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Abstract. This paper generalizes results of Lempert and Szöke on the structure of the singular
set of a solution of the homogeneous Monge-Ampère equation on a Stein manifold. Their a priori
assumption that the singular set has maximum dimension is shown to be a consequence of regularity
of the solution. In addition, their requirement that the square of the solution be C3 everywhere is
replaced by a smoothness condition on the blowup of the singular set. Under these conditions, the
singular set is shown to inherit a Finsler metric, which in the real analytic case uniquely determines
the solution of the Monge-Ampère equation. These results are proved using techniques from contact
geometry.

1. Introduction

The homogeneous Monge-Ampère equation on the complex n-dimensional complex manifold M
is the equation

(1.1) (ddCu)n = 0 ,

where u : M→ R and dC := i(∂− ∂). In the special case where u is at least C3 and the form ddCu
has constant rank the integral curves of ddCu foliate M by complex submanifolds. This foliation
is called the Monge-Ampère foliation of u and was first studied in [2].

An important class of solutions of (1.1) is the class of plurisubharmonic exhaustion functions for
which the sets

{p ∈M : u(p) ≤ c}
are compact for all c < supu and ddCu is a positive semidefinite form of constant rank n − 1. It
is known (see for instance [7, Theorem 1.1]) that every such function must fail to be smooth on a
non-empty singular set M ⊂M. In this paper, we study the extent to which the geometry of the
singular set determines u.

Previous work. Our work builds on previous results of a number of authors, particularly those of
Stoll[10], Burns[3], Wong[14], Patrizio-Wong[9], Lempert-Szöke [7], Szöke [11], and Guillemin and
Stenzel [4]. The main result of this paper, Theorem 1.4, was inspired by a question posed in [7].

In the case where u has a logarithmic singularity, and τ = exp(u) is a smooth Kähler potential,
Stoll [10] showed that M is a point and that M is biholomorphic to either the unit ball Bn ⊂ Cn

or to Cn. Burns [3] gave a more geometric proof, exploiting the fact that the leaves of the Monge-
Ampère foliation are totally geodesic with respect to the Kähler metric. Wong [14] further explored
the geometry of the Monge-Ampère foliation, proving the following theorem.
Theorem 1.2 (Wong). Let u be a solution of the Monge-Ampère equation and let F denote the
Monge-Ampère foliation. Let τ = f ◦ u be the potential function f for a Kähler metric on M\M ,
where f is a smooth function satisfying the conditions f ′ ◦u > 0 and f ′′ ◦u > 0. Then the leaves of
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F are totally geodesic with respect to the Kähler metric. Moreover if Z denotes the complex vector
field on M\M defined by

Z ddCτ = dτ + idCτ ,

then the leaves of F coincide with the orbits of the complex flow of Z. Finally, the integral curves
of the real vector field ZI = 1

2i(Z − Z) are (after reparametrizing) geodesics that intersect the level
sets of u at right angles.

The proof is essentially contained in [14] (see also [9] and [7]).

The case where u has a logarithmic singularity and M is a point is an extreme case. At the other
extreme is the case where M is assumed to be a compact smooth, real n-dimensional submanifold
of M. Assume that u is continuous on all of M and that the singular set coincides with the zero set
of u. Compactness of the set u−1([c,∞)) then implies that u is bounded below, we may therefore
assume without loss of generality that u is non-negative and that M is the zero set of u. Assume,
in addition, that the function τ = u2 is C3 and strictly plurisubharmonic on all of M. Then ddCτ
defines a Kähler metric on all of M. The singular set M , then inherits a Riemannian metric g. The
triple (M,M, u) is called a (Riemannian) Monge-Ampère model. Patrizio and Wong [9] studied
the special case where M is a compact symmetric space. Their results were later generalized by
Lempert and Szöke [7], and independently (when M is real analytic) by Guillemin and Stenzel
[4], to the case where M is an arbitrary compact Riemannian manifold. The results in [7] were
extended by Szöke in [11] and [12]. The main results of [7] and [11] are summarized in the following
theorem:
Theorem 1.3 (Lempert-Szöke [7] and Szöke [11]). (a) Let (M,M, u) be a Monge-Ampère model.
Then the set of curves given by the intersection of M with the leaves of the Monge-Ampère foliation
is precisely the set of geodesics of M with respect to the induced metric g.

(b) Every compact real analytic Riemannian manifold arises from a Monge-Ampère model.
(c) Let (M,M, u) and (M′,M ′, u′) be two Monge-Ampère models. Suppose that (M, g) and

(M ′, g′) are isometric and supu = supu′ then there is a biholomorphic map Φ : M → M′ such
that u = u′ ◦ Φ.

In a related paper [6], Lempert showed that the Riemannian manifold M , metric g, and exhaus-
tion function u2, associated to a Monge-Ampère model are all real analytic. And in [12] Szöke
proved a further generalization of part (c) of Theorem 1.3.

Results. Our goal is to understand the structure of the singular set of a solution of the Monge-
Ampère equation under weakened smoothness assumptions on u as well as weakened assumptions
on the topology of M . Throughout this paper M denotes a complex n-dimensional Stein manifold.
We remark that the assumption that M is Stein is made to avoid cases such as M = X×Y with X
Stein and Y compact. When we say that u is a solution of the homogeneous Monge-Ampère equation
we always mean that u is an everywhere continuous, non-negative, plurisubharmonic exhaustion of
M that is a solution of the equation

(ddCu)n = 0 , (ddCu)n−1 6= 0

on the set M\M , where M , the zero set of u, is assumed to be a smooth compact submanifold.
We also assume the u is smooth on the complement of M1

Additional smoothness assumptions on u and M are made in both [7] and [4], where u2 is
assumed to be a smooth Kähler potential on all of M and M is assumed to have real dimension

1Most of our results apply to the case where u is only of class C3 , the minimum smoothness assumption needed
to make our geometrical constructions.
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n. In Section 4, we show that both of these assumptions can be weakened, Theorem 4.11 shows
that the assumption that u2 is a smooth Kähler potential implies a regularity condition for u on
the normal-blowup of M (see below). And Theorem 4.3 shows that the regularity condition implies
that the singular set is an n-dimensional, totally real submanifold.

