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Abstract

Principal curves were introduced to formalize the notion of “a curve
passing through the middle of a dataset”. Vaguely speaking, a curve
is said to pass through the middle of a dataset if every point on the
curve is the average of the observations projecting onto it. This idea
can be made precise by defining principal curves for probability den-
sities. Principal curves can be regarded as a generalization of linear
principal components — if a principal curve happens to be a straight
line, then it is a principal component. In this paper we study princi-
pal curves in the plane. We calculate the principal curves for uniform
densities on rectangles and annuli and show that there are oscillating
solutions besides the obvious straight respectively circular ones. This
indicates that principal curves in general will not be unique. If a den-
sity has several principal curves, they have to cross, a property some-
what analogous to the orthogonality of principal cmponents. Like prin-
cipal components, principal curves are critical points of the expected
squared distance to the data. However, the largest and smallest prin-
cipal components are extrema of the distance, whereas all principal
curves are saddlepoints. This explains why cross-validation does not
appear to be a viable method for choosing the complexity of principal
curve estimates.
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1 Introduction

The problem of fitting one or two-dimensional manifolds to point sets in
two respectively three dimensions occurs in a variety of contexts, such as
modeling of object boundaries in two or three-dimensional images (Banfield
and Raftery (1992), Brinkley (1985), Martin et al (1993), Schudy and Bal-
lard (1978, 1979), Sheehan et al (1992)), and reconstruction of objects from
range data (Fang and Gossard (1992), Goshtasby (1992), Hoppe et al (1992,
1993), Muraki (1991), Solina and Bajcsy (1990), Vemuri et al (1986)). It is
typically not reasonable to assume that the unknown manifold is of a given
parametric form, like an ellipsoid. Fitting methods need to be flexible and
able to accomodate a variety of shapes.

Manifold fitting is fundamentally different from regression. It is worthwhile
to contrast the respective goals for the case of two-dimensional data. In
regression, we are given points (z1,%1),...,(Zn,yn). The goal is to find a
function f(z) summarizing the dependence of the response variable Y on
the predictor variable X; the two variables are thus treated asymmetrically.
Under the assumption that f is linear, a common choice is the least squares
straight line. There has been a large amount of research on nonparamet-
ric regression methods that make only very general assumptions about the
nature of f.

In manifold fitting we are also given points xq,...x, € R% The goal is to
find a one-dimensional manifold I' summarizing the association between the
variables X7 and X,. The two variables are treated symmetrically. It is
usually clear from the context whether the manifold should be topologically
a circle or a closed interval. Under the assumption that I' is a straight line, a
common choice is the largest principal component. Nonparametric methods
not relying on the linearity assumption have typically been crafted on an
ad-hoc basis. This is not satisfactory, and a theoretical underpinning would

be highly desirable.

To statistically analyze the behaviour of fitting methods we need a stochastic
model that is thought to give rise to the data. A simple model is to assume
that the data points are i.i.d. observations of a two-dimensional random vec-
tor distributed according to some (unknown) density p. Then two questions
arise: (1) Which characteristic of the density we are trying to estimate, and
why? (2) How can we estimate this characteristic?



In the regression context answers to those questions are well understood. We
usually estimate the conditional expectation E(Y | ), because it minimizes
the expected squared prediction error E,(Y — f(X))? among all functions
f. There are many approaches to estimating E(Y | z), often based on local
averaging. The amount of averaging or, more generally, the complexity of
the model is typically chosen to minimize an estimate of expected squared
prediction error, like the cross-validated residual sum of squares.

In the context of manifold estimation the situation is not as clear cut — there
are no generally accepted answers to questions (1) and (2) above. In this
paper we discuss answers based on the concept of principal curves (PC’s).
PC’s were introduced in Hastie (1984) and Hastie and Stuetzle (1989) to
formalize the notion of “a curve passing through the middle of a dataset”.
Vaguely speaking, a curve is said to pass through the middle of a dataset if
every point x on the curve I' is the average of the observations projecting
onto it.

To make this idea precise, Hastie and Stuetzle (1989) define PC’s for prob-
ability densities.

Definition of principal curves: Let X denote a two-dimensional random
vector distributed according to the probability density p, and let I' ¢ R? be
a smoothly embedded closed interval (arc) or circle (loop). For each point
x € R?, let d(x,T') denote the distance from x to I'. Because I' is compact,
for each x € R? the distance d(x,I') is realized by at least one point of I'.
Of course, there may be several such points; a point x with several closest
points on the curve is called an ambiguity point. The projection map

m:R? =T,

is the map which assigns to each x € R? a point 7p(x) € I realizing the
distance from x to I, i.e.

d(x,T) = [lz = mr(x)]| -

Notice that the map 7p is well-defined only on the complement of the set
of ambiguity points of I'. But the set of ambiguity points has Lebesgue
measure zero (see Hastie and Stuetzle (1989)) and can be ignored in prob-
ability calculations. It is not difficult to show that = is continuous on the
complement of the set of ambiguity points.



The vague concept that every point on the curve be the average of the
observations projecting onto it can now be formalized:

Definition 1 (Hastie and Stuetzle (1989)) A curve I is called self-consistent
or a principal curve of a density p if K(X | mp(X) = x) = x for almost every
xel.

The notion of projection also leads to a natural definition of the distance
between a random vector X or its associated density, and a curve I':

d*(X,T) = E(|X - mr(X)[I").

Principal curves as generalizations of linear principal components:
Besides formalizing the notion of “a curve passing through the middle of a
dataset”, principal curves share two properties with linear principal com-

ponents, which make them appear as a natural generalization (Hastie and
Stuetzle (1989)):

o If a PC happens to be a straight line, then it is a (linear) principal
component.

e P(’s are critical points of the distance function in the variational sense:
let T' be a PC, and let I'; be a smooth family of curves with I'g = T,

then p
—d*(X,T =0

dt ( ’ t) =0

Linear principal components share this property if I'y is restricted to

be a smooth family of straight lines. The largest principal compo-

nent minimizes the distance to X, the smallest principal component

maximizes the distance, and the others are saddlepoints.

A principal curve algorithm: We will first discuss a suggestion for find-
ing PC’s of densities. Given our motivating problem of manifold estimation,
we are particularly interested in PC’s with small distance from X. A strat-
egy is to start with a smooth curve such as the largest linear principal
component, and check if it is a principal curve by calculating the condi-
tional expectation E(X | 7p(X) = x). Either this conditional expectation
coincides with I', or we get a new curve as a by-product. We then check
if the new curve is self-consistent, and so on. If the self-consistency condi-
tion is met, we have found a principal curve. It is easy to show that both



the operations of projection and conditional expectation always reduce the
expected distance from the points to the curve.

As discussed in Hastie and Stuetzle (1989) there are potential problems with
the above algorithm. For example there is no guarantee that the curves pro-
duced by the conditional expectation step of the algorithm are differentiable.
Still there is some evidence in its favor:

¢ By definition principal curves are fixed points of the algorithm.

o Assuming that each iteration is well defined and produces a differen-
tiable curve, the distance from the curves to X converges.

o If the conditional expectation operation in the algorithm is replaced
by fitting a least squares straight line, then the procedure converges
to the largest principal component of the density p.

So far we have considered principal curves of a density. In reality, however,
we always have to work with a finite data set xy,...,x,. The idea is to
replace the conditional expectation step by scatterplot smoothing. The al-
gorithm alternates between a projection step and a smoothing step. In the
projection step we project the data onto the current curve, thereby assigning
to each data point x; a parameter value A; which is the arc-length measured
from some (arbitrary) starting point on the curve. In the smoothing step
we obtain a new curve by smoothing the two coordinates of the data points
against the A;. The algorithm is discussed in more detail in Hastie and
Stuetzle (1989).

Using a scatterplot smoother (or nonparametric regression procedure) to es-
timate the coordinate functions of the curve I' brings up the issue of model
complexity: how do we choose the trade-off between fidelity to the data and
smoothness? An obvious idea is to minimize the cross-validated squared dis-
tance between data points and curve, the natural analog to cross-validation
in the regression context. However, as Hastie and Stuetzle (1989) discov-
ered empirically, this does not seem to work. If cross-validation is used for
span selection in the projection-smoothing loop, the complexity of the fit
continues to increase, till finally the curve interpolates the data points.

