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Abstract

This paperpresentsa methodfor modelingthe surface
of an objectfrom a sequenceof range maps. Our method
is basedona volumetricapproach thatproducesa compact
surfacewithout boundary. It providesrobustnessthrough
the useof interval analysistechniquesand computational
efficiencythroughhierarchical processingusingoctrees.

1. Introduction

Surfacereconstructionfromrangedatainvolvesfourma-
jor steps.

Step 1: Data acquisition. Range data sets covering the
surface to be modeledare obtained. Some pre-
processingof thedatamayberequired,suchaslow-
passfiltering andremoval of datapointsthatbelong
to otherobjectsor background.

Step 2: Registration. In general,each range view is in
its own coordinatesystem. The collectionof views
(rangemaps)are registeredinto a commonobject-
centeredcoordinatesystem.

Step 3: Integration. The separateregisteredrangemaps
areintegratedinto asinglesurfacerepresentation(of-
tena polygonmesh).

Step 4: Optimization. The single surface representation
canbebetterfitted to thedata,it maybefurthersim-
plified,or therepresentationcanbeconvertedtosome
otherformat(e.g.,smoothsurfaces).

In this paperweproposea novel solutionto Step3. Our
methodproceedsin two steps:it first hierarchicallybuilds
a volumetricrepresentationof anobject,andthenextracts
a triangle meshfrom the volumetric representation.Our
methodis efficient in computationtime, is robust against
outliers,andautomaticallyfills in smallholesin rangeim-
agesdue to gapsin the data. It can thusquickly recover

the topologyof arbitrarysurfaces,even in the presenceof
outliersandmissingdata.

In Section2 we describeour algorithm.We presentour
resultsin Section3, andwe discussour methodandprevi-
ouswork in Section4. Section5 concludesthepaper.

2. Algorithm

Our algorithmprocessesa cubicalvolumesurrounding
all the input datain a hierarchicalfashion.For eachcube-
shapedpartition, it checkswhetherthecubecanbeshown
to beentirely insideor outsideof theobject. If neither, the
cubeis subdividedandthesametestis recursively applied
to theresultingsmallercubes.Oursurfaceapproximationis
theclosedboundarybetweencubesthatlie entirelyoutside
of theobjectandall theothercubes.

2.1. Assumptions

We assumethat the rangedatais expressedasa setof
rangemapscalledviews. Eachview is likea2D image,ex-
ceptthatateachpixel a3D point is storedinsteadof acolor
value. Further, we assumethat the calibrationparameters
of thesensorareknown sothatwecanprojectany 3D point
to the imageplaneof the sensor. We alsoassumethat the
line segmentbetweenthe sensorandeachmeasuredpoint
lies entirelyoutsideof theobjectwe aremodeling.Finally,
we assumethat all rangeviews have beenregisteredto a
commoncoordinatesystem.

2.2. Processing a single range view

Theinitial volumeis anaxis-alignedcubethatfully sur-
roundsall therangedata.We useinterval analysisto evalu-
atethevolumetricfunctionon thecube. If thecubeis nei-
ther completelyinside nor completelyoutsidethe object,
we recursively subdivide it into eightsmallercubes,which
areaddedto theoctreeaschildrenof thecurrentcube.For
eachof thesecubes,we classifytheir locationwith respect
to thesensorandtherangedata. Note that the initial cube
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Figure 1. The three cases of the algorithm. In case 1 the cube is in front of the rang e data, in case 2
it is entirel y behind the surface (with respect to the sensor), while in case 3 the cube inter sects the
rang e data.

is alwayssubdividedsinceit is by definitionneitherinside
noroutsidetheobject.

Therearethreepossibilities(seeFigure1).

� In case1, the cubelies betweenthe rangedataand
sensor. Thecubeis assumedto lie outsideof theob-
ject. It is notprocessedany further.

� In case2 thewholecubeis behindtherangedata.As
far as the sensoris concerned,the cubewill be as-
sumedto lie insideof theobject.It will notbefurther
subdivided.

� In case3 the cubeintersectsthe rangemap. In this
casewesubdividethecubeinto its eightchildrenand
recursively apply thealgorithmup to a pre-specified
maximumsubdivision level. A case3 cubeat the
finest level is assumedto be at the boundaryof the
object.