Our regularity condition is expressed in term of the normal blowup of M in M, which is a smooth
manifold with boundary M̃, together with a smooth map

π̃ : M̃ →M

such that (i) the space SM = π̃−1(M) is diffeomorphic to the normal sphere bundle of M inM, and
(ii) π̃ : M̃\SM →M\M is a diffeomorphism. Section 3 contains a more detailed description. Let
ũ = u◦ π̃ and θ̃ = π̃∗dCu. We assume that ũ is a smooth function.2 And we replace the assumption
that u2 is strictly plurisubharmonic by the assumption that the 1-form θ extends smoothly to all
of M̃ and satisfies the non-degeneracy condition

dũ ∧ θ̃ ∧ (dθ̃)n−1 6= 0 .

When u satisfies these conditions we say that u is regular on the normal blowup of M .

Theorem 1.3 generalizes to the case where u is regular on the normal blowup. We prove that
regularity implies that the pull-back to SM of the form θ̃ is a contact form on SM . Let Q denote
the normal bundle of M . Then, by Theorem 4.3, the bundle map

TM
J−→ TM|M

πQ−→Q ,

where J is the complex structure tensor of M and πQ is projection onto the normal bundle, is an
isomorphism. Therefore, SM can be identified with the projective tangent bundle of M . We show
in Section 5 that this form defines a Finsler metric F on M . Following the terminology of [9], we
say that the triple (M,M, u) a regular Monge-Ampère model for the Finsler metric F . Our main
result is the following theorem.

Theorem 1.4. Let M be a Stein manifold and let u ≥ 0 be a solution of the Monge-Ampère
equation (ddCu)n = 0, (ddCu)n−1 6= 0 on M\M , where M = {u = 0}. Finally assume that M is
a compact, smooth submanifold.

(a) If u is regular on the normal blowup of M , then (M,M, u) is a regular Monge-Ampère model
for a Finsler metric (M,F ). The leaves of the Monge-Ampère foliation intersect M along geodesics.

(b) Every real analytic Finsler metric on M arises from a regular Monge-Ampère model.
(c) Let (M,M, u) and (M′,M ′, u′) be two real analytic Monge-Ampère models for the real

analytic Finsler metrics (M,F ) and (M ′, F ′), respectively. Then there is a biholomorphic map
Φ : M → M′, defined in a neighborhood of M such that u = u′ ◦ Φ if and only if (M,F ) and
(M,F ′) are isometric.

The paper is organized as follows. In Section 2 we show that the space M\M is diffeomorphic
to the product of a contact manifold and an open interval. In Section 3 we define the normal
blowup. In Section 4, we give a precise definition of regularity on the normal blowup, extend the
contact structure in Section 2 to the the blowup, and prove that regularity implies total reality of
M . In Section 5, we review Finsler geometry and give the proof that M inherits a Finsler metric.
In Section 6, we complete the proof of Theorem 1.4.

2Most of our computations require that ũ only be C3.
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Remark 1.5. In [7], Lempert and Szöke conjectured that the case when u2 is not smooth could
be studied by replacing the Riemannian metric g by a Finsler metric. Theorem 1.4 confirms this
conjecture.

The authors would like to thank the referee for pointing out an error in the original proof of
part (b) of Theorem 1.4

2. Contact geometry away from the singular set

Our goal is to understand the relation between solutions of the Monge-Ampère equation on a
Stein manifold and the geometry of its singular set.

We assume that M is a complex n-dimensional Stein manifold and that u is an everywhere
continuous, non-negative, solution of the homogeneous Monge-Ampère equation

(ddCu)n = 0

whose zero set M = {u = 0} is a smooth, compact submanifold. By restricting to a neighborhood
of M if necessary, we assume that u is bounded above by R > 0 and that u−1(r) is compact for all
0 ≤ r < R. Finally, we assume that τ = u2/2 is strictly plurisubharmonic on M\M .3

Because τ is strictly plurisubharmonic, the two form ddCτ has rank n away from M , and the
computation

(ddCτ)n =
(
du ∧ dCu + u ddCu

)n
= (du ∧ θ + u dθ)n = n un−1 du ∧ θ ∧ (dθ)n−1 .

shows that u satisfies the non-degeneracy condition

(2.1) du ∧ dCu ∧ (ddCu)n−1 6= 0 .

It follows that the level set Mε = {u = ε} is a smooth, contact manifold for all ε between 0 and R.
The contact form on Mε is the pull-back of the one-form

θ = dCu .

Because u has no critical points, the level sets Mε are all diffeomorphic. Indeed, they are isomorphic
as calibrated, contact manifolds. (A calibrated contact manifold is a contact manifold with a
distinguished contact form.) To see this, let Y be the vector field characterized by the conditions

(2.2) Y θ = 0 , Y du = 1 , and Y dθ = 0 .

Let µt denote the flow of Y . Because du(Y ) = 1, µt maps level sets of u to level sets, and, therefore,
defines a diffeomorphism

(2.3) µ : MR/2 × (0, R) →M\M : (p, t) 7→ µt−R/2(p)

satisfying the identity

(2.4) u ◦ (µ(p, t)) = t .

The computation of the Lie derivative

LY θ = d(Y θ) + Y dθ = 0

then shows that µt restricts to a contact diffeomorphism

µε2−ε1 : Mε1 → Mε2 .

between each pair of level sets.

3We gain no further generality by replacing τ = u2/2, by a more general function τ = f(u), with f ′(u), f ′′(u) > 0
for u > 0: For (ddCτ)n = n(f ′)n−1f ′′)du ∧ dCu ∧ (ddCu)n−1, which is a positive multiple of (ddC(u2/2))n.
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Remark 2.5. The form θ satisfies an even stronger condition: The identities Y θ = 0 and LY θ = 0
together imply that θ descends to a contact form on the orbit space (M \M)/Y ' MR/2. This
implies that M\M has the structure of the product of a contact manifold with the interval (0, R)
and that the pull-back µ∗θ extends smoothly to MR/2× [0, R) with µ∗(θ∧ (dθ)n−1 6= 0 everywhere.

3. The normal blowup of M

Because u is continuous, the level sets Mε approach M as ε approaches 0. When u is sufficiently
well-behaved, the contact structures on the level sets converge to a limiting contact structure on
the projective normal bundle of M . The normal blowup of M , defined below, is our main tool for
formalizing this behavior.

