This lecture is concerned with matchings, which we explained informally at the end of the previous lecture. Here is a rigorous definition; note the difference between a perfect matching is a general graph and a perfect matching of X into Y in a bipartite one.

Definition Let G be a general graph. A matching is a collection of vertex-disjoint edges. Alternatively, this is called a set of independent edges. If every vertex is covered by one of these edges, it is a perfect matching.

For a bipartite graph consisting of partition (X, Y), if a matching covers all the vertices in X, it is a perfect matching of X into Y.

There is an interesting and beautiful characterization for when a bipartite graph has a perfect matching of the smaller class into the larger; first, let us examine necessity.

Lemma 1. A necessary condition for a bipartite graph $G = (X, Y)$ to have a perfect matching of X into Y is that for all $T \subset X$, $|N(T)| \geq |T|$, where $N(T) \subseteq Y$ is the set of all neighbors of the subset T of X.

Proof. If this were not true, there would be some subset T for which $|N(T)| < |T|$. But then one could not match T into Y, since any set of edges covering all vertices in T would have to have some overlap in $N(T)$ (and in Y). Hence we could not possibly match X into Y. \Box

The above condition turns out to also be sufficient, as we will see from the theorem below.

Theorem 1. (Hall’s Theorem, Hall’s “Marriage” problem) A necessary and sufficient condition for a bipartite graph $G = (X, Y)$ to have a perfect matching of X into Y is that for all $T \subset X$, $|N_G(T)| \geq |T|$, where $N_G(T) \subseteq Y$ is the set of all neighbors in G of the subset T of X.

Proof. As the Lemma above shows necessity, we only need to prove sufficiency.

We will induct on $|X|$. For $|X| = 1$, the statement is trivial. Pick now a graph G satisfying the requirements, and assume that the statement is true for any bipartite graph with the smaller class X having size at most n.

We split the problem into two cases.

a) For any $T \subset X$, $|N_G(T)| > |T|$. (Note that we exclude the possibility that $T = X$.)

b) There exists a proper subset $T \subset X$ such that $|N_G(T)| = |T|$.

These are mutually exclusive and cover all possibilities.

a) Pick any two vertices $x \in X$ and $y \in Y$ that are adjacent, match them, and eliminate them and all incident edges from the graph, creating a new graph G' with a smaller set X', $|X'| = |X| - 1$. The matching requirements must still be true, since they will work for $T \subset X$ with $x \notin T$ as $|N_{G'}(T)| \leq |N_G(T)| - 1 \geq |T|$. Then we apply induction.
b) There exists $T \subset X$ for which $|T| = |N_G(T)|$. We define the graphs G_1, with classes $(T, N_G(T))$, and all the edges in G in-between, and G_2, with classes $(X \setminus T, Y \setminus N_G(T))$, and all the edges in G in-between. Note that this ignores any edges between $X \setminus T$ and $N_G(T)$. If we can find a perfect matching of T into $N_G(T)$ and a perfect matching of $X \setminus T$ into $Y \setminus N_G(T)$, we put them together and form a perfect matching for X into Y.

So we need to show that perfect matchings of T into $N_G(T)$, respectively, of $X \setminus T$ into $Y \setminus N_G(T)$ exist, which we will do by using the induction hypothesis.

We start with G_1. As any $R \subseteq T \subset X$ must have $N_{G_1}(R) = N_G(R) \geq |R|$ and $N_{G_1}(R) \subseteq N_G(T)$, by induction, a perfect matching of T into $N_G(T)$ must exist.

We now show that we can find one in G_2. Suppose $R \subseteq (X \setminus T)$; then $N_{G_2}(R) \subseteq Y \setminus N_G(T)$. Note that $|N_G(R \cup T)| = |N_{G_2}(R) \cup N_G(T)| = |N_{G_2}(R)| + |N_G(T)|$, as the latter is a union of disjoint sets. But then

$$|R| + |T| = |R \cup T| \leq |N_G(R \cup T)| = |N_{G_2}(R) \cup N_G(T)| = |N_{G_2}(R)| + |N_G(T)| = |N_{G_2}(R)| + |T|,$$

so $|N_G(R)| \geq |R|$. Thus the set of inequalities is satisfied by G_2, and so G_2 must by induction also have a match of $X \setminus T$ into $Y \setminus N_G(T)$.

As we can write a matching of G as a union of a match of G_1 and a match in G_2, the conclusion follows.

\square