

P13 We say that a permutation π of $[n]$ transposes i and j if $\pi(i) = j$ and $\pi(j) = i$. For instance, if $n = 7$ and $\pi = (5, 3, 2, 6, 1, 7, 4)$ then π transposes 1 and 5, and it also transposes 2 and 3.

What is the expected number of transpositions in a random permutation of $[n]$? Assume all permutations are equally likely.

P14 What is the expected number of leaves in a uniformly random tree with vertex set $[n]$, and what fraction of the vertices are expected to be leaves as $n \to \infty$?

P15

1) Let P be the poset of numbers up to n ordered by divisibility ($x \leq y$ if x divides y). What is the size of the longest chain in P?

2) Recall B_n, the poset of the power set of $[n]$ (the set of all subsets of $[n]$) ordered by inclusion. What is the length of the longest chain in B_n?

P16 Let I_1, \ldots, I_{mn+1} be closed intervals on the real line (i.e., $I_j = [a_j, b_j]$ with a_j, b_j real numbers, for $j = 1, 2, \ldots, mn + 1$). Then either there are $m + 1$ intervals that are pair-wise disjoint, or there are $n + 1$ intervals with nonempty intersection. (You may assume, for simplicity, that the intervals are ordered so that $a_1 \leq a_2 \leq \ldots \leq a_{mn+1}$.)