The cubesarelabeledasfollows. We projectthe eight
cornersof thecubeto thesensor's imageplane,wherethe
convex hull of thepointsformsa
hexagon. The raysfrom thesen-
sor to the hexagonform a cone,
which we truncateso that it just
enclosesthe cube(seeFigure2).
If all the data points projecting
onto the hexagonarebehindthe
truncatedcone (i.e., are farther
than the farthest corner of the
cubefrom the sensor),the cube
is outside. If all thosepointsare

Figure 2: An octree cube
andits truncatedcone.Thear-
row pointsto thesensor.

closerthantheclosestcubecorner, thecubeis inside.Oth-
erwise,we arein theboundarycase.Possiblemissingdata
is treatedaspointsthatareverycloseto thesensor.

Our labeling methodis simple, but conservative. For
instance,if all the pointsprojectingonto the hexagonare

actuallybehindthe cube,but someof themare insidethe
truncatedcone,we would erroneouslylabel thecubeto in-
tersectthesurface.This,however, is notaproblembecause
thenext subdivisionlevel will mostlikely determinethatall
thechildrenof thecubelie in theexteriorof theobjectand
thereforeremovethem.

We could make our test tighter by performinga more
carefultestfor pointsthatarewithin thetruncatedcone:For
eachsuchpoint, determinethe two facesof thecubeinter-
sectedby therayassociatedwith thepointandtestwhether
thefacesarebehind,in front of, or aroundthepoint. It may
make senseto performthis extra testat thelastsubdivision
level.

2.3. Generalizations to multiple views

If multiple views areavailable,we have a choiceof two
processingorders. We cantraversethe whole octreeonce
andusetheconsensusof all theviews to determinethe la-
beling for eachcube(simultaneousprocessing),or we can
processoneview at a time, building on the resultsof the
previouslyprocessedviews (sequentialprocessing).

In simultaneousprocessing,we traversetheoctreeaswe
did in thecaseof asingleview. However, thecubelabeling
processchangesslightly.

� A cubeis labeledto be inside the object only if it
would be labeledinsidewith respectto eachsingle
view.

� A cubeis labeledoutsideif it would be labeledout-
sidewith respectto any singleview.

� Otherwise,thecubeis labeledboundaryandis further
subdivided, unlessthe maximum subdivision level
hasbeenreached.

We usesequentialprocessingif we later obtain a new
view thatwe want to integrateinto a previously processed



Figure 3. Eight intensity images corresponding to the views of the miniature chair .

octree.We recursively descendtheoctreeandperformthe
occlusiontestfor eachcubethathasnotbeendeterminedto
lie outsideof theobject. If thenew view determinesthata
cubeis outside,it is relabeledandthesubtreesbelow it are
removed. Similarly, a boundarylabeloverridesa previous
insidelabel, in which casethe cube's descendantshave to
berecursively tested,potentiallyup to themaximumsubdi-
vision level.

Although both processingordersproducethe samere-
sult, thesimultaneousprocessingorderis in generalfaster
[12]. In sequentialprocessingthe silhouetteof the object
oftencreatesavisualcone(centeredat thesensor)thatsep-
aratesvolumesknown to beoutsidefrom thosespeculated
to beinside.We would thenhave to recurseup to thefinest
subdivision level to accuratelydeterminethis boundary. In
simultaneousprocessing,however, anotherview couldde-
termineat a rathercoarselevel of subdivision that at least
part of thatboundaryis actuallyoutsideof the object,and
thefiner levelsof theoctreefor thatsubvolumeneednever
beprocessed.

Althoughslower, thesequentialprocessingapproachhas
the advantageof being more memoryefficient becauseit
only usesthedatafrom a singleview ata time.

In caseswherea largenumberof views of thesameob-
ject aregiven,we canusea hybrid approachin which we
dividetheviews into smallersetsandsequentiallyapplysi-
multaneousprocessingto eachof thesmallerdatasets.

2.4. Pruning the octree

Dueto ourconservativelabeltest,or if weusesequential
processing,wemaydeterminethatall thechildrenof acube
lie in free space.Whenever this happensthe eight sibling
cubesarerecursively collapsedinto their parent,which is
thenlabeledalsoto beoutsidetheobject.

2.5. Mesh extraction

Thelabelingin theoctreedividesthespaceinto two sets:
thecubesknown to lie outsideof theobjectandthe cubes
thatareassumedto bepartof theobject. Our surfaceesti-
matewill be theclosedboundarybetweenthesesets.This
definitionallowsusto createa plausiblesurfaceevenat lo-
cationswherewe failedto obtaindata[4]. Theboundaryis
representedasacollectionof verticesandtrianglesthatcan
beeasilycombinedto a mesh.