We first discuss the simpler case of the blowup of the origin in Rm. In this context, blowing up
is just the transformation to spherical coordinates. Spherical coordinates, which we formalize by
the blowdown map

π̃ : R̃q := Sq−1 × [0,∞) → Rm : (v, r) 7→ r · v ,

where Sq−1 is the unit sphere in Rq. The preimage π̃−1(0) is called the blowup of the origin. Notice
that any smooth curve satisfying the conditions γ(t), t ≥ 0 with γ(0) = 0, γ′(0) 6= 0, and γ(t) 6= 0
for t > 0, has a unique lift to a smooth curve on the blowup defined by

γ̃(t) =


(

γ(t)
‖γ(t)‖ , ‖γ(t)‖

)
for t > 0,(

γ′(0)
‖γ′(0)‖ , 0

)
for t = 0.

Remark 3.1. We want to emphasize the following three obvious properties of the lift:
(i) γ̃(t) intersects the boundary of R̃m transversely;
(ii) γ̃(0) depends only on the oriented ray generated by γ′(0);
(iii) γ̃(0) = γ′(0)/‖γ′(0)‖.
Roughly speaking, the normal blowup of a submanifold M is obtained by replacing each point of

M by the blowup of the origin of the vector space of normal vectors to M in M. We now present
a more formal description.

Consider first the case where V is a q-dimensional vector space and M is the origin. Let V0 be
the set of non-zero vectors, and let SV denote the space of oriented rays through the origin. We
call SV the (oriented) projectivization of V . The blowup of V at the origin is the subspace

Ṽ = {([v], r · v) ∈ SV × V : v ∈ V, v 6= 0, r ∈ [0,∞)} ,

where [v] denotes the oriented ray defined by the non-zero vector v ∈ V . This definition generalizes
fiber wise to a vector bundle E in the standard way. In this case SE denotes the oriented projective
bundle of E and Ẽ denotes the blowup of the set of zero vectors of E. There is a natural blowdown
map p : Ẽ → E. It is easy to check that if E is equipped with a norm, we can identify SE with
the set of unit length vectors, and the map

SE × [0,∞) → Ẽ : (v, r) 7→ ([v], r · v)

is a diffeomorphism. In particular, SE is a sphere bundle over M . The canonical map

π̃ : Ẽ → E

sending ([v], v) to v and ([v], 0) to the zero vector is called the blowdown map.

The normal blowup of a submanifold is the non-linear version of the blowup of the zero section
of a vector bundle. We give two equivalent constructions here. The first highlights the role of
the normal bundle and uses the exponential map of an auxiliary metric, the second is based on
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local coordinate charts and does not rely on an explicit choice of metric. The proof that these
constructions are equivalent is an exercise in differential geometry, which we leave to the reader.

Let Q denote the normal bundle of M . Then there is a short exact sequence of vector bundles

0 → TM −→ TM|M
πQ−→Q → 0 .

A choice of a Riemannian metric on M gives a splitting, under which Q can be identified with the
orthogonal complement of TM in TM. The exponential map defines a diffeomorphism between
an ε-neighborhood of the zero-section of Q and a neighborhood of M in M. Let B̃ε ⊂ Q̃ be
a neighborhood of the blowup of the zero-section of Q. The normal blowup of M along M is
the manifold M̃ obtained by identifying points in the manifold M\M with points in B̃ε by the
exponential map. Let

π̃ : M̃ →M
be the blowdown map, defined in the obvious way. Notice that M̃ is a smooth manifold whose
boundary is the subspace SM = π̃−1(M). By definition, SM = SQ. Observe also that the distance
to SM is comparable to the distance to M with respect to the Riemannian metric on M. We call
the submanifold SM the normal blowup of M (or less formally, the blowup of M).

Our second construction of the blowup begins with a collection Uα of open subsets of M whose
union contains M , together with a collection of coordinates charts

φα : Uα → Vα ×Bq
ε : p 7→ (x, y),

which satisfy the compatibility condition M ∩ Uα = Vα × {0}, where Vα is an open subset of Rn

and Bq
ε denotes the ball of radius ε in Rq centered at the origin. The transition functions are maps

of the form

φα,β = φβ ◦ φ−1
α : Vα,β ×Bq

ε → : Vβ,α ×Bq
ε : (x, y) 7→ (X(x, y), Y (x, y))

where Vα,β = φα (M ∩ Uα ∩ Uβ). By virtue of the compatibility condition, the y-component of the
transition functions can be written in the form

(3.2) Y k(x, y) = ak
i (x)yi + Rk

i,j(x, y)yiyj

where A = (ai
j(x)) is a smooth family of invertible q×q matrices and Rk

i,j(x, y) are smooth functions,
the indices i, j, k ranging between 1 and q with the summation convention in force. Thus, for t ≥ 0
sufficiently small, the transition functions induce maps

(3.3) φ̃α,β : Vα,β × Sq−1 × [0, ε) → Vβ,α × Sq−1 × [0, ε) ,

defined by the formula

(3.4) φ̃α,β(x, v, r) =


(
X(x, rv), Y (x,rv)

‖Y (x,rv)‖ , ‖Y (x, rv)‖
)

r > 0 ,(
X(x, 0), A·v

‖A·v‖ , 0
)

r = 0 .

A straightforward computation shows that these functions satisfy the cocycle condition

φ̃β,γ ◦ φ̃α,β = φ̃α,γ .

Let ∼ denote the equivalence relation on the disjoint union (M \ M)
·
∪

·⋃
α

(
Vα × Sq−1 × [0, ε)

)
generated by the relations (x, v, r) ∼ φ̃α,β(x, v, r) and p ∼ φα ◦ π̃(p). The normal blowup of M in
M is defined to be the quotient space

(M\M)
·
∪

·⋃
α

(
Vα × Sq−1 × [0, ε)

)
/ ∼ .
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The cocycle condition guarantees that M̃ is a smooth (n + q)-dimensional manifold with boundary
diffeomorphic to SQ; and the blowdown map π̃ is smooth by construction.

The verification that two definitions of normal blowup are equivalent is an elementary exercise
in differential geometry, which we leave to the reader.

3.1. Blowup coordinates. We will often have to work in local homogeneous coordinates centered
at an oriented normal ray in SM . More specifically, we shall choose a local coordinate chart
φ : U → V ×Bq

ε with local coordinate functions

(x, y) =
(
x1, . . . , xn, y1, . . . , yq

)
on M such that M intersects U in the set {y = 0}. The collection of points of M̃ over U is then a
set of the form (

x,
y

‖y‖
, ‖y‖

)
∈ V × Sq−1 × [0, ε) .

