Last time, we saw the 6-color Theorem, which shows that $\chi(G) \leq 6$ for any planar graph G.

With little effort, one may actually prove that $\chi(G) \leq 5$ (Theorem 12.15 in the book). How low can you go? No lower than 4, for sure, since K_4 is planar and $\chi(K_4) = 4$. Turns out 4 is the answer, as has been shown in a series of increasingly simpler proofs (yet proofs that cannot are all computer-assisted, i.e., need a huge number of case-check via software (1936 in the original version from 1976, 633 in 1996). Initial proof required 1200 hours of computer runtime. It is the first example of computer-assisted proof that has been accepted, and it has marked a new era of mathematics.

Ramsey Theory. During the last chapter, we have seen what it means to properly color the vertices of a graph, and what potential applications this may have. Starting today, we will completely switch mindsets, and color edges instead. But unlike before, a “proper” coloring will no longer be defined by adjacency; we will instead forbid the presence of certain cliques.

It’s likely most of you have seen this problem before: given 6 people at a party, show that either there is a group of 3 who all know each other, or a group of 3 none of whom know the other two. We will cast this problem today in the form of a graph coloring problem.

K_6 **must have monochromatic triangles.** Examine the complete graph K_6, and color each one of its edges either Red (R) or Blue (B). No matter how you choose the colors, there will always exist a monochromatic triangle (a triangle all of whose edges are either all R or all B). You may start to suspect this once you try a few colorings and it doesn’t work, but why is it true?

Proof. Pick any one of the vertices of K_6 and consider the 5 edges coming out of it. By Pigeohole Principle, three will have to have the same color, without loss of generality let’s say R. Now consider the three vertices at the end of those edges, and the three edges between each pair of those three vertices. If any of the latter edges is R, we have a R triangle. Else they must all be B, and now we have a B triangle. Done.

As it happens, K_6 is the smallest complete graph which, when its edges are colored with 2 colors, **must** have a monochromatic triangle. Indeed, one may color each of the two cycles of K_5 differently, and so obtain no monochromatic triangles; and also, andy K_n with $n \geq 6$ includes K_6 and thus inherits K_6’s property. So this is kind of a remarkable feat—no K_n with $n < 6$ has the property, and all K_n with $n \geq 6$ do. This means that the property of having a monochromatic triangle in every 2-coloring of the edges is monotonous.

What if instead of monochromatic triangles we want some other kind of monochromatic K_k (aka a “clique”)? Will there be a number n such that this phenomenon repeats?

Theorem 1. For any $k, l \geq 2$ positive integers, there exists a minimal number $R(k, l)$ such that if we color the edges of a complete graph with at least $R(k, l)$ vertices Red or Blue, we always get either a completely Red K_k or a completely Blue K_l.
Proof. Note two things. One, it suffices to show that there exists some number N for which K_N has the desired property; this means that the number of N’s that do is non-empty, and hence it has a minimal element, which we can call $R(k,l)$. Second, just like before, if $R(k,l)$ is the minimal number with the property, then trivially no $n < R(k,l)$ has it, and ALL $n \geq R(k,l)$ have it (monotonicity).

We will prove the property by induction over the sum $S = k + l$. As we will need a “border” for the region of the (k,l)s that work, note that $R(2,l)$ is always l, since for every K_n with $n \geq l$, either the coloring has a Red edge, or a complete K_l. Similarly and symmetrically $R(k,2) = k$.

Assume now that we know the statement of the theorem for the borders of the triangular region (that is, $(k,2)$ and $(2,l)$) and also for all (k,l) with $k + l \leq S - 1$ within that region.

We will show now that $N = R(k-1,l) + R(k,l-1)$ has the desired coloring property; this will imply that $R(k,l)$ exists and that $R(k,l) \leq R(k-1,l) + R(k,l-1)$.

Let $N = R(k-1,l) + R(k,l-1)$. Just as before, pick a vertex v in K_N and examine the edges coming out of it. There are $R(k-1,l) + R(k,l-1) - 1$ of them.

By a sort of Pigeonhole, either at least $R(k-1,l)$ of them are Red, or at least $R(k,l-1)$ of them are Blue. Indeed, if both of these were to fail, we would have fewer than $R(k-1,l) + R(k,l-1) - 1$ edges.

Assume wlog that $R(k-1,l)$ of these edges are Red. Let us look at the $K_{R(k-1,l)}$ at the end of these edges. By induction, it has to either have a K_{k-1} completely Red, or a K_l completely Blue. If it has the latter, there is a completely Blue K_l in our K_N, so we are done. Elsewise, consider the completely Red K_{k-1}. As all edges connecting v with the vertices of this K_{k-1} are also Red, adding v to this K_{k-1} builds a completely Red K_k, and once again we are done.

The other case is analogous, and this finishes the induction proof. □

Remark 1. Inequalities (13.1) and (13.2) in the book are missing a comma (it should be $R(k,l-1)$, not $R(kl - 1)$).