Instructions:

- *Any attempt at cheating will be dealt with severely.*
- No books or notebooks allowed; you may use an 8.5 × 11 double-sided, handwritten sheet of notes for personal use (do not share).
- Read problems carefully.
- Justify all your work.
- Raise your hand if you have a question.
- If you need more space, request additional blank sheets. It is your responsibility to have your instructor staple the additional sheets to your exam before you turn it in.
- Please turn off cell phones. GOOD LUCK!
Problem 1. (10pts) Prove that, if we 2-color the points in the plane with the colors red and blue, given any $d > 0$, there exists a segment of length d with same-colored endpoints.

Solution. Choose three points in the plane that form an equilateral triangle of side d. By the Pigeonhole Principle, two of them have to have the same color. Those two are the same-color endpoints of a segment of length d.
Problem 2. (15pts) Recall the notion of duality for planar graphs, and the fact that the dual of a simple graph is not necessarily simple.

(a) Compute the dual of a path on k vertices.

(b) Compute the dual of a cycle on k vertices.

(c) Compute the dual of the wheel graph on k vertices (Figure 1).

Solutions.

(a) (5pts) The dual is single vertex with k loops attached to it.

(b) (5pts) The dual is a graph with 2 vertices connected by k edges.

(c) (5pts) The dual is itself.

Figure 1
Problem 3. (15pts) Recall the chromatic number of a graph.

(a) What is the chromatic number of a k-tree?

(b) What is the chromatic number of a cycle on k vertices?

(c) What is the chromatic number of the wheel graph on k vertices of Figure 1 (previous page)?

Solutions.

(a) (5pts) The chromatic number of a tree is 2 (since a tree has no cycles, it has no odd cycles).

(b) (5pts) If k is even, the chromatic number is 2; if it is odd, the chromatic number is 3.

(c) (5pts) If k is even, the long cycle in the wheel has an odd number of vertices, therefore one needs at least 3 color to color it; one extra color will be needed for the middle vertex, so the chromatic number is 4.

If k is odd, the long cycle in the wheel is even, therefore 2-colorable; we need another color for the middle vertex, therefore the chromatic number is 3.
Problem 4. (21pts) Consider H_n to be the number of n-permutations containing only cycles of length 2 and 3 (for example, for $n = 4$, $(12)(34)$ is in H_4, while $(1)(234)$ and $(1)(24)(3)$ are not).

(a) Find a recurrence for H_n.

(b) Let $H_0 = 1$, $H_1 = 0$, $H_2 = 1$. Let $H(x) = \sum_{i=0}^{\infty} H_i \frac{x^i}{i!}$ be the exponential generating function for $\{H_n\}_{n \in \mathbb{Z}_+}$. Find $H(x)$. (Hint: recall that $\frac{H'(x)}{H(x)} = (\ln H(x))'$.)

(c) Find a closed-form, sum expression for H_n (either by using the exponential generating function found in (b), or by using the formula for the number of permutations with prescribed cycle structure).

Solutions.

(a) (7pts) If n is in a 2-cycle, there are $(n-1)$ ways to pick the other number in the 2-cycle. If n is in a 3-cycle, there are n^2 ways to pick the other 2 numbers, and for each triplet, there are 2 ways to form the 3-cycle. This yields

$$H_n = (n-1)H_{n-2} + (n-1)(n-2)H_{n-3}.$$

(b) (7pts) We multiply the above by $\frac{x^{n-1}}{(n-1)!}$ and sum it over all $n \geq 3$, to obtain

$$\sum_{n=3}^{\infty} H_n \frac{x^{n-1}}{(n-1)!} = \sum_{n=3}^{\infty} H_{n-2} \frac{x^{n-1}}{(n-2)!} + \sum_{n=3}^{\infty} H_{n-3} \frac{x^{n-1}}{(n-3)!}.$$

$$H'(x) - H_2x - H_1 = x(H(x) - H_0) + x^2H(x)$$

$$H'(x) = H_2x + H_1 - H_0x + (x + x^2)H(x).$$

Since $H_2 = 1 = H_0$ and $H_1 = 0$, the above becomes

$$H'(x) = (x + x^2)H(x),$$

$$\frac{H'(x)}{H(x)} = (x + x^2),$$

$$(\ln H(x))' = x + x^2,$$

$$\ln H(x) = \frac{x^2}{2} + \frac{x^3}{3} + C,$$

$$H(x) = Ce^{\frac{x^2}{2} + \frac{x^3}{3}},$$

and since $H(0) = H_0 = 1$, it follows that $C = 1$, i.e. $H(x) = e^{\frac{x^2}{2} + \frac{x^3}{3}}$.