Summary of results: The goal of the current paper is to further con-
tribute to the theoretical understanding of PC’s. We now present an infor-
mal synopsis of our results:



1. Suppose that I' is a PC for a density p. Under appropriate conditions
on I' and p, the self-consistency condition can be interpreted as a
2nd order ordinary differential equation for I'. Principal curves that
satisfy these conditions and thus are solutions of the ODE are called
admissible. The results in items (2) ...(5) apply only to admissible
PC’s.

2. Any two PC’s of a density intersect.

3. The PC’s for the uniform density on a rectangular strip can be com-
pletely characterized. Depending on the aspect ratio of the rectangle,
there may be a number of periodically oscillating PC’s (besides the
obvious straight ones). Their periods can be obtained as the values of
certain elliptic integrals.

4. For certain annuli, the uniform density has periodically oscillating

PC’s.

5. All PC’s are saddle points of the distance d*(X,T') — the distance has
no local minima. However, PC’s are local minima in the variational
sense if we restrict ourselves to variations whose “wavelength” is long
relative to the variability of X in directions orthogonal to I'.

Result (2) — any two PC’s intersect — is analogous to the orthogonality
property of linear principal components. Results (3) and (4) show that, in
general, densities can be expected to have many PC’s. Result (5) — PC’s are
never local minima of the distance — is of particular interest, as it explains
the empirical observation that cross-validation is not a viable method for
choice of model complexity in the estimation of PC’s. PC’s are not minima
of the distance, hence there is no justification for choosing the complexity
that minimizes an estimate of the distance.

Notation and conventions: The following notation is used throughout
the paper: Lp denotes the length of I'; A denotes the closed interval [0, Lp],
x = X(s) denotes an arc length parameterization of I'. The unit tangent
and normal vector fields to I' are written T(s) and N(s), respectively, and
oriented so that the pair (T(s), N(s)) is consistent with the standard orien-
tation of R?. The angle between the positive z-axis and T(s) is denoted by

0(s).



If g is a scalar- or vector-valued function defined on I', then the value of g at
x = x(s) is denoted by both g(x) and g(s); and g’ denotes the derivative of g
with respect to the arc length parameter. For example, we write the Frenet
formula defining the curvature in either of the forms T'(x) = k(x)N(x) or

T'(s) = Kk(s)N(s).
The map

) R? — A
Tl x = s=Ax)
defined by the formula 7p(x) = x(A(x)) is called the projection index (see
Hastie and Stuetzle (1989)).

Finally, throughout this paper @ C R? denotes a compact, connected region
with smooth boundary d€2. (In certain cases, d€2 is allowed to have corners.).
The density p is assumed to be supported on €, strictly positive on the
interior of €2, and smooth on all of €.

2 Principal Curves as Solutions of a Differential
Equation

Suppose that I' is a PC for the density p. The goal of this section is to show
that, under appropriate conditions on I' and p, the function x = x(s) is the
solution of a 2nd order ordinary differential equation. This provides a way
of actually finding PC’s for certain densities: We solve the ODE, obtaining
a solution x = x(s), and then check, post facto, whether the conditions are
satisfied. If they are, then I' is a PC.

2.1 Informal Discussion of Admissibility

As mentioned in the introduction, most of our results apply only to a special
class of PC’s called admissible PC’s. It is necessary to restrict the class of
PC’s, for even relatively simple densities support too many PC’s, as the next
example shows:

Example 1. Consider the uniform density supported on the region Q,;
bounded by a rectangle of width a and length b. The lines of symmetry
are easily seen to be PC’s. But so is any curve I' intersecting €}, 5 in a set
of n equally spaced, vertical line segments, arranged so that the right- and



left-most segments are at distance b/(2n) from the right and left edges of the
rectangle (see Figure 1). The number n of wiggles in I' can be arbitrarily
large. Even worse, I' can be deformed outside of €2, ; in any way we like.
Thus, the uniform distribution on the rectangular strip supports infinitely
(in fact, uncountably) many principal curves.

We will now argue that in a typical scanario calling for the use of PC’s
pathological curves like the ones in the example would not be of interest:

Consider a smooth curve C C R2. The process of randomly sampling points
of C', with noise, gives rise to a probability density p. Given sufficient
information about the sampling process, it is possible to recover C using
convolution methods. In the absence of such information, however, we can
only hope to find an approximation I' to C'. We will not be able to recover
features of C' which are small relative to the sampling error, and therefore
our approximation I' should not have such features. It is also reasonable to
assume that the support Q of p is obtained by “fattening” ', and the same
should be true for I'.

More formally, I' should satisfy the following two conditions:

1. The support Q of p contains no ambiguity points of I'.

2. For each x €  the entire line segment joining x to mp(x) lies in the
support of p. In particular, I' is a subset of 2.

Notice that the pathological principal curves of Example 1 satisfy neither of
these requirements.

Roughly speaking, a PC 1" is called admissible if the two conditions above
are satisfied. In the case where I' has endpoints, the condition that it be
a principal curve imposes upon it additional transversality conditions (see
Section 2.2 below). Here is a further example illustrating the concept of
admissibility:

Example 2. Consider the uniform distribution on the annular region Qg r,,
bounded by two concentric circles of radii By < R3 shown in Figure 2. Sym-
metry considerations show that any line I'y through the origin is a PC,
though it is not admissible because it is not contained in Qg, gr,. In Sec-
tion 4.2 it is shown that I'y, the concentric circle of radius 2/3 (R% + R1Ry+
R%)(R1 + R2)7! is an admissible PC. Notice that Qpg, g, is obtained by
“fattening” T'5.

10



2.2 Transversality Conditions

Suppose that I' C Q is a principal arc of p. We wish to study the endpoints
of I

Proposition 1. IfI' C Q is a principal curve of a probability density p then
the identity

((x = mr(x)), T(7r(x))) = 0
is satisfied for all x € Q.

Proof. Choose a point x € Q. If 7p(x) is an interior point of I' then the
identity follows from the fact that 7p(x) is a point of I' realizing the distance
between x and T'.

Suppose that xg = 7r(x) is an endpoint of I'. Without loss of generality, we
may assume that the orientation of I' has been chosen so that To = T(xg)
is outward-pointing. Note that the inequality ((y — %¢), To) > 0 is satisfied
for all y € Q such that 7r(y) = xo. For otherwise, the distance from y to I'
would be strictly less than ||y — xo||. Consequently, the subset 7' (%) N Q
is contained in the half-plane H = {x € R* : ((x — xg), To) > 0}.

Suppose that the proposition is false. Then ((y —xg), Tp) > 0 for some
point y € Q with 7(y) = x¢. Since p is continuous on {2 and strictly positive
on the interior of £, there is an open set ¢ C H, such that (i) 7r(Q) = xo,
(ii) p > 0 on @ and (iii) ((y —x0),To) > 0 for all y € (). But these
conditions together imply that the point E(X | 7p(X)) is contained in the
interior of H, violating the self-consistency condition E(X| 7p(X) = x¢) =
X0 ( Xg is on the boundary of H). |

Corollary 1. IfI' C Q is a principal arc then

1. the endpoints of I' lie on the boundary 0€);
2. T intersects 0§ orthogonally;

3. the endpoints of I' cannot be concave points of 0f}.

A curve I' C © (not necessarily a PC) with these three properties is said to
satisfy the transversality conditions.

11



2.3 Formal Definition of Admissibility

To give a formal definition of admissibility, we require the notion of normal
coordinates in {2:

Definition 2. The normal coordinate map of I' is the map vr : I xR — R?
defined by the formula

vr(x,v) =x + vN(x),

and the normal coordinate transformation ¢s the map pur : @ — I'x R defined
by the formula

pr(x) = (mr(x), (x — 7r(x), N(7r(%)))) -
In terms of the arc length parameter s and the projection index A,
x =vp(s,v) = x(s) + vN(s)

and
(s,v) = pr(x) = (AM(x), (x = x(A(x)), N(A(x)))) -

The components (s,v) of ur(x) are called the normal coordinates of x.