We shall choose φ so that the ray of interest is defined by y = (0, . . . , 0, 1). The map(
x,

y

‖y‖
, ‖y‖

)
7→ (x, p, r) = (x,

y1

yq
, . . . ,

yq−1

yq
, yq) ∈ V ×Rq−1 × [0,∞)

is clearly a coordinate chart for M̃ centered at the ray. We shall refer to such coordinates as blowup
coordinates. In blowup coordinates, the blowdown map assumes the form

(3.5) π̃ : (x, p, r) = (x, p1, . . . , pq−1, r) 7→ (x, y) = (x, (r p1, . . . , r pq−1, r)) .

The following lemma summarizes some of the elementary properties of the blowup that we need.
It is an obvious extension of Remark 3.1. The proof is an elementary exercise, which we leave to
the reader.
Lemma 3.6. Let γ(t), t ≥ 0, be a smooth curve in M intersecting M transversely at t = 0, with
γ(t) /∈ M for t > 0.

(i) Then γ(t) has a unique lift to a smooth curve γ̃(t) in M̃ defined by letting γ̃(0) ∈ SQ be
the oriented ray generated by πQ(γ′(0)).

(ii) Let f be a smooth function on M̃ that vanishes on SM , then the quantity df(γ̃′(0)) depends
only on πQγ′(0).

(iii) Let Y be a vector based at a point p ∈ SM = SQ such that πQ (π̃∗Y ) 6= 0. Then the ray
defined by the normal vector πQ (π̃∗Y ) is p, itself.

4. The structure of the singular set

In this section, we give a regularity condition on u that generalizes the one given in [7] and
explore some of its implications. Set ũ = π̃∗u and θ̃ = π̃∗θ. We say that u is regular on the normal
blowup of M (or more simply regular on the blowup) if and only if is satisfies the following two
conditions:

(i) ũ and θ̃ extend smoothly to all of M̃,
(ii) the form dũ ∧ θ̃ ∧ (dθ̃)n is non-vanishing on all of M̃.

The next proposition roughly states that regularity on the blowup is equivalent to the condition
that M̃ be the product of a contact manifold with an interval. This is the main geometric fact
underlying all of our results.
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Proposition 4.1. The diffeomorphism of Equation (2.3) extends to a diffeomorphism

µ̃ : Mε × [0, R) → M̃

if and only if u is regular on the blowup.

Proof. Assume that µ extends to a diffeomorphism µ̃ as above; then, by virtue of Equation (2.4),
ũ = π2 ◦ µ̃, where π2(p, t) = t. Because π2 is smooth and dπ2 = dt, the function ũ is smooth and dũ
never vanishes. Recall from Remark 2.5, that the form µ∗(θ) extends smoothly to all of Mε× [0, R)
and restricts to a contact form on Mε×{0}. This implies that θ̃ is smooth on all of M̃ and restricts
to a contact form on SM .

Conversely, suppose that ũ is regular on the blowup and that the form θ̃ is extends smoothly
to all of M̃ and restricts to a contact form on SM . Then because dũ is non-vanishing, MR/2 is
diffeomorphic to SM . It also follows that the construction of the vector field Y given in Section 2
extends to define a vector field Ỹu on all of M̃. Since Ỹu is transverse to SM , the map

µ̃ : SM × [0, R) → M̃ : (p, t) 7→ µ̃t(p)

where µ̃t is the flow of Ỹu is a diffeomorphism. By uniqueness of integral curves, µ̃ agrees with µ

on the interior of M̃. �

Remark 4.2. A result very much like this appears in the paper of Burns [3].

Recall that the Theorems of Stoll [10] and Lempert-Szöke [7] concern the structure of the singular
set of u in the extreme cases where its dimension is either 0 or n. Our next result shows that under
mild regularity conditions on u, no other dimensions are possible.
Theorem 4.3. Suppose that u is a solution of the Monge-Ampère equation that is regular on the
normal blowup of M . Then M is an n-dimensional, totally real submanifold of M.

Our proof proceeds by studying the lift of the Monge-Ampère foliation F to M̃. Assume that u

is regular on the blowup. Then by Proposition 4.1, the closed form dθ̃ has rank n− 1 everywhere
on M̃, as does its restriction to SM , the boundary of M̃. Consequently, F lifts to a non-singular
foliation F̃ of M̃ by (real) surfaces, and the leaves of F̃ intersect SM transversely in curves.

Each leaf of F has a holomorphic parameterization expressed in terms of the complex flow of
the complex vector field

(4.4) Z = X + i Y ,

where X and Y are real vector fields on M̃ characterized by the conditions

(4.5) X θ̃ = −1 , X dũ = 0 , X dθ̃ = 0 and Y θ̃ = 0 , Y dũ = 1 , Y dθ̃ = 0 .

Notice that Y is the extension to all of M̃ of the vector field defined in Equation (2.2). Let νt and
µt be the flows of X and Y , respectively. For each point p̃ ∈ SM , consider the map

(4.6) φ̃p̃ : H → M̃ : ζ = s + ir 7→ νs ◦ µr(p̃) ,

where H = {s + ir ∈ C : 0 ≤ r < R}, and set

(4.7) φp̃ = π̃ ◦ φ̃p̃ : H →M .

Lemma 4.8. For each p̃ ∈ SM , the map φ̃p̃ is well-defined and the map φp̃ is holomorphic and
non-singular at all points of H. The collection of images of φp̃ as p̃ ranges over all of SM spans the
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Monge-Ampère foliation. Finally, the leaf of F defined by φp̃ intersects M along the non-singular
curve

s 7→ φp̃(s) , s ∈ R .

Proof. We claim that X = JY away from SM and that X and Y commute everywhere. To verify
the first condition, recall that θ̃ is the extension of θ = dCu to M̃, and that dC = d ◦ J , where J is
the complex structure tensor; the identity Y = JX follows from the definition (4.5). To see that
the vector fields X and Y commute, recall that because dũ ∧ θ̃ ∧ (dθ̃)n−1 is a volume form on M̃,
we need only prove that the Lie bracket [X, Y ] is in the kernel of each of the forms dũ, θ̃, and dθ̃.
But

0 = d2ũ(X, Y ) = Xdũ(Y )− Y dũ(X)− dũ([X, Y ]) = −dũ([X, Y ])

and

0 = dθ̃(X, Y ) = Xθ̃(Y )− Y θ̃(X)− θ̃([X, Y ]) = −θ̃([X, Y ]) ,

and, because the kernel of dθ̃ is an involutive distribution and X and Y are both in the kernel, so
is [X, Y ]. Because M = u−1([0, R)) and the level sets of u are all compact, φ̃ is well defined on all
of H. Because Y = JX on M\M , φ is a holomorphic curve in M.

