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Abstract

This paper presentsa methodfor modelingthe surface
of an objectfrom a sequencef range maps. Our method
is basedon a volumetricapprad that producesa compact
surfacewithout boundary It providesrobustnesghrough
the useof interval analysistechniquesand computational
efficiencythroughhierarchical processingisingoctrees.

1. Introduction

Surfacereconstructiorirom rangedatainvolvesfour ma-
jor steps.

Step 1: Data acquisition. Range data sets covering the
surface to be modeled are obtained. Some pre-
processingf the datamay berequired,suchaslow-
passfiltering andremoval of datapointsthat belong
to otherobjectsor background.

Step 2: Registration. In general,eachrangeview is in
its own coordinatesystem. The collection of views
(rangemaps)are registeredinto a commonobject-
centerectoordinatesystem.

Step 3: Integration. The separateregisteredrange maps
areintegratedinto asinglesurfacerepresentatiofof-
tenapolygonmesh).

Step 4: Optimization. The single surface representation
canbe betterfitted to the data,it maybe furthersim-
plified, or therepresentationanbecorvertedto some
otherformat(e.g.,smoothsurfaces).

In this papermwe proposea novel solutionto Step3. Our
methodproceedsn two steps:it first hierarchicallybuilds
a volumetricrepresentationf an object,andthenextracts
a triangle meshfrom the volumetric representation.Our
methodis efficient in computationtime, is robust against
outliers,andautomaticallyfills in smallholesin rangeim-
agesdueto gapsin the data. It canthus quickly recover

the topology of arbitrarysurfaces,evenin the presencef
outliersandmissingdata.

In Section2 we describeour algorithm. We presenbur
resultsin Section3, andwe discussour methodand previ-
ouswork in Sectiord. Section5 concludeghe paper

2. Algorithm

Our algorithmprocesses cubical volume surrounding
all theinput datain a hierarchicalfashion.For eachcube-
shapedatrtition, it checkswhetherthe cubecanbe shavn
to be entirelyinsideor outsideof the object. If neither the
cubeis subdvided andthe sametestis recursvely applied
totheresultingsmallercubes Our surfaceapproximatioris
the closedboundarybetweercubeghatlie entirely outside
of theobjectandall the othercubes.

2.1. Assumptions

We assumehat the rangedatais expressedasa setof
rangemapscalledviews. Eachview is like a2D image,ex-
ceptthatateachpixel a 3D pointis storedinsteadof a color
value. Further we assumehat the calibrationparameters
of thesensomreknown sothatwe canprojectarny 3D point
to the imageplaneof the sensor We alsoassumehatthe
line sgmentbetweenthe sensorand eachmeasuregoint
lies entirely outsideof the objectwe aremodeling.Finally,
we assumethat all rangeviews have beenregisteredto a
commoncoordinatesystem.

2.2. Processing a singlerange view

Theinitial volumeis anaxis-aligneccubethatfully sur
roundsall therangedata.We useinterval analysisto evalu-
atethe volumetricfunctionon the cube. If the cubeis nei-
ther completelyinside nor completelyoutsidethe object,
we recursvely subdvide it into eightsmallercubeswhich
areaddedto the octreeaschildrenof the currentcube. For
eachof thesecubeswe classifytheir locationwith respect
to the sensorandthe rangedata. Note thattheinitial cube
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Figure 1. The three cases of the algorithm.
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In case 1 the cube is in front of the range data, in case 2

it is entirel y behind the surface (with respect to the sensor), while in case 3 the cube inter sects the

rang e data.

is alwayssubdvidedsinceit is by definition neitherinside
nor outsidethe object.
Therearethreepossibilities(seeFigurel).

¢ In casel, the cubelies betweenthe rangedataand
sensar The cubeis assumedo lie outsideof the ob-
ject. It is not processedany further.

¢ In case2 thewholecubeis behindtherangedata.As
far asthe sensoris concernedthe cubewill be as-
sumedo lie insideof the object.It will notbefurther
subdvided.

e In case3 the cubeintersectghe rangemap. In this
casewe subdvidethecubeinto its eightchildrenand
recursvely apply the algorithmup to a pre-specified
maximum subdvision level. A case3 cubeat the
finestlevel is assumedo be at the boundaryof the
object.