By virtue of our assumption that € does not contain ambiguity points of
I', the normal map is a left inverse of the normal coordinate transformation

Kr:
vr o ur = ’LdQ

We can now state a formal definition of admissibility:

Definition 3. A smooth curve I' C Q is said to be admissible if the following
conditions are satisfied:

1. Q contains no ambiguity points of I.

2. There are two bounded, continuous functions, vy, v_ : I' — R with
the following properties:

(a) they are smooth on the interior of I';

(b) v_(x) < 0 < vy(x) for all x € T interior to I'; and
(c) ur(2) ={(x,v) e I' xR : v_(x) < v <wvy(x)}.

12



3. The map vr : pr(Q) — Q is a diffeomorphism.
The space of all admissible curves of Q is denoted by the symbol gAdm,Q'

Notice that, by virtue of condition (3), admissible curves satisfy the transver-
sality conditions.

Recall that we have required the boundary of € to be smooth. This re-
quirement can be relaxed somewhat to allow for corners, provided that they
project onto the endpoints of I'. In this case one or both of the functions v4
are non-vanishing at an endpoint of I'. However, we only wish to allow cor-
ners if the induced probability density on the normal lines of the endpoints
is non-degenerate:

Definition 4. A boundary point x € 012 is said to be essential if 0Q contains
a line segment with x in its interior and if the probability densily function
is strictly positive at x.

Figure 3 illustrates the three types of regions we allow and an admissible
curve in each.

2.4 Self-consistency as a Curvature Condition

We will now rewrite the self-consistency condition in normal coordinates.

To do this, we have to compute the Jacobian determinant of the normal
coordinate map. Consider an admissible curve I'. Recall that the curvature
function k = k(s) is given by the formula

_w
ds’

K

Let ¢ and j denote the standard unit vectors in R?. Differentiation with
respect to s of the identities

T = cos(8)r + sin(f)y and N = —sin(6)e + cos(f);y

vields the Frenet formulas

dT dN
— =N and

ds ds —~T.

13



dvr(s,v)
0s

The Jacobian determinant

dvr(s,v)
dv

of the normal coordinate map is now

Then

= x'(s) + vN'(s) = (1 — vk(s)) T(s) and = N(s).
d(z,

J(s,

N
~—

<

)

easily computed:

oz,y) |Ovp(s,v)  Ovr(s,v)] -
5o m) = Fas X F@@ = (1 —vk(s))T(s) x N(s)| =1— v/{(s()l.)

Remark 1. The condition that v be a diffeomorphism implies that the
Jacobian is nowhere vanishing on the set pp(€2). Since the points (s,0) are
all contained in pp(€2), continuity implies that the inequality vx(s) < 1 holds
for all (s,v) satisfying the inequality v_ < v < v4.

Recall that I' is called self-comsistent if E(X | 7p(X) = x) = x for almost
all x € I'. By definition of conditional expectation this is equivalent to the
condition that

/ xp(x) dx = / (%) p(x) dx
it (4) r(4)
or

[, (x= w0y p(x) dx = 0 (2)

r (4)
for all measurable A C I'. If the normal map is a diffeomorphism, then
equation (2) can be rewritten in normal coordinates:

vp(x(s)+ vN(s)) g((i’i/)) dvds =0,

where A now denotes a measurable subset of A. This implies that

I(z,y)
(s, v)

/{(svv)emﬂ)l s€EA}

dv=0 s—a.e.

vp(x(s)+ vN(s
/{vl(sw)eur(ﬁ)} (x(s) (s)

Define
V(s) = {v] (5,0) € ur(R)} = {v] v(s) < v < v4(s)}

Geometrically, V(s) can be thought of as the “domain of attraction” of x(s):
all points x(s) + vIN(s) with v € V(s) project onto x(s). Using equation (1)
and recalling that p is smooth, self-consistency implies that

/V vp(x(s) + vN(s)) dv — H(S)/ v? p(x(s) + vN(s)) dv =0, (3)
(s)

V(s)

14



for all s € A.

Equation (3) relates the curvature of I' to first and second moments of the
density induced on the normal line to the curve at s. Figure 4 illustrates
the situation for the case of a uniform density. If x(s) happens to coincide
with the mean of the induced density, i.e. the center of the normal line
segment, then the curvature x(s) has to vanish. If the mean of the induced
density falls below x(s), then the curvature has to be negative, whereas in
the opposite case it has to be positive. This makes intuitive sense: Consider
an infinitesimal segment of the curve centered at x(s). As shown in Figure 5,
the set of points projecting onto this segment is wedge shaped. If the center
of the normal line segment falls below x(s), then the part of the wedge below
the curve is longer than the part above the curve. In order for the mean of
the segment to fall on the curve, the segment thus has to open up as we go
upwards, meaning the curvature of I has to be negative.

2.5 Self-consistency as a Differential Equation

Equation (3) can be thought of as a differential equation satisfied by princi-
pal curves. Unfortunately, it cannot be used to find principal curves because
the integration boundaries in the moment integrals themselves depend on
the curve. In order to use a differential equation to find principal curves, we
proceed differently: We define a differential equation in such a way that its
solution curves, when they are admissible, are actually principal curves.

Our new differential equation is expressed in terms of lransverse moments
of p.

Definition 5. The k-th transverse moment of the density p at (x,8) is the
function py : Q x S1 — R defined by the formula

vt (X,0) k
e (x,8) = [ o4 oN(9)) do
v_(X,0)
The integration boundaries vy = v4(x,0) and v_ = v_(x,0) are determined

by the condilion that x + vy N and x + v_ N be the boundaries of the line
segment around x obtained by intersecting the line {x + vN : v € R} with
the support 0 of p. This line segment is called the transverse line segment
at (x,0) and denoted by ((x,0). Similarly V(x,0) = {v : v_(x,0) < v <
vy(x,0)} is called the transverse interval of Q at (x,8).

15



The moments pq (x,6) and ug(x,0) can be written in terms of the mean
and variance of the induced probability density on V(x,#).

Definition 6. The density

_ p(x+oN(8)

, v_(x,0)<wv<wvyi(x,0).
HO(Xag) ( ) +( )

on V(x,0) is called the transverse density at (x, ). Its mean and variance,
written ¢, = % (x,0) and 03 = 03 (x,0), are called, respectively, the trans-
verse mean and the transverse variance at (x,#6).

A straightforward calculation then yields the identities

Ml (X’ 0) _ 'IAJ X

Lo (X, 0) = L ( 70) (4)
lu2 (X7 0) _ ?} x 2 0_2 X

Lo (X, 0) - 1 ( 70) +o1 ( 70) . (5)

Consider now the second order differential equation

pa (x(s),0(s)) — K(s) p2 (x(s),0(s)) =0 (6)

for a curve x = x(s). (We do not assume here that x = x(s) is necessarily
admissible.) It is convenient to rewrite this equation as a system of first
order differential equations, which we call the principal curve equations:

d do 0 5 (x. 8
dX — COS(O)'L _I_ Sln(g)] 7 _ Hl (X7 ) vl ()(7 )
S

ds  pz(x,0) - by (x,0)° + 0% (x,0) 0

The first equation encodes the condition that s is an arc length parame-
ter, the second equation is related to the self-consistency condition defining
principal curve.

Suppose that I' is an admissible curve. It is clear from the definitions of
transverse moments and from the calculations of Section 2.4 that the terms
of equations (3) and (6) coincide. This simple observation yields the next
theorem.

Theorem 1. An admissible curve ' is a principal curve of the density p if
and only if it is a solution of the system of equations (7).

16



Remark 2. It is worth noting that the system (7) may be singular along
the boundary of £2. Suppose that I' is a principal curve and denote its initial
and terminal endpoints by x_ and x4 respectively. Next let xsq 4+ denote
the curvatures of the boundary 0 at these two points. By virtue of the
transversality conditions, kgo+ cannot be negative at either endpoint (for
otherwise the local concavity of Q would force a violation of transversality).