By construction, the vectors π̃∗(X) and π̃∗Y (p) are non vanishing for all p ∈ M̃. Consequently,
φ is a non-singular parameterization of a leaf of the Monge-Ampère foliation.

To see that every leaf of F is contained in the image of φp̃ for some p̃ ∈ SM , choose a point in
p ∈M\M = M̃ \ SM . Then p = µr(p̃) for a unique point p̃ ∈ SM . Hence, the leaf of F through
p is contained in the image of φp̃.

Finally, to verify that the leaves of F intersect M along non-singular curves of the form s 7→ φp̃(s),
recall that X(ũ) = 0. This shows that the curve is contained in M . Moreover, by construction,

φ′p̃(s) = J
(
π̃∗Yφ̃(s)

)
6= 0 ,

showing that the curve is non-singular. �

Proof of Theorem 4.3. Assume that u is regular on the normal blowup. First observe that the flow
of Y induces a continuous deformation retract ρ : M→ M defined as follows

ρ(p) =

{
p for p ∈ M

π̃ ◦ µ−u(p)

(
π̃−1(p)

)
for p ∈M \M .

Hence, M and M have the same homotopy type. By the theorem of Andreotti-Frankel [1], the
Stein manifold M has the homotopy type of an n-dimensional cell complex. Consequently, M can
have dimension at most n.

Let TM denote the tangent bundle of M , and let J : TM→ TM denote the complex structure
tensor of M. We claim that the composition

(4.9) TM
J−→ TM|M

πQ−→Q

is a surjective map onto the normal bundle of M in M. Because the dimension of M is at most n,
this claim implies, that the map (4.9) is an isomorphism of vector spaces, hence, that M is totally
real.

To prove that the map (4.9) is surjective, first choose a point p ∈ M and a non-zero vector v ∈ Qp.
We need only show that a multiple of v is in the image of this map. But the vector v defines an
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oriented ray, which by definition of SM is a point p̃ ∈ SM with π̃(p̃) = p. By Lemma 3.6(iii), the
oriented rays defined by πQ (Jπ̃∗Xp̃) and v coincide. �

Remark 4.10. A theorem of Harvey and Wells [5] states that the zero set of a non-negative, strictly
plurisubharmonic function is locally contained in a totally real submanifold. Because u2 may not
be smooth on M, the theorem does not apply.

Our next theorem shows that Proposition 4.1 is, indeed, a generalization of the requirement in
[7] that u2 be a smooth Kähler potential. More generally, one could assume that the function
τ = f(u) is a smooth potential function for a Kähler metric. The next theorem shows that all such
conditions imply that u is regular on the blowup.
Theorem 4.11. Let u ≥ 0 be a solution of the Monge-Ampère equation on M. Assume that the
singular set M = {u = 0} a smooth submanifold. Suppose that τ = f ◦ u ≥ 0 is a smooth, strictly
plurisubharmonic exhaustion function for M, where f is a real analytic function with f(0) = 0 and
with f ′(u) and f ′′(u) both positive for u > 0. Then u is regular on the blowup and M is a totally
real submanifold of maximum dimension.

Proof. We first claim that the form θ̃ extends smoothly to all of M̃. To see this, give M the Kähler
metric defined by the Kähler potential τ . One easily verifies that the vector field Z = X + iY
defined in (4.4) satisfies the identity

Z ddCτ =
f ′′(u)
f ′(u)

(dτ + idCτ)

on M \ M . Therefore by Theorem 1.2, the gradient vector field ∇τ is a scalar multiple of Y ,
and each integral curve of Y is contained in a geodesic of M that intersects the level sets of τ
orthogonally.

Consequently, these geodesics lift to the blowup and intersect the boundary of M̃ transversely.
The union of all of these curves forms a one dimensional foliation of M̃ with tranversal intersection
with the boundary of M̃. Moreover, the leaves of this foliation are (by construction) the closures
of the integral curves of Y . The identities Y θ̃ = LY θ̃ = 0 then show that the form θ̃ = π̃∗dCu

extends smoothly to all of M̃ and is non-vanishing at all points of SM .
Let θS denote the pullback of θ̃ to the boundary SM ⊂ M̃. The non-degeneracy condition

θ̃ ∧ (dθ̃)n−1 6= 0, implies that θS is a contact form on SM . Therefore, to conclude the proof of
regularity, we need only show that ũ is smooth on all of M̃ and that dũ is non-vanishing near SM .
We do this obtaining explicit formulas for dCu and ũ in blowup coordinates adapted to the complex
structure on M.

By a theorem of Harvey and Wells [5] (see also [7]), M , the zero set of a smooth strictly plurisub-
harmonic function, is totally real. Let m ≤ n be the dimension of M , and let q = n −m, and let
the indices j and a range between 1 and m and 1 and q, respectively.

We choose holomorphic coordinates

M⊃ U → Cm+q : p 7→ (z1, . . . , zn)

with z = x + iy and a smooth function H : Rm → Rm × Cq such that

M ∩ U = {z ∈ Cm+q : (y1, . . . , ym, zm+1, . . . , zm+q) = H(x1, . . . , xm)} .

Because M is totally real, we may choose coordinates so that H vanishes to arbitrarily high order
at x = 0. These coordinates are not adapted to M , so they must be replaced by the adapted
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coordinates (x1, . . . , xm, v1, . . . , vm, w1, . . . , wq) defined by

vj = yj −Hj(x1, . . . , xm) wa = zm+a −Hm+a(x1, . . . , xm) .

Blowup coordinates are then given by the formulas

vα = rpα, vm = r, wa = rζ = r(ξa + iηa) ,

where Greek indices range between 1 and m − 1. Since we only have to compute dCu on the set
xj = 0, and since H vanishes to high order, we may assume that H(x) is identically zero in any finite
order computation along xj = 0. In particular, up to first order along the set xj = 0, j = 1, . . . , n,
we have

zα = xα + irpα, zm = s + ir, zm+a = rζ = r(ξa + iηa) .

(To highlight the special role played by the radial parameter r, we have written zm = s + ir.) A
straightforward computation using the chain rule, shows that

π̃∗(dCu) = −
(

∂u

∂r
− pα

r

∂u

∂pα
− ξa

r

∂u

∂ξa
− ηa

r

∂u

∂ηa

)
ds +

(
∂u

∂s
+ rpα ∂u

∂pα
− ξa

r

∂u

∂ηa
+

ηa

r

∂u

∂ξa

)
dr

− 1
r

∂u

∂pα
dxα + r

∂u

∂xα
dpα − ∂u

∂ηa
dξa +

∂u

∂ξa
dηa .