The cubesare labeledasfollows. We projectthe eight
cornersof the cubeto the sensors imageplane,wherethe
corvex hull of the pointsformsa
hexagon. The raysfrom the sen-
sor to the hexagonform a cone,
which we truncateso that it just
encloseghe cube(seeFigure2).
If all the data points projecting
onto the hexagonare behindthe
truncatedcone (i.e., are farther
than the farthest corner of the Figure 22 An octree cube
cubefrom the sensor),the cube andits truncateccone. Thear-
is outside. If all thosepointsare @ pointsto thesensar
closerthanthe closestcubecorner the cubeis inside. Oth-
erwise,we arein the boundarycase.Possiblemissingdata
is treatedaspointsthatarevery closeto the sensor

Our labeling methodis simple, but conserative. For
instance,|f all the points projectingonto the hexagonare

actually behindthe cube,but someof themareinsidethe
truncateccone,we would erroneoushtabelthe cubeto in-
tersecthesurface.This, however, is nota problembecause
thenext subdvisionlevel will mostlikely determinahatall
the childrenof the cubelie in the exterior of the objectand
thereforeremove them.

We could make our testtighter by performinga more
carefultestfor pointsthatarewithin thetruncatectone:For
eachsuchpoint, determinethe two facesof the cubeinter-
sectedoy theray associatedvith the point andtestwhether
thefacesarebehind,in front of, or aroundthe point. It may
malke senseo performthis extra testat thelastsubdvision
level.

2.3. Generalizationsto multiple views

If multiple views areavailable,we have a choiceof two
processingrders. We cantraversethe whole octreeonce
andusethe consensusf all the views to determinethe la-
beling for eachcube(simultaneouprocessing)or we can
processoneview at a time, building on the resultsof the
previously processediews (sequentiaprocessing).

In simultaneougprocessingywe traversethe octreeaswe
did in thecaseof a singleview. However, thecubelabeling
proceschangeslightly.

e A cubeis labeledto be inside the objectonly if it
would be labeledinside with respectto eachsingle
view.

¢ A cubeis labeledoutsideif it would be labeledout-
sidewith respecto ary singleview.

e Otherwisethecubeis labeledboundaryandis further
subdvided, unlessthe maximum subdvision level
hasbeenreached.

We usesequentialprocessingf we later obtaina new
view thatwe wantto integrateinto a previously processed



Figure 3. Eight intensity images corresponding

octree.We recursvely descendhe octreeand performthe
occlusiontestfor eachcubethathasnotbeendeterminedo
lie outsideof the object. If the new view determineghata
cubeis outside,it is relabeledandthe subtreedbelow it are
removed. Similarly, a boundarylabel overridesa previous
insidelabel, in which casethe cubes descendantkave to
berecursvely tested potentiallyup to the maximumsubdi-
visionlevel.

Although both processingrdersproducethe samere-
sult, the simultaneougprocessingrderis in generalffaster
[12]. In sequentiaprocessinghe silhouetteof the object
oftencreatesavisualcone(centerechtthesensorhatsep-
aratesvolumesknown to be outsidefrom thosespeculated
to beinside. We would thenhave to recurseup to thefinest
subdvision level to accuratelydeterminethis boundary In
simultaneougprocessinghowever, anotherview could de-
termineat a rathercoarselevel of subdvision thatat least
partof thatboundaryis actually outsideof the object,and
thefinerlevelsof the octreefor thatsubszolumeneednever
beprocessed.

Althoughslower, thesequentiaprocessin@pproactas
the advantageof being more memoryefficient becauset
only useghedatafrom a singleview atatime.

In casesvherea large numberof views of the sameob-
ject aregiven, we canusea hybrid approachin which we
divide theviewsinto smallersetsandsequentiallyapplysi-
multaneougprocessingo eachof the smallerdatasets.

2.4. Pruning the octree

Dueto ourconserativelabeltest,or if we usesequential
processingwe maydeterminahatall thechildrenof acube
lie in free space.Wheneer this happenghe eight sibling
cubesarerecursvely collapsedinto their parent,which is
thenlabeledalsoto be outsidethe object.

to the views of the miniature chair.

2.5. Mesh extraction

Thelabelingin theoctreedividesthe spacento two sets:
the cubesknown to lie outsideof the objectandthe cubes
thatareassumedo be part of the object. Our surfaceesti-
matewill bethe closedboundarybetweerthesesets. This
definitionallows usto createa plausiblesurfaceevenatlo-
cationswherewe failedto obtaindata[4]. Theboundaryis
representedsacollectionof verticesandtrianglesthatcan
be easilycombinedo amesh.