In the case where the curvature is strictly positive, all transverse moments
1t vanish; and the self-consistency condition degenerates at the boundary.
We do not present an analysis of the boundary behavior of solutions of (7)
here.

Remark 3. We have made the a priori assumption that principal curves are
smooth. In fact, we need only assume principal curves to be of class C2. The
additional smoothness is a consequence of Theorem 1. To see this, notice
that (within the class of admissible curves) the right hand side of equation (7)
depends smoothly on x and . We now apply a bootstrapping argument:
the derivative df/ds has a many derivatives as x(s) and 6(s). Since x(s) =
JT(8(s))ds, x(s) has one more derivative than #(s). Smoothness of 8(s)
and x(s) follows by induction.

3 Principal Curves Cross

We show here that any two admissible principal curves of a density must
cross. The proof makes use of the following lemma', which can be proved by
doing computations in the normal coordinate system of one of the curves.
We leave the proof to the reader, but illustrate the lemma in Figure 6.

Lemma 1. Consider two smooth curves, C' and C’, crossing the xz-axis or-
thogonally at points (x,0) and (2',0) with v < 2’ and with centers of cur-
vature at the points (¢,0) and (c',0), respectively. Suppose further that the
inequalily ¢ > x is satisfied. Then, in order for |x — 2’| to be a local min-
imum for the distance between C and C' it is necessary that ¢’ satisfy the
inequality ¢ > c'.

Theorem 2. Let I'1 and I'y be two principal curves of the density p. In
the case where I'y has endpoints, suppose either that 0 is strongly convex

!We wish to thank Andreas Buja for this observation.
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at the endpoints of I'y or that the endpoints of I'1 are essential. Then I'y
intersects I'y.

Proof. Suppose that I'; does not intersect I'y. Then by compactness,
there are points x; € I'; such that dist(I'y,I's) = dist(x1,x32). In the case
where 0f) is strongly convex at the endpoints of I'y, x; and x5 must be
interior points, and the line segment joining x; and x5 intersects both curves
orthogonally. In the case where the endpoints are essential, x; and x5 are
either both endpoints or both interior points, and, again, the line segment
joining them intersects both curves orthogonally. The principal curves thus
share a common normal line, say L, containing both points. We will use
the self-consistency condition, which is satisfied by both curves, to locate
their centers of curvature on L. An application of Lemma 1 then leads to a
contradiction.

Let ; = 6(x1) = 6(x2) and let { C L denote the connected component
of the intersection of L with Q. Recall from Section 2.5 that p induces a
density on £ which is used to compute transverse moments. Let xg € £ be its
mean and o? its variance. Parameterize £ by { = {xo + uN; : a < u < b},
and set x; = xg + u;IN7.
Writing the self-consistency condition in the form x; = —u;/(u? + %) shows
that the u-coordinate of the center of curvature of I'; is given by the formula

u;‘) + o2 o2

G =uU— ——=—.
U U

Consider the possibilities, forced by the condition that the pair (x1,x3)
realize the minimum distance between I'; and I'; (without loss of generality
we may assume the inequality u; < ug):

e If 0 < w; then the center of I'; is —02/u1; and it follows that e
must be to the left of ¢;. But the self-consistency condition forces the
inequality c; = —0?/uy > —0%/uy = ¢;.

o If uy = 0 then the inequality ¢ > 0 must hold. But self-consistency
forces ¢ < 0.

e Finally, it the inequality u; < 0 is satisfied then ¢; = —0?/u; > 0
and we must have ¢y < ¢;. But self-consistency gives ¢ = —02/U2 >
—o?/uy = ¢

Since all possibilities result in contradiction, I'y and I'y cross. |

18



4 Principal Curves for Uniform Densities

Before continuing with the theoretical development, we study the special
case of uniform densities. After a short discussion of uniform densities in
general, we consider in detail the uniform densities on a rectangle and an
annulus.

Denote by A(€) the area of the support Q of the uniform density p. Consider
a point x € Q and a direction 4. Let X = X(x,0) and w = w(x,8) be
the midpoint and the width, respectively, of the transverse line segment
Ux,0) = {x+ vN(f)| v_(x,0) < v < vy(x,0)} (see Definition 5). Because
the transverse density on {(x,6) is uniform, one calculates the transverse
mean and variance to be

i1 (x,0) = (X — x,N(0)) and 02 (x,0) = #

An easy calculation then gives for the transverse moments:

w wo | w3 + 12w@f_

po (x,8) = A(Q)’ p(x,0) = A(Q)’ and 2 (x,0) = 12A(Q)

Suppose that I' was an admissible PC passing through x with tangential
direction . According to the differential equation (6), the curvature x of I
at x would then have to be

vy
K= — . 8
o + 112w2 ®)

However, for a PC to be admissible, its centers of curvature have to be
disjoint from . The v-coordinate of the center of curvature of I' at x is
1/k = oy +w?/(12%,). The requirement that this number not lie between
v =0, —w/2and vy = ¥, + w/2 implies the inequality (see Figure 7)

LA
—— <t < —.
6 6

4.1 Principal Curves on the Rectangle
Our first example is the uniform density on the rectangular strip
Qop={(z,y) : 0<2<b, —a/2<y<a/2}

of length b and width a.
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For symmetry reasons, the horizontal line y = 0 and the vertical line z = b/2
are PC’s. If the region is square, then the same is true for the two diagonals.
We will shortly see, however, that for long strips many other admissible
principal curves exist.

Without loss of generality, any admissible PC for the strip can be assumed
to be of the form y = f(z), where f(z) is a smooth function which satisfies
the transversality conditions f’(0) = f/(b) = 0. Curves of a more general
type are excluded because they necessarily have ambiguity points in €2,
and curves of the form z = f(y) are dealt with by interchanging the z and y
axes. Curves which enter and/or leave are also excluded by the admissibility
criterion.

The normal line segment to such a curve has endpoints on the lines y = +a/2
and midpoint on the z-axis. From this it follows easily that w = a/cos 8
and ¢, = y/cos #, where # is the angle between the normal N and the
positive z-axis. The differential equation (8) thus becomes

Y s

y* +a?/3
We can explicitly solve this equation, obtaining solutions in terms of elliptic
functions. To this end suppose that I' is a principal curve with initial end-
point (z,y,0) = (0,y0,0). By symmetry we may as well suppose that yg is
positive. Integrating the equation

dy _dy/ds _ sin 0 B y? +a?/3 tan @
do  df/ds  —ycos(8)/(y? + a?/3) Yy o

by separation of variables results in the equality

2 2
cos*(f) = (12/37{—?/2‘
a?/3 + yg

Using the identity dy/dz = tan @ to eliminate the variable 8 gives rise to
the first order differential equation

dy _ [ w—y
dx a?/12 4 y2’

where the negative root is taken because the self-consistency conditions force
the inequality y”(z) < 0 near z = 0, but since y'(0) = 0 it necessarily follows
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that y'(z) is negative for small z. Integration by separation of variables gives

2
Yo [a2/124 22 a 1 1+ (%) q?
x:/ 272‘12:—/ —qu
Y Yo — % V12 Jy/y 1-g¢q

This equation can be rewritten in the form

a

wIE(E(g\—m)—E(SO\—m))’ (9)

@
where ¢ = sin™!(y/yo), m = 1242 /a® and E(¢\ m) = / \/1—m sin?3dp
0

is a standard elliptic integral of the second kind. The period T' = T'(a, yo) of
the solution is therefore given by the complete elliptic integral of the second

kind

T =22 p(z\ —m) (10)

V32

The transversality condition # = 0 at 2 = b imposes an additional condition
that the length b must be an integral multiple of half the period. On the
other hand, the condition that no ambiguity points of the curve lie in the
support of the density places the restriction |yg| < a/6; so we need only
consider the periods T'= T'(a, yo) for 0 < yo < a/6.

In order for principal curves other than the line y = 0 to exist, the ratio b/a
must be of the form

b_mop(r 12

a /3 2 a?

for some integer n. Taking into account that fact that yg lies between 0 and

a/6, it follows that for non-linear principal curves to exist, b/a must lie in

an interval of the form
n T n T 1
e (500)- e (51-3)
<\/§ <2 \ V3 2 \ 3

(v 75 (51 -3))

(0.9069n,0.978 n) .