(c) (7pts) Either by writing $H(x) = e^{x^2/2}e^{x^3/3} = \sum_{i=0}^{\infty} \frac{x^i}{2^i i!} \sum_{j=0}^{\infty} \frac{x^j}{3^j j!}$ or by using the fact that the number of n-permutations with i cycles of length 2 and j cycles of length 3 is $\frac{n!}{2^i 3^j i! j!}$, we get

$$H_n = \sum_{2i + 3j = n} \frac{n!}{2^i 3^j i! j!}.$$
Problem 5. (13pts)

(a) How many spanning trees does the graph in Figure 2 have?
(b) How many spanning trees does the graph in Figure 3 have?

Solutions.

(a) (8pts) We have to “destroy” the cycle (14, 15, 16), and exactly 2 of the 3 paths between 1 and 14. The cycle has length 3 and each of the paths have length 5. There are \(\binom{3}{2} \) ways to choose 2 of the 3 paths and once they’re chosen, there are \(5^2 \) ways to break them. So the total number of ways to do obtain a minimally connected graph is

\[
3 \cdot \binom{3}{2} \cdot 5^2 = 9 \cdot 25 = 225.
\]

(b) (5pts) We will disregard the cycle (14, 15, 16); it will just give us 3 times as many options at the end. We have to break the cycle (9, 13, 14), which we can do as follows:

1. We can eliminate all three edges. Then the resulting graph is a tree. (1).
2. We can eliminate precisely 2 edges.
 - (9, 14) and (13, 14). We keep (9, 13). Then we need to break the cycle (1→9→13→1), but keep (9, 13); we can do that in (8) ways.
 - (9, 14) and (9, 13). We must eliminate the cycle (1→14→13→1), but keep the edge (14, 13). We can do that in (9) ways.
 - (13, 14) and (9, 13). Similar with the one above: (9) ways.
3. We can eliminate only 1 edge. Regardless of which edge we eliminate, we must destroy 2 of the 3 paths (1→5→14), (1→6→9), and (1→10→13). We can do that in \(5 \cdot 4 + 4 \cdot 4 + 5 \cdot 4 = 56 \) ways; since there are three ways to choose an edge to eliminate, we get a total of \(56 \cdot 3 = 168 \) ways.

So the total number of spanning trees is \(3 \cdot (1 + 8 + 9 + 168) = 585 \).
Problem 6. (13pts) Fix an \(n \)-permutation \(p \) with \(k \) cycles.

(a) Choose one of the \(k \) cycles at random. What is its average length \(l_{n,k} \)?

(b) Assume now that \(l_{n,k} \) is an integer, and let \(p \) be a random \(n \)-permutation containing \(k \) cycles. What is the probability that \(p \) contains a given cycle of length \(l_{n,k} \)? You may express the answer in terms of a well-known type of number.

Solutions.

(a) (8pts) Let \(l_1, \ldots, l_k \) be the lengths of the cycles. Then the expected value is

\[
E(l_{n,k}) = \frac{1}{k}(l_1 + l_2 + \ldots + l_k).
\]

But \(l_1 + l_2 + \ldots + l_k = n \), thus \(l_{n,k} = \frac{n}{k} \).

(b) (5pts) There are \(c(n, k) \) permutations with \(k \) cycles. If we require that one of these cycles is given and of length \(l_{n,k} \), the other \(k-1 \) cycles can be formed with the remaining \((n - l_{n,k}) = (n - \frac{n}{k}) \) elements. Therefore the probability is

\[
p = \frac{c(n - \frac{n}{k}, k - 1)}{c(n, k)}.
\]
Problem 7. (13pts) Assume that f and g are functions from the positive integers \mathbb{Z}_+ to the positive real numbers \mathbb{R}_+, such that $f(n) = O(g(n))$. (Note: the constant in the definition of Big-Oh is positive.)

(a) Is $(f(n))^2 = O((g(n))^2)$?

(b) Find a pair (f, g) such that $|\log_2(f(n))| \neq O(|\log_2(g(n))|)$.

Solutions.

(a) (8pts) Yes:

$$0 < f(n) \leq cg(n) \iff f^2(n) \leq c^2g^2(n).$$

(b) (5pts) An example is provided by $f(n) = 2^{-n}$, $g(n) = 1$: although $f(n) \leq g(n)$, $|\log_2(f(n))| = |-n| = n$, while $|\log_2(g(n))| = 0$.