Theoctreegeneratedby the algorithmhasthefollowing
structure:outsidecubesandinside cubesdo not have ary
children,while the boundarycubeshave a sequencef de-
scendantslown to thefinestsubdvision level. We traverse
the octreestartingfrom theroot. At anoutsidecubewe do
nothing. At a boundarycubethatis not at the finestlevel,
we descendo the children. If we reachthe maximumsub-
divisionlevel andthecubeis eitherattheboundaryor inside
we checkthelabelingof the six neighborslf aneighboring
cubeis anoutsidecube,we createtwo trianglesfor theface
they share. In aninside cubethatis not at the maximum
subdvisionlevel, we checkwhetherit abutswith anoutside
cube,andin suchcasecreateenougttriangles(of samesize
asthe onescreatedat the finestlevel) to cover the shared
partof theface.

In orderto avoid producingmultiple copiesof the same
vertex, theverticesareputinto ahashtableandanew vertex
is createdbnly if it doesnotalreadyexist. Thetrianglesare
combinednto a closedtrianglemesh.

3. Reaults

We have testedour methodwith bothrealandsynthetic
data. Therealdatasetconsistef eightviews of a minia-
ture chair (Figure 3). Figure 4(a) showvs the datapoints
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Figure 4. (a) The registered point set. (b) The
result from using the method of [6]. (c) The
result from our method.

(registeredusing a slightly modified versionof Chenand
Medioni's method[1]) and the failed surfacereconstruc-
tion thatwasour original motivationfor this method.Even
thoughwe have cleanedthe dataandremoved mostof the
outliers, we still have somenoisy measurementsloseto
the surface,especiallybetweerthe spolesof the backsup-
port of the chair The algorithmfrom [6] doesnot useary
knowledge(suchasviewing directions gtc.) of the dataex-
ceptthepoints,themseles. It worksquitenicelyif thedata
doesnot containoutliersanduniformly sampleshe under
lying surface.Unfortunatelyreal data,suchasthis dataset,
oftenviolate both of thoserequirementsFigure4(b) shavs
theresult. In contrast,Figure 4(c) shavs the resultof our
method.

Figure 5 shows intermediateresultsof our methodus-
ing the chairdatasetdisplayingthe octreeafter4, 5, 6, and
7 subdvisions. Figure 6 presentsomestatisticsfor pro-
cessinghe chairdataset. Thefinal meshin Figure4(c) is
obtainedfrom thelevel 7 octree.We smooththe meshbe-
fore displayingusingTaubin's method[13]. Noticethatthe
spolkesandthe holesbetweerthemhave beenrobustly re-
covereddespitethelargenumberof outliersandsomemiss-
ing data.Thisis partially dueto theimplicit removal of out-
liers thatthe algorithmperforms:in mostcasesthereis a
view thatdetermineshatthe cubecontaininganoutlierlies
outsideof the object.

Figure7 shawvstheresultsfrom a syntheticdataset. We
generateceight simulatedrangemapsof a temple, regis-
teredthe views, and appliedour algorithmto them. The
left figure shavs the smoothedesult,while theright figure
shawvs theresultafterapplyingHoppes meshoptimization
algorithm([7].

Figure 5. The chair octree after 4, 5, 6, and 7
subdivisions.

levels | nodes| faces| seconds
4 649 422 9.0
5| 2377| 1372 6.6
6| 9393| 5152 27.1
7 | 42657 | 18446 127.8

Figure 6. Statistics for Figure 5. For example,
at 5 levels of subdivision the octree contained
2377 nodes, the boundar y between the ob-
ject and free space was 1372 faces (twice as
many triangles), and it took an additional 6.6
seconds to process from the level 4 octree .

Figure 7. Synthetic temple.