I,

X

For sufliciently large n these intervals overlap, and the number of intervals
containing a point b/a increases approximately linearly with b/a. Conse-
quently, rectangles with large aspect ratio have a large number of principal
curves.
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4.2 Principal Curves on the Annulus

Consider next the annulus
QRLRQ = {(Tv é) R <r < RQ},

where (7, ¢) are polar coordinates. The principal curve equations for a curve
I'in Qg, R, are best expressed in terms of the angle ¢» = § — ¢ between the
radius vector from the origin and the tangent to I' (see Figure 8). Provided
that endpoints of the transverse line segment to I' lie on both the inner and
outer boundary circles of Qg, gr,, its length is given by the formula:

w(r,¥) = \/R% —r2cos?(y) — \/R% —r2cos?(y).

The signed distance from the point (r,¢) to the center of the segment is
given by the formula

0y (r, ) = rsin(ey) — % <\/R:2, — 12 cos?(¢) + \/R% — 72 COSQ(’(/})> )

Substitution of these two identities into the curvature formula (8) for uni-

form densities gives an expression for x in terms of r and % only; and a
straightforward calculation shows that the self-consistency equation assumes
the form

dr dy
W=

where k = 6, /(8% + w?/12).

w(r,0) (cos() 5+ rsin(8)) 1,

Circular Principal Curves. It is not difficult to use the symmetry of the
annulus to find the principal curves which are circles centered at the origin.
Observe that on such a circle ¥ = 7/2; and, consequently, w = Ry — Ry and
o1 =71 — (R1+ Ry)/2. If the circle r = 7. is to be a principal curve its
curvature must be the constant

Teire — (Rl + RZ)/2
(Tci'rc - (Rl + R?)/2)2 + (R2 - R1)2/12 .
Equating this with 1/7.;,. and solving to 7. one finds that the radius of
the circle is given by the formula

2 2
o = 2L R R+ ) (11)
3(R1+ Ry)

kK =
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To facilitate comparison between principal curves of the annulus and those of
the rectangle, it is useful to express all data in terms of the width ¢ = Ry— Ry
and the mean circumference b = 7 (R; + R3). The ratio b/a is called the
aspect ratio of the annulus. Since we are free to choose units in which R,
is equal to 1, properties of the uniform density are determined by the single
parameter b/a.

A little algebra shows that the transverse moments of r = rg,.. are

1 Ta® a? m2aqt

= — = — = — [ 12
Ho b ’ M1 6b2 ’ M2 125 36b3 ) ( )

and that the transverse mean and variance are

7'['_@2 _ (R2 - R1)2 a? (RQ - R1)2

== 7 ando?=— == ) 1
60 6(R Ry LT 12 12 (13)

v =

respectively.

Principal Curves of the form r = f(¢). It is easily seen that all ad-
missible curves for the annular distribution can be expressed in the form
r = f(¢). After a possible rotation, we may assume that f attains a local
minimum at ¢ = 0. The admissibility condition requires that no center of
curvature of I' lie in the annulus. A simple calculation at a local minimum
and a local maximum of f shows that f(¢) must lie between the values R,
and R, 4., where

R,. — w and Ry.o = w_

Moreover, since all admissible PC’s cross (Theorem 2), the minimum of f
can be no larger than r.;,... Hence, we can find all admissible principal curves
on the annulus by solving the initial value problem

o= cotl@)r, o= w(re) (cos(¥) 5+ rsin()) ~ 1,
7’(0) = 7o, ¢(O) = %’

where R,.;n < 1o < Teire-

Because we did not succeed in finding an analytic solution of this prob-
lem, we used a variable-step 4th-order Runge-Kutta method (Runge-Kutta-
Fehlberg) to compute self-consistent curves for a variety of aspect ratios and
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initial values, f(0). Our results indicate that admissible PC’s on the annulus
have much in common with PC’s on the rectangle:

Let T(R1, Ra, 7o) denote the period of the solution r = f(¢) of the principal
curve equation, satisfying the initial conditions r(0) = rq, /(0) = 0, with
Teire 2 To < Riaz. In order for r = f(¢) to define a principal curve, it must
be closed. This forces the condition T (R, Ry, 79) = 27/n, n = 1,2,3,...
This condition, in turn, forces rg to assume only a discrete set of values
(see Figure 9). Numeric calculations indicate that T'( Ry, Ry, 7o) assumes a
unique minimum at rg = 7., and decreases with increasing aspect ratio
(see Figure 10).

Our numerical experiments can be summarized as follows:

e annular densities appear to support only a finite number (up to rota-
tions about the origin) of principal loops;

e the number of principal loops of the form r = f(¢) increases with
increasing aspect ratio;

o the ¢-period of principal loops decreases with increasing aspect ratio.

Consider, for example, the annulus (2 451. In addition to the circular prin-
cipal loop r = 7. & 0.760, there is one other principal loop, given by the
initial conditions 7(0) ~ 0.646, »'(0) = 0. This principle loop has period
T = n/4 and oscillates between the values r = 0.646 and r = 0.874. Ini-
tial conditions of the form 7/(0) = 0 and r(0) < 0.646 give curves whose
periods are slightly greater than 7/2 and so cannot form closed curves; for
r(0) > 0.646, the period is slightly smaller than 7/2 and again the curve
cannot close (see Figure 9).

5 Extremal Properties of Principal Curves

Let I' be an admissible curve of the density p. Then the expected squared
distance between an observation and I is given by

] =[x =m0 p(x)d

We wish to consider I as a functional on the space of all admissible curves:
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Hastie and Stuetzle (1989) show that principal curves are critical points of
I. This means that if I' is a principal curve then
1T
dt
for any smooth one-parameter family I'; of admissible curves with I'g = I'.
(Such a family is called a variation of I'.)

=0

t=0

We will now compute the second derivative

d1[T]
diz

t=0

If it were positive for all variations of a PC I', then I" would be a local
minimum for the functional I. Unfortunately there are no PC’s with this
property, as we now show.

Represent the family I'; by a function @ : I' x (—¢, +€) — R?. Differentiating
¢ with respect to ¢ at ¢ = 0 gives a vector field defined along I, of the form
X : I' — R?% We show in the appendix that ® can be chosen so that
X is normal to I'. Thus, X is of the form X = fN where f is a real
valued function on I'. Such a vector field is called the wariational vector
field generated by I';. We call f an infinitesimal variation of I'. It can be
shown that X depends only on the family I'; (i.e. it does not depend on the
choice of ®).

Theorem 3. Let I' be an admissible principal curve of p and let 'y be a

variation of I'. Then

d2I[T]
diz

:2/1,{(% — 1K) f2—,u2f/2}d$7

t=0
where [ is the infinitesimal variation generated by I';.

The proof of Theorem 3 will be given in Appendix A.

Remark 4. The formula for second derivative given in Theorem 3 can be
written in the form

O[T 2 )
) e [{(52) - (et) f e
t=0

ot?
Here we have made use of the identity x = p; /2 and equation (4).

An immediate consequence of this formula is that the term (ug — pq1 &) is
strictly positive (except possibly at the endpoints of I').
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From Theorem 3 it is easy to see why admissible principal curves can never
be local minima of I. It suffices to choose a function f whose L?-norm relative
to the weighted measure (g — py1 k) ds is small, but whose derivative f’ has
large L% norm relative to the weighted measure uy ds. One then shows that
J can be chosen to be the infinitesimal variation generated by a variation
I'y. Setting I(t) = I[I';], we have I'(0) = 0 and I”(0) < 0, from which it
follows that I' is not a local minimum of I.

It is worthwhile to consider two simple examples in which a complete calcu-
lation of the second derivative of I can be given.