We claim that ũ can we written in the form

(4.12) ũ = r2/k U(x′, s, p, ξ, η, r2/k) ,

where k > 0 is an integer, x′ = (x1, . . . , xm−1), and U(x′, s, p, ξ, η, t) is a differentiable function of
t such that

U(x′, s, p, ξ, η, 0) > 0 .

Assume this claim for the moment. Then, substituting (4.12) into the formula for θ̃ = π̃∗dCu and
simplifying gives

θ̃ = −r
2
k
−1

(
2
k

U + r
∂U

∂r
− pα ∂U

∂pα
− ξa ∂U

∂ξa
− ηa ∂U

∂ηa

)
ds

+ r
2
k
−1

(
r
∂U

∂s
+ r2pα ∂U

∂xα
+ ηa ∂U

∂ξa
− ξa ∂U

∂ηa

)
dr

− r
2
k
−1

(
∂U

∂pα
dxα

)
+ r

2
k
+1

(
∂U

∂xα
dpα

)
− r

2
k

(
∂U

∂ηa
dξa − ∂U

∂ξa
dηa

)
But we have already proved that θ̃ extends smoothly to the set r = 0 and is nowhere-vanishing. In-
spection of the above formula for dCu shows that this implies that k = 2. Thus, ũ = rU(xα, pα, s, ξ, η, r),
which is smooth on all of M̃. The formula dũ = U dr for r = 0 shows that u is regular. That that
M is totally real and has dimension n follows from Theorem 4.3.

It remains only to prove that ũ is of the form (4.12). Because f is real analytic, τ has a series
expansion of the form

τ = f(u) = auk (1 + g(u))
where a > 0 and g(u) is a smooth function such that g(0) = 0. Therefore, the equation

τ1/k = a1/k u (1 + g(u))1/k

can be inverted to show that u is of the form

(4.13) u = τ1/k G(τ1/k)

for G(t) a smooth (in fact, analytic) function satisfying the condition G(0) > 0.
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On the other hand, τ ≥ 0 is smooth and vanishes precisely on M . This, together with the
positivity condition ddCτ > 0, implies that τ vanishes precisely to order 2 on M . Therefore, τ can
be expressed in the form

(4.14) τ = r2 T (x′, s, p, ξ, η, r) ,

where T (x′, p, ξ, η, r) is a smooth function and T (x′, p, ξ, η, 0) > 0. Combining (4.13) and (4.14),
and setting U =

√
T results in the expression (4.12).

Setting k = 2 in the above formula for θ̃ and simplifying yields the identity

(4.15) θS = −
(

U − pα ∂U

∂pα
− ξa ∂U

∂ξa
− ηa ∂U

∂ηa

)
ds− ∂U

∂pα
dxα .

At this point, we invoke Theorem 4.11 to conclude that m = n and q = 0, and that M is totally
real. �

Remark 4.16. For later reference, we note that because q = 0, Formula 4.15 reduces to the identity

θS = −
(

U − pα ∂U

∂pα

)
ds− ∂U

∂pα
dxα .

5. The Finsler metric on M

When u is regular on the blowup, the restriction of θ̃ to SM is a contact form. We now show
that that where u is regular on the blowup, it induces a Finsler metric on M and that the leaves
of the Monge-Ampère foliation intersect M along geodesics.

5.1. Review of Finsler geometry. We begin with a quick review of Finsler geometry from the
perspective of contact geometry. For a more complete and more general, exposition of these ideas
the reader should consult the paper of Pang [8]. Let π : TM → M denote the tangent space of
M and let T0M ⊂ TM denote the set of non-zero tangent vectors. A Finsler metric on M is a
smooth, positive function F : T0M → R that satisfies the following two conditions:

(i) For all X ∈ T0M and all t > 0, F (tX) = tF (X).

(ii) The set Sp = {X : F (X) = 1} is strongly convex and diffeomorphic to a sphere.
Let xj , j = 1, . . . , n be local coordinates on M and let (xj , ẋj) be the induced coordinates on

the tangent bundle. The Hilbert form θF on T0M is the 1-form defined by the local formula

θF =
∂F (x, ẋ)

∂ẋj
dxj ,

where the summation conventions are in force. It is not difficult to show that the convexity condition
(ii) is equivalent to the condition that

θF ∧ (dθF )n−1

be non-vanishing.
The homogeneity of F implies that θF is the pullback of a 1-form on the projective tangent

bundle SM , which by abuse of notation we also denote by θF . To see this, let

XR = ẋj ∂

∂ẋj

denote the radial vector field. We must only show that

XR θF = 0 and LXR
θF = 0 .
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The first identity is obvious. To prove the second, compute as follows:

LXR
θF = XR dθF + d(XR θF ) = XR dθF = ẋj ∂2F

∂ẋj∂ẋk
dxk = 0 ,

where the last equality on the right follows by differentiating Euler’s identity, ẋj ∂F

∂ẋj
= F , with

respect to ẋk. We have proved the following lemma:
Lemma 5.1. The function F is a Finsler metric if and only if the form θF on SM is a contact
form, i.e.

θF ∧ dθn−1
F 6= 0 .

Remark 5.2. The geodesics of a Finsler manifold have an elegant formulation in terms of the
Hilbert form. The Reeb vector field of the contact contact manifold (SM, θF ) is the vector field
XF characterized by the conditions:

θF (XF ) = 1 and XF dθF = 0 .

The geodesics of (M,F ) are the images under the projection map π : SM → M of the integral curves
of XF . In fact, if t 7→ νt(p̃) is the integral curve of XF starting at p̃ ∈ SM , then γ : t 7→ π ◦ νt(p̃)
is the unit speed geodesic with [γ′(0)] = p̃.

5.2. Construction of the metric. Let u be a solution of the Monge-Ampère equation and assume
that u is regular on the blowup of M . Recall that this implies that M is a maximal, totally real
submanifold of M. Thus the composition of the maps in (4.9) is an isomorphism of vector bundles.

Define F : TM0 → R as follows. Let X be a non-zero tangent vector based at a point p ∈ M .
Let γ(t) be curve such that γ(0) = p and γ′(0) = JX. Then we set

(5.3) F (X) = lim
t→0+

u ◦ γ(t)
t

.