4. Discussion
4.1. Previouswork

A popularapproacho dataintegration hasbeento di-
rectly build surfacesfrom the data. Turk and Levoy [14]
andRutishauseet al. [9] createa polygonmeshfor each
view; the individual meshesarethen connectedo form a
singlemeshcoveringthe whole object. Soug/ andLauren-
deau[11] divide therangedatainto subsetdasecnwhich
surfaceregionsarevisible within eachview. In eachsubset,
theredundanyg of the views is usedto improve the surface
approximation. Finally, the triangulatednon-overlapping
subset@reconnectednto asinglemesh.Pito[8] integrates
meshedby determiningvherethemeshesverlap,choosing
themostreliablemeasurementandconnectinghepatches
usinga modificationof [9]. Hoppeetal. [6] startfrom an
unorganizedsetof points,definea signeddistancefunction
from the point set, and extract a meshapproximatingthe
zerosetof thatfunction. Themeshis iteratively fitted more
closelyto thedataandsimplified[7]. Thesimplifiedmeshis
finally usedasa startingpointfor fitting a piecavisesmooth
surfacerepresentatioto the data[5].

CurlessandLevoy [4] defineavolumetricfunctionbased
on an averageof signeddistancesto eachrangeimage.
Their schemediscretelyevaluatesthis volumetricfunction
atpointsonauniform 3D grid, anduseshesediscretesam-
ple valuesto determinea surfacethatapproximateshe ze-
rosetof the volumetricfunction. As a consequenceaheir
schememay fail to detectfeaturessmallerthan the grid
spacingand hasdifficultieswith thin features.Also, it re-
quiresa significantamountof space althoughthis canbe
alleviatedthroughrun-lengthencodingechniques.

Szeliskialsousedvolumetricideas,constructingoctree
boundingvolumesof the objectfrom silhouettesextracted
from intensityimageq12]. Octreeshave alsobeenusedto
generatevolumesand surfacesfrom rangedata. Chienet
al. [2] combinerangequadtreegeneratedrom six orthog-
onalviewing directionsinto anoctree.Connolly[3] creates
anoctreerepresentatioby organizingtherangeviews into
guadtreesand projectingthemto the octree,marking the
freespacealongtheway.

Of the previouswork, Connolly's [3] is closestto ours,
but it differs from oursin two importantways. Whereas
we projectthe octreecubesto the depthmaps,Connolly
doesthe corverse: he first converts the depth mapsinto
guadtreesandthen projectsthemto the octree. Four rays
are projectedfrom eachvertex of a quadtreenodeto the
octree,and eachoctreenodevisited by a ray is removed.
Sincetheoctreenodeghataretraversedareroughlythesize
of the quadtreenode, the hole thatis cared is jaggy and
largerthanit shouldbe. The carvingcould be mademore
accurateby performingthe carvingat a finer level of res-

olution, but thenthe processingpecomesnore costly, and
it becomeamore difficult to guaranteehat all cubesthat
shouldbe removed areremoved. The organizationof the
rangemapsto quadtreespeedsip the processingnly out-
sidethevisualconeof theobject.Unlesstheobjectcontains
mary consecutie pointsthatare equidistanfrom the sen-
sor (an unlikely event), the quadtreebecomedragmented.
This causesa greatnumberof holesto be canedinto the
octreeatafinelevel of resolution.Boththeseproblemgqtoo
muchcarvingandcarvingat unnecessariljine resolution)
areavoidedin ourmethod.Thesecondnajordifferencebe-
tweenthemethodsgs thatConnolly'smethodneverremoves
nodesthat have beenpreviously determinedto containa
rangemeasurementVe explicitly wantto allow this, since
thatis our mechanisnfor gettingrid of outliers. Thatis,
Connollygivesprecedenceo surface while we give prece-
denceto aproof of emptyspace.

Like Curlessand Levoy, we also define a volumetric
function (oursis a simpleinside/outsidebinary function),
andseekanapproximatiorof the surfacethatseparatethe
insideandoutsideregions. But, ratherthandiscretelyeval-
uating the volumetric function on a setof points, our ap-
proachis basednanintenval analysigechniqug10]. That
is, we partition spaceinto regions (cubes)and consera-
tively determinefor eachregion whetherit lies completely
inside,completelyoutside or neither Usingrecursve sub-
division, we efficiently pruneaway large regions of space
away from the objectboundary and focus both computa-
tion andstorageright on the spatialregion of interest,that
is, theregion next to the surface.

The interval analysistechniqueswe use provide im-
provedrobustnesso ouralgorithm.To ourknowledge ours
is thefirst approacho usethesetechniques$o rangemapin-
tegration.