Theoctreegeneratedby thealgorithmhasthefollowing
structure:outsidecubesandinsidecubesdo not have any
children,while theboundarycubeshave a sequenceof de-
scendantsdown to thefinestsubdivision level. We traverse
theoctreestartingfrom theroot. At anoutsidecubewe do
nothing. At a boundarycubethat is not at thefinestlevel,
we descendto thechildren.If we reachthemaximumsub-
divisionlevelandthecubeis eitherattheboundaryor inside
wecheckthelabelingof thesix neighbors.If aneighboring
cubeis anoutsidecube,wecreatetwo trianglesfor theface
they share. In an insidecubethat is not at the maximum
subdivisionlevel,wecheckwhetherit abutswith anoutside
cube,andin suchcasecreateenoughtriangles(of samesize
as the onescreatedat the finest level) to cover the shared
partof theface.

In orderto avoid producingmultiple copiesof thesame
vertex, theverticesareputinto ahashtableandanew vertex
is createdonly if it doesnotalreadyexist. Thetrianglesare
combinedinto a closedtrianglemesh.

3. Results

We have testedour methodwith bothrealandsynthetic
data.Therealdatasetconsistedof eightviews of a minia-
ture chair (Figure 3). Figure 4(a) shows the datapoints
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Figure 4. (a) The registered point set. (b) The
result from using the method of [6]. (c) The
result from our method.

(registeredusing a slightly modifiedversionof Chenand
Medioni's method[1]) and the failed surfacereconstruc-
tion thatwasour originalmotivationfor this method.Even
thoughwe have cleanedthedataandremovedmostof the
outliers, we still have somenoisy measurementscloseto
thesurface,especiallybetweenthespokesof thebacksup-
port of thechair. Thealgorithmfrom [6] doesnot useany
knowledge(suchasviewing directions,etc.)of thedataex-
ceptthepoints,themselves.It worksquitenicely if thedata
doesnot containoutliersanduniformly samplestheunder-
lying surface.Unfortunatelyrealdata,suchasthisdataset,
oftenviolatebothof thoserequirements.Figure4(b)shows
the result. In contrast,Figure4(c) shows the resultof our
method.

Figure5 shows intermediateresultsof our methodus-
ing thechairdatasetdisplayingtheoctreeafter4, 5, 6, and
7 subdivisions. Figure6 presentssomestatisticsfor pro-
cessingthechairdataset. Thefinal meshin Figure4(c) is
obtainedfrom the level 7 octree.We smooththemeshbe-
foredisplayingusingTaubin'smethod[13]. Noticethatthe
spokesandtheholesbetweenthemhave beenrobustly re-
covereddespitethelargenumberof outliersandsomemiss-
ing data.This is partiallydueto theimplicit removalof out-
liers that thealgorithmperforms: in mostcases,thereis a
view thatdeterminesthatthecubecontaininganoutlier lies
outsideof theobject.

Figure7 shows theresultsfrom a syntheticdataset.We
generatedeight simulatedrangemapsof a temple,regis-
teredthe views, and appliedour algorithmto them. The
left figureshows thesmoothedresult,while theright figure
shows theresultafterapplyingHoppe's meshoptimization
algorithm[7].

Figure 5. The chair octree after 4, 5, 6, and 7
subdivisions.

levels nodes faces seconds
4 649 422 9.0
5 2377 1372 6.6
6 9393 5152 27.1
7 42657 18446 127.8

Figure 6. Statistics for Figure 5. For example ,
at 5 levels of subdivision the octree contained
2377 nodes, the boundar y between the ob-
ject and free space was 1372 faces (twice as
many triangles), and it took an additional 6.6
seconds to process from the level 4 octree .

Figure 7. Synthetic temple .



