A K-THEORETIC CLASSIFICATION OF TOTALLY REAL IMMERSIONS INTO C^n .

T. DUCHAMP

ABSTRACT. Totally real immersions of an *n*-dimensional smooth manifold M into \mathbb{C}^n exist, provided that the complexified tangent bundle of M is trivial. A bijection between the set of isotopy classes of such immersions and the complex K-group $K^1(M)$ is constructed.

Gromov [4] and Lees [7] have given a homotopy classification of totally real and Lagrangian immersions into complex and symplectic manifolds. Our aim here is to show that if the codomain in \mathbf{C}^n then this classification has a simple K-theoretic discription.

We begin with a discussion of some elementary facts in linear algebra. Let V (resp W be an n-dimensional real (resp. complex) vector space. An **R**-linear injection $h: V \to W$ is called *totally real* if its image h(V) contains no non-trivial complex subspace. Let $V^{\mathbf{C}}$ denote the complexification of Vand let $h^{\mathbf{C}}: V^{\mathbf{C}} \to W$ be the complex lienar map defined by the formula $h^{\mathbf{C}}(u + iv) = h(u) + ih(v)$. It is easily verified that h is a totally real injection if and only if $h^{\mathbf{C}}$ is a compelx vector space isomorphism. In fact, the correspondence $h \mapsto h^{\mathbf{C}}$ is a bijection between the set of totally real injections from V into W and the set of vector space isomorphisms from $V^{\mathbf{C}}$ into W. (An inverse is given by composition with the canonical totally real injection $V \to V^{\mathbf{C}}$.)

It follows that given a fixed totally real injection, say $k: V \to W$, the mapping $h \mapsto A = h^{\mathbb{C}} \circ (k^{\mathbb{C}})^{-1}$, which associates to each totally real injection an element in the group GL(W) of complex-linear automorphisms of W, is a bijection. Hence, each continuous family h_t , $0 \le t \le 1$, of totally real injections corresponds to a continuous family A_t , $0 \le t \le 1$, of automorphisms of W.

The above discussion extends to vector bundle maps in the obvious way. In particular, for M is a smooth *n*-dimensional manifold, an immersion $f: M \to \mathbb{C}^n$ is said to be *totally real* if the map $df^{\mathbb{C}}: TM^{\mathbb{C}} \to f^*(T\mathbb{C}^n) = M \times \mathbb{C}^n$ is an isomorphism of complex vector bundles. An *isotopy of totally* real immersions is a continuous family $f_t: M \to \mathbb{C}^n$, $0 \le t \le 1$, of smooth

Date: 1984.

¹⁹⁹¹ Mathematics Subject Classification. 32F25, 53C15, 57R42.

Key words and phrases. K-theory, Lagrangian submanifold, totally real submanifold, immersions.

immersions which induces a homotopy $df_t^{\mathbf{C}} : TM^{\mathbf{C}} \to M \times \mathbf{C}^n$ of smooth bundle isomorphisms.

By Gromov [5, page 332], the set of isotopy classes of totally real immersion of M into \mathbb{C}^n is in 1-1 correspondence with the set of homotopy classes of complex bundle isomorphisms from $TM^{\mathbb{C}}$ into $M \times \mathbb{C}^n$. It follows that a necessary and sufficient conditiaon for the existence of a totally real immersion of M into \mathbb{C}^n is that the complexified tangent bundle $TM^{\mathbb{C}}$ be trivial. We can now state the main result of this note.

Theorem. Let M be a smooth n-dimensional manifold with trivial complexified tangent bundle. Then there is a 1-1 correspondence between the set of isotopy classes of totally real immersion of M into \mathbb{C}^n and the ocmplex K-group $K^1(M)$.

Proof. Fix a totally real immersion, say $f: M \to \mathbb{C}^n$. It follows form the previous discussion that the bundle isomorphism $df^{\mathbb{C}}: TM^{\mathbb{C}} \to M \times \mathbb{C}^n$ can be used to define a 1-1 correspondence between the set of smooth bundle isomorphism from $TM^{\mathbb{C}}$ into $M \times \mathbb{C}^n$ and the set of smooth maps from M into $\operatorname{GL}(n, \mathbb{C})$. This correspondence allous us to identify the set of isotopy classes of bundle isomorphisms with the underlying set of the group $[M, \operatorname{GL}(n, \mathbb{C})]$ of homotopy classes of continuous maps from M into the group $\operatorname{GL}(n, \mathbb{C})$.