Example 3 (The Rectangle). Recall that the line segment I' = {(z,0) :
0 < 2 < b} is a principal curve for the uniform density on the rectangle
Qop ={(z,y) : 0<2<b, —a/2 < y<a/2}. Consider a variation of I' of
the form

Iy ={(z,tf(z)) : 0 <z <b},

where f(z) is a smooth function on [0,b] with f'(0) = f'(b) =
case, g = 1/b, uy = 0, and py = a?/12b; hence, setting I(¢)

have Lo )
10) = 5 [ 1657 = 3510 s

Substitution of the Fourier expansion

= io: C,, COS (E JJ)
n=0 b

0. In this
= I[I'y], we

into this formula gives

o= (1S = 55 (- (52) )4 s

n=0

where o) = a/+/12 is the transverse standard deviation and T, = 2b/n is
the period of cos(nmz/b).

It is easy to find variations for which I"(0) is negative: just choose f(z) =
cos(nmx/b), with n large. Thus, the line y = 0 is not a local minimum of I.

Notice, though, that if the Fourier expansion of f only has terms of period
longer than 27o,, then the second derivative I”(0) is positive. In more
colorful language, the principal curve I' is a local minimum of 1 within the
class of perturbations of I' of period longer than 2wo
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Example 4 (The Annulus). Next consider the circular principal curve
T = reire o0 the annulus Qp, g, = {(r,¢) : B1 <71 < Ry}. Let f(s) be the
infinitesimal variation generated by the variation I';. (In this case, N is the
unit vector field pointing towards the origin.) As before, set I(t) = I[T'].
We again wish to compute 1”(0) by Fourier expanding f(s).

Since the circumference of I' is Lt = 2774, we can expand as follows:

o0 S ‘ s
f(s)=ao+ Z @y, COS <2n7ra) + b, sin <2n7rL—) .

n=1 r

Setting I(t) = I[I';], we get
1"(0) = 2/F(Mo — k) 2= (f)*ds.

Expanding f in Fourier series and using the fact that the moments p; are
all constant along I' gives

1'(0) = LiGuo —pr R+ Y (Lol - ) — s B2 (a2 +82) (15)

n=1

Using formulas (12), one finds that along I

92 2
Lr(po —p1 k) =1  and anr?t2 _ ( mTUJ‘) ,
Lr b

where b = (Ry + R3)/2. One can also show that b = L + (2701)%/b.
Substituting these formulas into equation (15) yields the identity

2
4W0l

T+ =5

2
o0 9
"oy=a2+ 3 [1- ($) (a® 4+ b2), (16)
n=1

where T, = Lp/n is the period of cos(27s/Lr) and sin(27s/Lr).

Notice that the equations (14) and (16) are quite similar. Again we see
that, if the Fourier expansion of f only has terms of period longer than
T, > 2mwo,, then the second derivative I''(0) is positive. Thus, the curve T'
is a local minimum of I, provided that we consider only variations of I' of
period longer than 270 .

27



In the two previous examples, the transverse moments g, k = 0,1,2 were
constant along the principal curve I'. For this reason, we were able to Fourier
expand the infinitesimal variation f and compute the second derivative I”(0)
in terms of this expansion.

It turns out that similar computations can be carried out if the transverse
moments are only approximately constant. When this is the case, the trans-
verse moments are said to be slowly varying. In this case, I"”(0) can be
computed in terms of a certain (generalized) Fourier expansion of the in-
finitesimal variation f with respect to a basis {f,}52, of functions on I'
which is naturally associated with the transverse moments of p. The details
of how this basis is constructed are discussed in Appendix B.

There are three important features of this basis:

1. I f=37"1anfn, then

o0

I"(0) = Y (1= An)laq|*,

n=1

where A, is a monotone non-decreasing sequence of positive real num-
bers.

2. The functions f,, are approximately periodic functions whose periods
decrease with increasing n.

3. A, > 1 when the period of f, is smaller than 270 (1 + ©% /o?) and
A < 1 when the period of f,41 is greater than 270 (1 + 93 /o).

Thus, I"(0) > 0 if the Fourier expansion of f only contains terms of long
period relative to 2ro (1 + 2 /o?). Within the class of such variations, T
is thus a local minimum of I. We formulate this as a theorem, whose proof
we defer to Appendix B:

Theorem 4. Suppose that U is a principal curve of a densily along which
the transverse moments pg , 1 and py are slowly varying, and suppose that
I' is either a principal loop or has essential endpoints. Let 'y be a variation
of I' whose infinitesimal variation f has a Fourier expansion f =), a,f,
with a, = 0 for period of f, < 2moy (1 + ©%/o%). Then 1[I is a local
minimum of 1[I'y].
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6 Conclusions and Open Problems

Principal curves were invented to formalize the concept of “a curve passing
through the middle of a data set”. In view of the results presented in this
paper, however, it appears that the current definition is only a qualified
success.

The fact that even simple densities can have many PC’s is unfortunate, but
hardly surprising — after all, linear principal components are not unique
either.

More serious is the fact that PC’s are never local minima of the distance
functional. This is where nonparametric manifold estimation differs fun-
damentally from nonparametric regression. In the regression context, the
conditional expectation minimizes distance (i.e. expected squared predic-
tion error). This justifies choosing the complexity of the model to minimize
an estimate of distance, such as the cross-validated residual sum of squares.
Principal curves, on the other hand, do not minimize distance. Thus there
is no justification for using cross-validation for model selection, and indeed
cross-validation has been observed to fail in practice.

PC’s are local minima of the distance functional if we restrict ourselves to
“low frequency” variations, but the definition of “low frequency” in turn
depends on the PC. Therefore it is not clear how this extremal property
could be used in estimating PC’s.

To our knowledge, nobody has as yet suggested a reasonably motivated,
automatic method for choice of model complexity in the context of man-
ifold estimation or nonparametric orthogonal distance regression, and this
remains an important open problem.
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A Proof of Theorem 3

Suppose that I' is an admissible curve and that I'y € €44, g, —a <l < alis
a smooth family of admissible curves with I'g = I'. Such a family is called
a variation of I'. To prove Theorem 3, we need only compute the second
derivative of I(t) = I[T'y] at ¢ = 0. Our computation relies on a careful
analysis of the dependence of the projection map 71, : Q@ — I'; on ¢.

A.1 Variational Vector Fields

We begin with a short exposition of variational vector fields. The material
here is fairly standard and can be found in a number of places (see, for

example, Griffiths (1983)).

The family {I';} can be expressed as a map ¢ : I' X (—a,a) — €, with
®(I',¢t) = I'y. The map & is uniquely determined by the condition

<3<I>é;s;,t)7 8<I>éz,t)> 0. (17)

where @ is expressed in terms of the arclength parameter s of I.? It will be
convenient to adopt the notation x;(s) = ®(s,1).

To prove that equation (17) uniquely determines @, consider the smooth
surface in R? X R of the form

Y={(x,t) : xeIy} CQxR.

It is not difficult see that there is a unique vector field on X, of the form
0 hxNi(x)

— b b
It t t ’
and characterized by the condition that it be tangent to ¥. (Subscripted
quantities refer to the curve I'v.) Set X; = fi(x)N¢(x) and let X = Xj.
The vector field X is called an infinitesimal variation of I'. For ¢ sufficiently
small, integration of 9/t + X; gives a smooth 1-parameter family of diffeo-
morphisms ®; : I' — I'y, which can be assembled into a single map ®. By
construction, the equation

0®(s,t

% = fe(s)Nu(s)

?Note that for t # 0, s is not an arc length parameter on T';.
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holds for all s and ¢. In particular, ® satisfies the identity (17).

In the case where I' has endpoints, so do each of the curves I'y, and the
transversality conditions—i.e. the requirement that I'; intersect the bound-
ary 09 orthogonally for all +—impose certain boundary conditions on f,
called the infinitesimal transversality conditions, specified in next lemma.

Lemma 2. Let I' be an admissible arc of Q with initial and terminal end-
points Xx_ and x4, respeclively. Let kaq denote the curvature of 0X2, oriented
so that its normal points into Q. Then every infinitesimal variation X = fN
of I satisfies the pair of boundary conditions

J =2tk f al x4.

Proof. It suffices to consider consider only the initial endpoint x_ (the
computation at x4 is identical, except for sign). Let I'; and X; be as above

9,
and set x = ®(s,¢). Differentiate the identity <Nt(0), 0—1{> = 0 with respect
to t at the endpoint ¢(0,0) = x_:

9, Ix ON dx 0*x
i) = (oot <NW>
= Han<T,T>+<N,<f/N—ka)> (att:O).