The next proposition shows that F is a Finsler metric on M .
Proposition 5.4. Suppose that u is regular on the normal blowup of M and let θS denote contact
form on SM obtained by pulling-back the form θ̃ to SM . Then F is a Finsler metric and its Hilbert
form θF coincides with −θS.

Proof. Let γ̃(t) be the lift of γ(t) to M̃ defined in Lemma 3.6(i). Then

F (X) = dũ(γ̃′(0)) .

By (3.6(i)), F (X) depends only on X; thus, F is well defined. Homogeneity of F follows from the
definition of F . To see that F (X) is positive, write ũ in the form

ũ(x, p, r) = r U(x, p, r) ,

where (x, p, r) are blowup coordinates as in 3.6. Because u is regular on the blowup, U(x, p, 0) is
strictly positive. Consequently,

F (X) = r′(0)U (x(0), p(0), 0)

where γ̃(t) = (x(t), p(t), r(t)). Finally, observe that r′(0) is positive because JX = γ′(0) is trans-
verse to M .

By Lemma 5.1, to conclude the proof we need only show that −θS coincides with the Hilbert form
of F . We prove equality via explicit formulas for both forms using blowup coordinates centered
at an arbitrary point p0 ∈ M . Because p0 is arbitrary, we need only verify equality on the fiber
π̃−1(p0).
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Choose holomorphic coordinates zj = xj + i yj , j = 1, . . . , n, centered at p0 as in the proof of
Theorem 4.11. In these coordinates, u assumes the form

(5.5) u(x, p, r) = rU(x, p, r)

and, by Remark 4.16, the form θS assumes the form

(5.6) θS = −
(

U − pα ∂U

∂pα

)
ds− ∂U

∂pα
dxα .

We next focus on the computation of F and θF . Let

X = ẋ1 ∂

∂x1
+ · · ·+ ẋn−1 ∂

∂xn−1
+ ṡ

∂

∂s

denote a tangent vector to M at p0. If the ray generated by JX is in the coordinate patch of M̃,
then ṡ > 0. Then by (5.5) and Lemma 3.6,

F (X) = ṡ U (x, p, 0) ,

where pα = ẋα/ṡ. The Hilbert form of F is therefore given by

θF =
∂F

∂ẋj
dxj =

(
U − pα ∂U

∂pα

)
ds +

∂U

∂pα
dxα .

Comparing this formula with (5.6) yields the equality θF = −θS and concludes the proof of the
proposition. �

Proof of Theorem 1.4(a). The proof is a corollary to Proposition 5.4. Because the forms −θS and
θF coincide, the Reeb vector field of θF coincides with the restriction to SM of the vector field X
defined by Equation (4.5). But Lemma 4.8 shows that the projection onto M of the integral curves
of X are the intersections of leaves of the Monge-Ampère foliation with M . �

6. Construction of regular Monge-Ampère models

In this section, we prove parts (b) and (c) of Theorem 1.4. Our proof is a generalization of a
construction of Lempert-Szöke [7].

Before beginning the proof, we make a few preliminary observations. Recall that, because M is
totally real, the complex structure tensor J induces an analytic isomorphism between the projective
tangent bundle of M and the projective normal bundle SQ, which is, by construction, the boundary
of M̃. We may, therefore, identify the boundary SM of M̃ with the projective tangent bundle of
M .

Thus far, we have worked in the smooth category; we now introduce the further assumption that
all data are real analytic. Specifically, let (M,F ) denote a compact, real analytic manifold with a
real analytic Finsler metric. Then the oriented projective tangent bundle SM is also real analytic,
as are the Hilbert form θF and the Reeb vector field XF . If follows that the flow of XF ,

ν : SM × R → SM : (p, t) 7→ νt(p)

defines a real analytic family of diffeomorphisms of SM .
Next let M denote the complexification of M . By construction, M is an analytic, n-dimensional,

totally real submanifold of its complexification M, and any real analytic atlas for M extends to
define a holomorphic atlas for M. Using this atlas to define the normal blowup as in Section 3
immediately shows that M̃ has real analytic boundary and that the blowdown map

π̃ : M̃ →M
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is real analytic. With this identification, we have the following diagram of real analytic maps:

(6.1) SM × R ν−→SM ↪→ M̃ π̃−→M .

We are now going to extend this map to the domain SM ×C by analytic continuation and use the
extension to define a solution u of the Monge-Ampère equation. The map (6.1) gives a real-analytic
family of curves, γp̃, p̃ ∈ SM , defined by

(6.2) γp̃ : R → M ⊂M : t 7→ π̃ (νt(p̃)) ,

and each curve is both a geodesic in the Finsler manifold (M,F ) and a real analytic curve in
M. By virtue of the second property, each of these curves can be holomorphically extended to
a holomorphic curve defined on a neighborhood of of R in C. The next lemma shows that the
extension is uniform over all of SM .
Lemma 6.3. There exists a real number R > 0 and a real analytic extension

νC : SM ×HR → M̃

of ν, where HR = {s + ir : 0 ≤ y < R}. The map νC has the following properties:
(i) For each p ∈ SM , the map z 7→ π̃ ◦ νC(p, z) is a holomorphic immersion.
(ii) The map µ : SM × [0, R) → M̃ defined by the formula

µ(p, r) = νC(p, 0 + ri)

is a real analytic diffeomorphism onto its image.

Proof. Choose a point p ∈ SM . Because γp is real analytic, for sufficiently small ε > 0, it has a
holomorphic extension γC

p : V → M, where Vε = {z = s + ir : |s| < ε, 0 ≤ r < ε. It is easy to
check that γC

p lifts to a real analytic map

γ̃C
p : V → M̃

which is an extension ν. By analytic dependence of γp on p and compactness of SM , there exists
a real number R > 0 such that γC

p is defined on VR for all p ∈ SM . We now have a real analytic
map

νC : SM × VR → M̃ ,

which is holomorphic in the second factor. The one-parameter identity νt+s = νt ◦ νs then allows
us to extend the map to all of SM ×HR as the composition

νC
s+ir(p) = νC

s/k+ir ◦ · · · ◦ νC
s/k+ir(p) ,

where the integer k is chosen so that |s/k| < R.
Property (i) of ν follows by construction. To prove property (ii), first observe that µ is the

identity map on SM × {0}. We, therefore, need only show that the derivative of µ is injective on
all of SM . It then follows (after shrinking R if necessary) that µ is a diffeomorphism, as claimed.
But because µ is the identity on SM , it follows that µ∗ is injective if and only if the vector field
µ∗(∂/∂r) is transverse to SM . It suffices to show that the projection π̃∗µ∗(∂/∂r) is transverse to
M . But this is clear, for by construction

(π̃ ◦ µ)∗(∂/∂r) =
d

dr
γC

p (ir) = Jν ′t(p) .