The inclusion $U(n) \subset GL(n, \mathbb{C})$ is a homotopy equivalence, and the standard includions $U(n) \subset U(n+k)$ induce isomorphisms $\pi_k(U(n)) \simeq \pi_k(U(n+m) \text{ for all } k \leq 2n-1 \text{ and all } m \geq 0 \text{ (see } [2, \text{ Theorem 4.1, p. 82]}).$ Set $U = \lim_{m \to \infty} U(m)$. Because dim(M) < 2n-1, it follows from [8, Cor. 14, p. 402] that there are group isomorphisms

$$[M, \operatorname{GL}(n, \mathbf{C})] \simeq [M, \operatorname{U}(n)] \simeq [M, \operatorname{U}].$$

But [M, U] is the complex K-group $K^1(M)$ (see [1]).

Remarks: (1) The above theorem holds if "totally real" is replaced by "Lagrangian" and \mathbb{C}^n is equipped with the standard symplectic form. Indeed, every Lagrangian immersion into \mathbb{C}^n is automatically totally real. Hence, the Gromov-Lees Theorem [7] shows that isotopy classes of Lagrangian immersions are in 1-1 correspondence with isotopy classes of totally real immersions.

(2) Similarly, the results of [3] and [5], [4] show that the above theorem holds with "totally real" replace by "Legendre" and \mathbf{C}^n replaced by either of the contact manifolds \mathbf{R}^{2n+1} or S^{2n+1} with their standard contact structures.

(3) If M is the *n*-sphere S^n , then $[S^n, \mathbf{U}] = \pi_n(\mathbf{U})$, which is \mathbf{Z} for n odd an 0 for n even. In particular, there are \mathbf{Z} distinct totally real immersions of S^3 into \mathbf{C}^3 . This result was obtained by Stout and Zame [9] by slightly different means and was the motivation for the present note. Weinstein [10] has given an explicit construction of Lagrangian immersions of S^n into \mathbf{C}^n . These immersions have non-trivial self-intersection numbers and are therefore not isotopic to embeddings. Therefore, even sphere cannot embed as totally real submanifolds of \mathbf{C}^n . In fact, it is stated in [5] and proved in both [6] and [9] that the only sphere which can embed as a totally real submanifold of \mathbf{C}^n is the three-sphere.

(4) In many case $K^1(M)$ can be computed. For instance, in [1, Sec 2.5] it is shown that if $H^{\bullet}(M, \mathbb{Z})$ is torsion free then $K^1(M)$ is itself torsion free and have rank equal to the sum of the odd dimensionall Betti numbers of M.

References

- M. F. Atiyah and F. Hirzebruch. Vector bundles and homogeneous spaces. In Proc. Sympos. Pure Math., volume 3, pages 7–38, Providence, R.I., 1961. Amer. Math. Soc.
- [2] d. Husemoller. Fibre Bundles. McGraw-Hill, New York-London-Sydney, 1966.
- [3] T. Duchamp. The classification of legendre immersions. 1982.
- M. F. Gromov. Partial differential relations, volume 9 of Ergeb. Math. Grenzgeb.(3). Springer-Verlag, Berlin-New York, 1986.
- [5] M. L. Gromov. Convex integration of differential relations i. Math. USSR, Izvestija, 7:329–343, 1973.
- [6] Toshio Kawashima. Some remarks on lagrangian imbeddings. J. Math. Soc. Japan, 33:281–294, 1981.
- [7] J. A. Lees. On the classification of lagrange immersions. Duke Mathematics journal, 43:217-224, 1976.
- [8] E. H. Spanier. Algebraic Topology. McGraw-Hill, New York, 1966.
- [9] E. L. Stout and W. R. Zame. A stein manifold topologically but not holomorphically equivalent to a domain in cⁿ. Adv. in Math., 60(2):154–160, 1986.
- [10] A. Weinstein. Lectures on Symplectic Manifolds, volume 29 of Regional Conference Series in Mathematics. Amer. Math. Soc., Providence, 1977.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, BOX 354350, SEATTLE, WA 98195-4350

E-mail address: duchamp@math.washington.edu