4. Discussion

4.1. Previous work

A popularapproachto dataintegrationhasbeento di-
rectly build surfacesfrom the data. Turk andLevoy [14]
andRutishauseret al. [9] createa polygonmeshfor each
view; the individual meshesarethenconnectedto form a
singlemeshcoveringthewholeobject.Soucy andLauren-
deau[11] dividetherangedatainto subsetsbasedonwhich
surfaceregionsarevisiblewithin eachview. In eachsubset,
theredundancy of theviews is usedto improve thesurface
approximation. Finally, the triangulatednon-overlapping
subsetsareconnectedinto asinglemesh.Pito [8] integrates
meshesby determiningwherethemeshesoverlap,choosing
themostreliablemeasurements,andconnectingthepatches
usinga modificationof [9]. Hoppeet al. [6] startfrom an
unorganizedsetof points,definea signeddistancefunction
from the point set, and extract a meshapproximatingthe
zerosetof thatfunction.Themeshis iteratively fittedmore
closelyto thedataandsimplified[7]. Thesimplifiedmeshis
finally usedasastartingpoint for fitting apiecewisesmooth
surfacerepresentationto thedata[5].

CurlessandLevoy [4] defineavolumetricfunctionbased
on an averageof signeddistancesto eachrangeimage.
Their schemediscretelyevaluatesthis volumetricfunction
atpointsonauniform3D grid, andusesthesediscretesam-
ple valuesto determinea surfacethatapproximatestheze-
rosetof the volumetric function. As a consequence,their
schememay fail to detectfeaturessmaller than the grid
spacingandhasdifficultieswith thin features.Also, it re-
quiresa significantamountof space,althoughthis canbe
alleviatedthroughrun-lengthencodingtechniques.

Szeliskialsousedvolumetricideas,constructingoctree
boundingvolumesof the objectfrom silhouettesextracted
from intensityimages[12]. Octreeshave alsobeenusedto
generatevolumesandsurfacesfrom rangedata. Chienet
al. [2] combinerangequadtreesgeneratedfrom six orthog-
onalviewing directionsinto anoctree.Connolly[3] creates
anoctreerepresentationby organizingtherangeviews into
quadtreesand projectingthem to the octree,marking the
freespacealongtheway.

Of thepreviouswork, Connolly's [3] is closestto ours,
but it differs from ours in two importantways. Whereas
we project the octreecubesto the depthmaps,Connolly
doesthe converse: he first converts the depthmapsinto
quadtreesandthenprojectsthemto the octree. Four rays
are projectedfrom eachvertex of a quadtreenodeto the
octree,andeachoctreenodevisited by a ray is removed.
Sincetheoctreenodesthataretraversedareroughlythesize
of the quadtreenode,the hole that is carved is jaggy and
larger thanit shouldbe. Thecarvingcould bemademore
accurateby performingthe carvingat a finer level of res-

olution, but thenthe processingbecomesmorecostly, and
it becomesmore difficult to guaranteethat all cubesthat
shouldbe removed are removed. The organizationof the
rangemapsto quadtreesspeedsuptheprocessingonly out-
sidethevisualconeof theobject.Unlesstheobjectcontains
many consecutive pointsthatareequidistantfrom thesen-
sor (an unlikely event), the quadtreebecomesfragmented.
This causesa greatnumberof holesto be carved into the
octreeatafinelevel of resolution.Boththeseproblems(too
muchcarvingandcarvingat unnecessarilyfine resolution)
areavoidedin ourmethod.Thesecondmajordifferencebe-
tweenthemethodsis thatConnolly'smethodneverremoves
nodesthat have beenpreviously determinedto containa
rangemeasurement.We explicitly wantto allow this,since
that is our mechanismfor gettingrid of outliers. That is,
Connollygivesprecedenceto surface,while wegiveprece-
denceto aproofof emptyspace.

Like Curlessand Levoy, we also define a volumetric
function (ours is a simple inside/outsidebinary function),
andseekanapproximationof thesurfacethatseparatesthe
insideandoutsideregions.But, ratherthandiscretelyeval-
uating the volumetric function on a setof points,our ap-
proachis basedonaninterval analysistechnique[10]. That
is, we partition spaceinto regions (cubes)and conserva-
tively determinefor eachregion whetherit lies completely
inside,completelyoutside,or neither. Usingrecursivesub-
division, we efficiently pruneaway large regionsof space
away from the objectboundary, andfocusboth computa-
tion andstorageright on thespatialregion of interest,that
is, theregionnext to thesurface.

The interval analysistechniqueswe use provide im-
provedrobustnessto ouralgorithm.To ourknowledge,ours
is thefirst approachto usethesetechniquesto rangemapin-
tegration.