Thus kaq f+ f/=0. |

Remark 5. It can be shown that any function f satisfying the conditions
of Lemma 2 arises from a variation of I' through admissible curves. For
this reason we denote the set of all variational vector fields along I' by the
symbol T1& 4 4,,, o, and we will at times refer to the tangent space®of Eadm 0
at I'. Because the infinitesimal transversality conditions are linear, the space
TrE€ g4y q 1s a vector space.

®For those conversant with the theory of infinite dimensional manifolds, we remark that
€ aam,n can be given the structure of a Fréchet manifold modeled on the Fréchet space
of C*-functions on the unit interval with either vanishing derivative at the endpoints or
periodic boundary conditions.
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A.2 Smoothness of the Projection =,

The projection index A = A(x,¢) is defined by the formula
T, (x) = @(A(x, 1), 1),

where 71, : @ — I'y C Q is the projection map. We require a formula for
OA(x,t)/0t at t = 0. But to justify such a formula, we need to know that A
is smooth for ¢ sufficiently near 0:

Lemma 3 . There exists a number 0 < a’ < a such that A is smooth at all
points of Q x (—d’,d’).

Proof. Let x¢ € Q and let sy = A(xg,0). Since ®(sg,0) is the unique point
of I'g nearest to xg, the line joining xq to ®(sg,0) intersects I' orthogonally
at ®(sg,0); i.e.

<XW-MA@mme§99%%ELQ>:O.

We wish to apply the implicit function theorem to prove that there are real
numbers € > 0 and §’ > 0 such that the following condition is satisfied:

For all (x,t) € Q x (—a,a) with ||x — x¢|| < &', |t] < §, there is a unique
solution s = S(x,1), |s — so| < €, of the equation

<x—¢@JL@%iQ>:O. (18)

s
Moreover, S(x,t) depends smoothly on (x,1).

We only need to verify that the derivative of the left hand side of (18) with
respect to s is non-zero for (x,¢,s) = (xq,0, sg). But

<X0 — ®(s,0), %>

= —1+4 (x0— ®(s,0),k(s)N(s)) ;
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hence, setting s = sg gives

g (70~ 0,00 ST = 1t (o= (oo < 1.

On the other hand, the fact that ©Q contains no ambiguity points of T,
together with continuity of ® and compactness of I', implies the existence
of a real number ¢” > 0 such the inequality

[[x = @(s, )| = [[x = @(s0,0)]

is satisfied for all (x,1) € @ x (—a,a) with ||x —x¢|| < 8", |t] < ¢’ and s with
|s — so| > e.

Consequently, setting § = min(é’,6”), we find that for all for ||z — x¢|| < 6
and |¢| < ¢, the inequality |A(x,t) — sg| < € holds. Thus, A(x,t) = 5(x,1),
showing that A is smoothly dependent on (x,) in a neighborhood of (x¢,0).
The result now follows from compactness of Q. ||

Lemma 4 .
nxn| (x — 70(x), N(A(x, 0)))
0 oo = T A O TR0 0)) e = ), NGO

0P(A(x,1),1
Proof. Differentiate the identity <x — (I)(/\(X,t),t),w> =0

with respect to ¢ at { = 0 and expand as follows:

2 ((x—o(A(x,0), 1), 2000

_ <(8<I>(/\(X,O),O) IN(X,0) i a@(A(t)i%),o) 8<I>(A(x,0),0)>
Js ) ot Jt 72 Js
4 <x — (%), (8 q)(a(x ,0),0) aA(axo) n E @(Siat ),0))>
= — 200 4 (x — 7r(x), N(A(x,0))) (5(A(x,0) 282 + f/(A(x,0)))
Solving for A/t gives the identity we seek. |
A.3 Computation of the Second Derivative
Set I(t) = I[I'¢]. Then
') =4[ folx- ( ( ) )HZ o -
Xt X,t),t
:—2ff9<x— ( ) 4 ((at’)’))>p(x)dx.



Note that, for x € Q, the vector 0®(A(x,1),t)/0s is tangent to I'; at x =
®(A(x,1),t). Since ®(A(x,1),1) is the point on I'; nearest x and since I’ is
admissible, it follows that x — ®(A(x, ), ) is orthogonal to 0®(A(x,1),1)/0s.

For this reason, the formula for I'(¢) reduces to the equation

(1) = —2//Q<x—@(A(x,t),t),Wﬂ(x)dx. (19)

By equation (19),
" —2—// x — ®(A(x t),t),mm>p(x)dx.

ot

Differentiation inside the integral and an application of the chain rule gives:

" B O?D(N\(x,1),1) ON(x, 1)
= 2// < (00— 5501 90, >
D?P(A(x,1),1)
— <x— O(A(x,1),1), T>
DBA(x, 1), 1) ON(x, 1) IB(A(x,1),1)
+ )

Js ot J
IP(A(x,1),1) OP(A(x,1),1)
+< 5 , 5 > p(x) dx.

Setting ¢ = 0 and noting that T = 0®/ds and X = fN = 09/0t, yields the
formula

"(0) =

2 f fo = (x = o), { (re o) N(re(e) + f(me () 2NGEOD | 2001
— (x = mr(x), PB4 (T(5)200 (i (x))N(mr(x)))

+ ()N Ge) (70 (0) NG () px) dxc.

Next employ the Frenet formulas T/ = kN and N’ = —«T and recall that
x — mr(x) is orthogonal to T to obtain the forumla

) = 2 [ [ 7m0 - o020 (0, N (o)
—<x—wr<x> %%p( )i

/ / {7 0re0) = 10D 22D (), N ()
c— mr(x ) h(w(x))N( ()} L) dx
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where h(s) is the function on I' defined by the formula
9*®(s,0)
h(S) = <N—(8)7 T .

By Lemma 4 the equality

PO = [ fo{ St - SN e o )
(G e (0) e ()N(re()) } pl) e

is satisfied.

Reverting to normal coordinates and carrying out the integration with re-
spect to v gives the identity

I"(O)I/F{(Mo — K )fQ—sz’Q} dS—/Fh(m — Kpz ) ds.

Since I' is a principal curve, the last integral vanishes, yielding the desired
formula.

B Proof of Theorem 4

We present here the technical details needed to justify the discussion in
Section 6. We assume the reader is somewhat familiar with the theory of
Sturm-Liouville problems as presented, for example, in Courant and Hilbert

(1953).

B.1 The Sturm-Liouville Problem

Set P(s) = p2(s) and Q(s) = po (s) —u3(s)/p2(s), and consider the Sturm-
Liouville problem consisting of the differential equation

(P(s) ()Y + AQ(s) f(s) =0, 0<s<Lp (20)
together with one of the boundary conditions:
J(0) = f(Lr) and f/(0) = f/(Ly) (when T'is a PL)
or

J(0) =0 and f(Lr) = 0 (when T is a principal arc with essential endpoints).
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(When I' is a principal loop, periodic boundary conditions are required in
order for f to be a Cl-function on I', and when I' is a principal arc the
condition that admissible curves intersect the boundary of 2 orthogonally
imposes the boundary condition f'(0) = f'(Lr) = 0 (see Lemma 2).)
Notice that in terms of P and ), the second derivative I"(0) assumes the
form

Lr
10) = [ {QU)f(s = P) ()} ds. (21)

The fact that I' is an admissible PC implies that both P(s) and Q(s) are
strictly positive, except possibly at the end points of I' (see Remark 4).

If P and @ are strictly positive everywhere (endpoints included), then the
Sturm-Liouville problem (20) is non-singular and the general theory of such
problems applies. This is the case if I' is a principal loop or if the endpoints
of I' are essential (see Definition 4). From now on, we only consider principal
loops and principal arcs with essential endpoints.