This completes the proof of the lemma. �
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Replace M by the image of µ, and let ũ : M̃ → R be the smooth function defined by the formula

(6.4) ũ : M̃ µ−1

−→SM × [0, R) π2−→R,

where π2 is projection onto the second factor. Because ũ vanishes on SM , it descends to a continu-
ous function u on M. To complete the proof of Theorem 1.4(b), we need only show that (M,M, u)
is a real analytic Monge-Ampère model for (M,F ). We need only check that the following conditions
are satisfied (after possibly further shrinking R) :

(i) ũ is smooth on all of M̃;
(ii) u induces the Finsler metric F . Specifically, choose a tangent vector X and let γ̃(t) be the

lift to M̃ of a smooth curve γ(t) with γ′(0) = JX, then F (X) = dũ(γ̃′(0));
(iii) ddCu2 > 0 on M\M ;
(iv) (ddCu)n = 0 on M\M ;
(v) θ = dCu lifts to a smooth form θ̃ which extends smoothly to all of M̃ and which satisfies

the inequality dũ ∧ θ̃ ∧ (dθ̃)n−1 6= 0.
Properties (i) and (ii) follow immediately from the constructions above.
To verify condition (iii), choose an arbitrary point p ∈ SM and choose blowup coordinates

(xα, s, pα, r) centered at p with zα = xα + irpα, zn = s + ir holomorphic coordinates on M. We
claim that complex Hessian of

HC(u2) =

(
∂2u2

∂zα∂zβ

∂2u2

∂zα∂zn̄

∂2u2

∂zn∂zβ

∂2u2

∂zn∂zn̄

)
extends continuously to a positive definite matrix on a neighborhood of p. Assume the claim for
the moment. By compactness of SM , there is an open neighborhood U ⊂ M of M such that
ddCu2 > 0 on U \M . By shrinking R if necessary, we may assume that U = M.

To prove the claim, observe that by construction u = rU(s, r, xα, pα), where U is smooth and
U(s, 0, xα, pα) > 0. Noting that

xα =
1
2
(zα + zα) , pα =

zα − zα

zn − zn̄
, s =

1
2
(zn + zn̄) , r =

1
2i

(zn − zn̄)

and applying the chain rule to u2 yields the formulae

(6.5)



∂2u2

∂zα∂zβ
=

1
4

∂2(U2)
∂pα∂pβ

∂2u2

∂zα∂zn̄
=

1
4

∂

∂pα

(
2U2 − pβ ∂(U2)

∂pβ

)
∂2u2

∂zn∂zn̄
=

1
4

(
2U2 − 3pα ∂(U2)

∂pα
+ pαpβ ∂2(U2)

∂pα∂pβ

)
for r = 0.

On the other hand, (ii) implies that the Finsler metric F has the form

F (x, ẋ) = ẋnU(s, 0, xα, ẋα/ẋn) .

The convexity for F implies that the real Hessian

HR(F 2) =

(
∂2F

∂ẋα∂ẋβ
∂2F

∂ẋα∂ẋn

∂2F
∂ẋn∂ẋα

∂2F
∂ẋn∂ẋn

)



SINGULAR MONGE-AMPÈRE FOLIATIONS 17

is positive definite for all ẋ 6= 0. A straightforward computation shows that

(6.6)



∂2(F 2)
∂ẋα∂ẋβ

=
∂2(U2)
∂pα∂pβ

∂2(F 2)
∂ẋα∂ẋn

=
∂

∂pα

(
2U2 − pβ ∂(U2)

∂pβ

)
∂2(F 2)
∂ẋn∂ẋn

= 2U2 − 3pα ∂(U2)
∂pα

+ pαpβ ∂2(U2)
∂pα∂pβ

Comparison of (6.5) and (6.6) shows that HC(u2) = 1
4HR(F 2) at r = 0. Consequently, the complex

Hessian of u2 is positive definite in a neighborhood of p ∈ SM .
To verify condition (iv), recall that by Lemma 6.3 every point of M \ M , is contained in the

image of a holomorphic curve of the form z 7→ νC(p, z). By definition, u ◦ νC(p, z) = =(z), showing
that the pull-back of ddCu to the curve vanishes. Together with (iii), this shows that ddCu has
rank strictly less than n.

To verify condition (v), we first show that the form θ̃ = π̃∗dCu extends to all of M̃. To see this
note that by construction, the vector field on M̃ Y = µ∗

∂
∂r satisfies the identity Y θ̃ = 0 on the

set M̃ \ SM , and the computation
LY θ̃ = Y dθ̃ = 0

shows that the Lie derivative vanishes. Consequently, we need only verify (iv) on SM . But since
Y (ũ) = 1, we need only show that θS , the pull back of θ̃ to SM , is a contact form. But the
computations leading to the formula (5.6) all apply here, showing that θF = −θS . Non-degeneracy
follows, concluding the proof of part (b) of Theorem 1.4.

To prove part (c) of Theorem 1.4, first suppose that Φ : M→M is a biholomorphism between
two Monge-Ampère models (M,M, u) and (M′,M ′, u′) such that u = u′ ◦Φ. Equation (5.3) shows
the Φ restricts to an isometry between (M,F ) and (M ′, F ′). Conversely, any analytic isometry
between real analytic Finsler manifolds (M,F ) and (M ′, F ′) extends uniquely to a biholomorphism
Φ : M→M′ between their complexifications.

Therefore, we need only show that u = u′ ◦Φ, which we can do by proving equality on each leaf
of F . To this end, let γC : HR → M be the holomorphic parameterization of a leaf given above.
Then U(z) = u ◦ γC(z) and U ′(z) = u′ ◦ Φ ◦ γC(z) are both real analytic solutions of the initial
value problem

∂2U

∂r2
= −∂2U

∂s2
, U(s, 0) = 0 ,

∂U(s, 0)
∂r

= 1 .

By the Cauchy-Kovaleskaya Theorem, it follows that U(s, r) = r. Uniqueness follows, completing
the proof of Theorem 1.4.
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