4.2. Level of resolution

All volumetric methodsrequirea choiceof resolution
level. Thischoiceprovidesatrade-off betweentheaccuracy
of theresultandrequirementsfor bothtimeandstorage.In
octreemethodssuchasours,theresolutionis determinedby
themaximumdepthof theoctreeandit mustbespecifiedby
theuser.

Our algorithmfacilitatestheoptimumchoiceof resolu-
tion appropriateto a givendataset.For instance,if we no-
tice thatour choicewastoo coarseto correctlycapturethe
object's topologycorrectly, we caneasilyusetheresultsof
the previous runsandcontinuethe processwith increased
choiceof maximumdepthto achievea finer resolution.

Of course,the maximumdepthis limited by the point
densityof thedataset.Onceanoctreecubeprojectsto only
oneor two pixelson thesensor's imageplane,themethod
becomeslessrobust.A goodruleof thumbis thattheoctree



cubesshouldbelargerthaneachof thefollowingthreemea-
sures:surfacesamplingdensity, samplingerror, andregis-
trationerror.

4.3. Removal of outliers and background

We note earlier that we in effect remove outliers from
a view if anotherview testifiesthat the outlier lies in free
space. This observation shows that the algorithm can be
usedto automaticallyremovebackgroundandotherobjects
from the views. Supposethat the views wereobtainedby
usinga stationaryrangescannerandby reorientingtheob-
jectbetweentheviewsandthatwehaveregisteredtheviews
into a commoncoordinatesystemusinga subsetof surface
points. Now the backgroundand otherobjectsmove rel-
ative to theobjectfrom view to view, andin generalsome
view candeterminethatthey lie outsidetheobject,in which
casethepointscanbelabeledasbackgroundor removedal-
together.

Outliersthatlie behindthesurfaceasseenfromthescan-
nercanbedamaging,sincethey couldcauseour algorithm
to incorrectlycarve away a pieceof theobject.For several
reasons,this hasnot beena problemfor us. Most outliers
wehaveobservedeitherbelongto otherobjectsin theback-
ground,or appeararoundthe edgesof the object. We use
backgrounddatato carve thespacearoundtheobjectmore
efficiently, andoutliersattheobjectboundariesdonotcause
deepholesto becarvedinto theobject.

Obtainingdatapointsfrom the backgroundis very im-
portantfor correctlydetectingholes.CurlessandLevoy [4]
advocatetheuseof backdropsto solve this problem.How-
ever, with several typesof scannersbasedon triangulation
it is extremelydifficult to getmeasurementsthrougha nar-
row hole. That wasthe casein several views of the chair
dataset. In suchcaseswe canmanuallypaintpartsof the
missingdatato bebackground.

4.4. Thin objects

Somemethodsthat employ a signedsurface distance
functionsare unableto correctly reconstructthin objects.
CurlessandLevoy [4], for example,build a distancefunc-
tion by storingpositive distancesto voxels in front of the
surfaceandnegativedistancesto voxelsbehindthesurface.
In additionto the distance,weightsarestoredto facilitate
combiningdata from different views. With this method,
viewsfrom oppositesidesof a thin objectinterfereandmay
canceleachother, preventingreliableextractionof thezero
setof thesigneddistancefunction.

Our volumetricmethodcarvesaway the spacebetween
the sensorandthe objectanddoesnot constructa signed
distancefunction.In caseof a thin sheetof paper, ouralgo-
rithm would constructa thin layerof octreecubes(voxels)

straddlingthepaper. Notehoweverthatourmethodcanfail
in thepresenceof measurementnoiseandregistrationerror
if the minimum cubesizeis set too small. Figure8 illus-
tratesthisphenomenon.

(a)                (b)

Figure 8. A thin sheet seen from left (gray)
and right (black) is reconstructed correctl y in
(a). In (b) registration error and small cube
size combine to cause a hole .

5. Conclusion

We have presenteda methodfor robustly producinga
meshfrom a setof rangeviews of an object. The method
combinesthe robustnessof the volumetric approach[4]
with the speedand small memoryrequirementsof octree
methods[2, 3, 12]. Ourmethodautomaticallyfills holesdue
to gapsin input data,it is robustagainstoutliers,it allows
incrementaladditionof rangeviews, andit canmodelob-
jectsof arbitrarytopologicaltype,evenif theobjectis thin.
A moreaccurateand/ormoreconcisesurfacerepresentation
canbe easilyobtainedby applyingthe optimizationalgo-
rithmsdescribedin [7, 5] to theoutputof ouralgorithm.
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