B.2 The Natural Basis

The formula
Lr
(F)= [ Qs) £(s) gls) ds

defines an inner product on the space of C!'-functions on [0, L] satisfying the
boundary conditions. We identify this space with the space of infinitesimal
variations of I'. Let Hr be its L%-completion with respect to the inner
product. Sturm-Liouville theory gives a complete, orthonormal basis for
‘Hr, consisting of smooth functions f,, n = 1,2,3,.... More specifically,
there is a discrete set of positive numbers Ay < Ay < ..., such that

Lr
(PL) +0Q =0 and [ L5 fn(s) Qs) ds = 8o

Now suppose that I'y is a variation of I' with variational vector field fIN. Let
f =502, anf, be the Fourier expansion of f. Substituting into formula (21)
for 1"(0) gives

ﬂ —Q/LFQfQ—Pf’st—iQZ(l—/\) (22)
dt2 t:O_ 0 _n=1 ! o
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The second derivative I"(0) is positive if a, = 0 for all n such that A, > 1.
Thus, I"(0) is positive if f lies in the finite dimensional space

Hy = Span{f, : A\, <1} CH. (23)
This result can be reformulated as a theorem.

Theorem 5. Let I' be a principal loop or a principal arc with essential
endpoints and suppose that I'y is a variation of I' whose variational vector
field is of the form X = fN with f € Hy. Then there is a number ¢ > 0
such that 1[I'] < I[I'y] for all 0 < |t| < €.

B.3 Eigenvalue Estimates

When the length of I' is large relative to the transverse standard deviation
o1 and the transverse moments pg (s), £ = 0,1,2 are slowing varying, i.e.
have small first and second derivatives with respect to s, the situation is
much like that of Examples 3 and 4 above.

This is shown by obtaining estimates of the eigenvalues A, in terms of the
transverse moments of p along I'. The calculations in the case where I' is
a principal loop are quite similar to those in which I' is a principal arc.
Therefore, we present only the case where I' is a principal arc and leave to
the reader the (easier) case where I' is a principal loop.

The argument proceeds by applying the asymptotic estimates given in Courant
and Hilbert (1953) to the Sturm-Liouville problem (20). It will prove useful
to work with the new variables

(1) = \/g /P()0(s) f(s), and 1 = T(s) = /O , /%dq

(see page 292 of Courant and Hilbert (1953)). Using the identities (4) and
(5), the change of variables can be rewritten in a form which is more useful
for our purposes:

T ()
2(t) = /] — s) o (s swheret:/A—d. 24
0=/ Vo () 72(5) 59 S 2
With respect to these new variables the Sturm-Liouville problem (20) as-
sumes the form
d*z dz

2z g tAE=0, 0<i<t=T(Lr),
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where

r= (1) = # @ ( 10 (5) UL(S)) L s=T7(1).

s) oi(s) di?
In these coordinates the boundary conditions assume the form
2'(0) — a(0) 2(0) = 0 and 2'(£) — a({) 2(£) = 0, (25)
where

_ 1 d A Ui(s) o1
e %m(s)uow))(lmi(s)), s =T7(0).

a(t)

Assumptions: At this point, we must make some a priori assumptions
about the moments and the length of I':

A1l |r(t)] < rar for all 0 < ¢ < £, where rjs is a small constant such that
0< 7y <72

A2 |a(0)] < band |a(f)] < b where b < m/2( is a small constant.

A3 Ly >> max 2m0,(s)(1+ 93 (s)/o}(s))
0<s<Lrp

Conditions (Al) and (A2) hold in the case where the moments uy (s), k =
0,1,2 have sufficiently small first and second derivatives with respect to

s. Condition (A3) is the condition that Lr be very long relative to the
transverse standard deviation o, . Since

Lr ds
ﬁ_ﬂé o (14 91(s)/ot(s))’

condition (A3) implies the inequality ¢ >> 27.

Notice that all three of these assumptions will be satisfied if the first and
second derivatives of the moments yuj (s), & = 0,1,2 are sufficiently small.
When this is the case, the transverse moments of p along I' are said to
be slowly varying. In this case, we may replace o (s) and 9, (s) by their
average values and obtain the approximate formula

Lr

g ———————~.
oL (1+8]/0])

(26)
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Under these three assumptions, the above Sturm-Liouville problem is well-
approximated by the Sturm-Liouville problem

Az
FQZ—I—AZ:O, 0<t<e, (27)

with boundary conditions 2'(0) —a(0) 2(0) = 0 and 2'(¢) — a(£) z(¢) = 0. Let
A, denote the n-th positive eigenvalue of (27). An elementary argument
shows that A, is the n-th positive solution of the equation

VA

A+ a(0)a(l) (28)

tan (VL) = (a(£) - a(0))

with associated eigenfunction

Za(t) = A, cos (\/Xnt T qbn) ,

where tan(¢,) = a(0)/y/ A, and A, is a positive constant.

The argument on pages 414-415 of Courant and Hilbert (1953) yields the
formula A, = A, + e,, where |e,| < rps for all n. Now using (28) and the
inequalities b < 7/2¢ and ¢ >> 27, it is not difficult (though somewhat
tedious) to obtain the estimate

— nr\ 2 2nm 2T 2
An — 7 < Wy | — tw, | << +

{ 2(1-1/n)  (n-1)%’
where
2b
w, = >
bé
(-1 (1- (245)’)
Thus,
2
nw
/\n =\ — Env
( 7 ) *
where
|E | P 2T + 2
MM R0 ) T 2 - 1)

It follows that A, < 1if (n4+ 1) < £ and A\, > 1 if n7T > £.

Using the approximate formula (26), we obtain the condition that A, > 1
when
Lp

2no (14 9% Jo?) > — (29)
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B.4 Extremal Properties

We now show that the eigenfunctions associated with eigenvalues larger than
1 correspond to variational vector fields whose periods are small compared
to the transverse standard deviation o .

Calculations similar to those on pages 336-337 of Courant and Hilbert (1953)
give the asymptotic estimate

zn(t) = A, cos (\/X»nt + qbn) +0 <%) .

In terms of the original variables,

Jn(s) = A, (s) cos (\/X»nT(s)) + 0 <%) ,

where A, (s) now denotes a non-negative function independent of n. In the
case where o, (s) and o (s) are slowly varying, the eigenfunctions f,(s)
oscillate with period dependent on s and given by the approximate formula

52
o ~ Q—KUJ_ (1 + vJ‘(S)) .
n

(@T’(s)) i (s)

Replacing 4, (s) and o2 (s) by their average values on I and £ by
(Lp/op)(14 92 /o2 )~! gives the approximation

2L
period of f, &~ =L

Combining this with equation (29), we find that A, > 1 if 270, (1 +

92 /o*) > period of f, while X\, < 1if 2o, (14 42 /0?) > period of
fn—l—l-
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b/n

Figure 1: A principal curve for the uniform distribution on a rectangular
strip. Points between dotted lines project horizontally onto the portion of
I’ lying between them.

Figure 2: I'y is a PC, but it is not admissible because it is not contained in
Q. I'; is an admissible PC.
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Q9% S

Figure 3: From left to right are: (a) an admissible loop, (b) an admissible
curve with 02 smooth, and (¢) an admissible curve with essentla] endpoints.
The dashed lines are the normal lines to the admissible curves.

Figure 4: The curvature of a PC depends on the location of its intersection
with the normal line
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Figure 5: If the center of the normal line segment falls below the curve, the
curvature has to be negative.
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Figure 6: The three configurations above are the only ones satisfying the
hypotheses of Lemma 1; but only the configuration at the left satisfies the
condition that |z — 2’| equal the distance between C' and C’.
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Figure 7: Curvature as a function of 9, .

Figure 8: An admissible curve in the annulus Ry < r < Ry and one of its
normal lines. The angle 1 is the angle between the radius vector and the
tangent vector.
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Figure 9: Three solutions of the principal curve equations (7) for the annulus
Qo.451. From left to right the initial conditions are: r(0) = 0.646, r(0) =
0.634 and r(0) = 0.690. Only the first is a closed curve, and thus a principal
loop.

000

Figure 10: As the aspect ratio increases, the period of principal curves
decreases. From left to right are the three annuli Qg.45,1, Qo0.65,1 and Qo.751
with some principal curves on each. Two PC’s are shown for the middle
annulus. The right annulus also supports several PC’s (not shown).
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