4.2. Level of resolution

All volumetric methodsrequire a choice of resolution
level. Thischoiceprovidesatrade-of betweertheaccurayg
of theresultandrequirement$or bothtime andstorageln
octreemethodsuchasours,theresolutionis determinedy
themaximumdepthof theoctreeandit mustbespecifiedby
theuser

Our algorithmfacilitatesthe optimumchoiceof resolu-
tion appropriateo a givendataset. For instancejf we no-
tice thatour choicewastoo coarseto correctlycapturethe
objectstopologycorrectly we caneasilyusetheresultsof
the previous runsand continuethe processwith increased
choiceof maximumdepthto achieve afinerresolution.

Of course,the maximumdepthis limited by the point
densityof thedataset.Onceanoctreecubeprojectsto only
oneor two pixelson the sensors imageplane,the method
becomedessrobust. A goodrule of thumbis thattheoctree



cubesshouldbelargerthaneachof thefollowing threemea-
sures:surfacesamplingdensity samplingerror, andregis-
trationerror.

4.3. Removal of outliersand background

We note earlierthat we in effect remove outliers from
aview if anotherview testifiesthatthe outlier lies in free
space. This obsenation shavs that the algorithm can be
usedto automaticallyremove backgroundandotherobjects
from the views. Supposehatthe views were obtainedby
usinga stationaryrangescannemlandby reorientingthe ob-
jectbetweertheviewsandthatwe haveregisteredheviews
into acommoncoordinatesystemusinga subsebf surface
points. Now the backgroundand other objectsmove rel-
ative to the objectfrom view to view, andin generalsome
view candeterminghatthey lie outsidethe object,in which
casethepointscanbelabeledasbackgroundr removedal-
together

Outliersthatlie behindthesurfaceasseerfromthescan-
nercanbe damagingsincethey could causeour algorithm
to incorrectlycare away a pieceof the object. For several
reasonsthis hasnot beena problemfor us. Most outliers
we have obsenedeitherbelongto otherobjectsin theback-
ground,or appeararoundthe edgesof the object. We use
backgroundiatato carve the spacearoundthe objectmore
efficiently, andoutliersattheobjectboundariesionotcause
deepholesto be canedinto theobject.

Obtainingdatapointsfrom the backgrounds very im-
portantfor correctlydetectingholes.CurlessandLevoy [4]
adwocatethe useof backdropgo solve this problem.How-
ever, with severaltypesof scannerdasedon triangulation
it is extremelydifficult to getmeasurementhrougha nar
row hole. Thatwasthe casein several views of the chair
dataset. In suchcasesve canmanuallypaint partsof the
missingdatato be background.

4.4. Thin objects

Some methodsthat employ a signedsurface distance
functionsare unableto correctly reconstructhin objects.
CurlessandLevoy [4], for example,build a distancefunc-
tion by storing positive distancego voxelsin front of the
surfaceandnegative distancego voxelsbehindthe surface.
In additionto the distanceweightsare storedto facilitate
combiningdatafrom differentviews. With this method,
views from oppositesidesof athin objectinterfereandmay
canceleachother, preventingreliableextractionof thezero
setof thesigneddistanceunction.

Our volumetricmethodcaresaway the spacebetween
the sensorandthe objectand doesnot constructa signed
distanceunction. In caseof athin sheebf paperouralgo-
rithm would constructa thin layer of octreecubes(voxels)

straddlingthe paper Note howeverthatour methodcanfail
in the presencef measurememoiseandregistrationerror
if the minimum cubesizeis settoo small. Figure8 illus-
tratesthis phenomenon.
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Figure 8. A thin sheet seen from left (gray)
and right (black) is reconstructed correctl y in
(@). In (b) registration error and small cube
size combine to cause a hole.

5. Conclusion

We have presenteca methodfor robustly producinga
meshfrom a setof rangeviews of an object. The method
combinesthe robustnessof the volumetric approach[4]
with the speedand small memoryrequirementof octree
methodg2, 3, 12]. Ourmethodautomaticallyfills holesdue
to gapsin input data,it is robustagainstoutliers, it allows
incrementalddition of rangeviews, andit canmodelob-
jectsof arbitrarytopologicaltype,evenif theobjectis thin.
A moreaccurateand/omoreconcisesurfacerepresentation
canbe easily obtainedby applyingthe optimizationalgo-
rithmsdescribedn [7, 5] to theoutputof ouralgorithm.
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