Surface modeling and display from
range and color data

Kari Pulli’, Michael Cohen?, Tom Duchamp!, Hugues Hoppe?,
John McDonald!, Linda Shapiro!, and Werner Stuetzle!

! University of Washington, Seattle WA, USA
2 Microsoft Research, Redmond WA, USA

Abstract. Two approaches for modeling surfaces from a collection of
range maps and associated color images are covered. The first approach
presents a method that robustly obtains a closed mesh that approxi-
mates the object geometry. The mesh can then be simplified and texture
mapped for display. The second approach does not attempt to create a
single object model. Instead, a set of models is constructed, one model
for each view of the object. several of the view-based models are ren-
dered separately, and their information is combined in a view-dependent
manner for display.

1 Introduction

In this paper we propose two methods for modeling and displaying real ob-
jects using a set of range maps with associated color images as input. The first
method follows the traditional surface reconstruction approach, where we at-
tempt to create a single surface model that accurately describes the scanned
object. Specifically, our algorithm [9] emphasizes robust recovery of the object
topology from the input data. Holes due to missing data, i.e., unobserved surface
regions, are automatically filled so that the model remains consistent with the
input data. This approximate model can then be fitted more accurately to the
input data, textured from the color images, and displayed. Our second method
shows that 1t is not necessary to integrate the input data into a single surface
model for display purposes. Instead, one can model each view separately and
integrate the separate views at display time in the image space. We call this
approach view-based rendering [8].

Section 2 describes our robust method for modeling object surfaces. Section
3 presents the view-based rendering method. Section 4 concludes the paper.

2 Robust approximate meshes

Overview. Our algorithm processes a cubical volume surrounding all the input
data in a hierarchical fashion. For each cube-shaped partition, it checks whether
the cube can be shown to be entirely inside or outside of the object. If neither,
the cube is subdivided and the same test is recursively applied to the resulting

smaller cubes. Our surface approximation is the closed boundary between cubes
that lie entirely outside of the object and all the other cubes.

Assumptions. We assume that the range data is expressed as a set of range
maps called views. Each view is an image in which each pixel stores a 3D point
instead of a color value. Further, we assume that the calibration parameters of
the sensor are known so that we can project any 3D point to the image plane
of the sensor. We also assume that the line segments between the sensor and
each measured point lie entirely outside of the object we are modeling. Finally,
we assume that all range views have been registered to a common coordinate
system.

Observed Volume under Image Sensor
surface consideration plane
L /

Qut si de

Boundary

Fig. 1. The three cases of the algorithm. In case 1 the cube is in front of the range
data, in case 2 it is entirely behind the surface (with respect to the sensor), while in
case 3 the cube intersects the range data.

2.1 Processing a single range view

The initial volume is an axis-aligned cube that fully surrounds all the range
data. We use interval analysis to evaluate the volumetric function on the cube.
If the cube is neither completely inside nor completely outside the object, we
recursively subdivide it into eight smaller cubes, which are added to the octree
as children of the current cube. For each of these cubes, we classify their location
with respect to the sensor and the range data. A cube can be classified in three
ways (see Figure 1):

— In case 1 the cube lies between the range data and the sensor. The cube is
assumed to lie outside of the object. It is not processed any further.

— In case 2 the whole cube is behind the range data. As far as this sensor is
concerned, the cube will be assumed to lie inside of the object. It will not
be further subdivided.

— In case 3 the cube intersects the range map. In this case we subdivide the
cube into its eight children and recursively apply the algorithm up to a pre-
specified maximum subdivision level. A case 3 cube at the finest level is
assumed to be at the boundary of the object.

The cubes are classified as follows. We project the eight
corners of the cube to the sensor’s image plane, where the
convex hull of the points forms a hexagon. The rays from
the sensor to the hexagon form a cone, which we truncate
so that it just encloses the cube. If all the data points pro-
jecting onto the hexagon are behind the truncated cone
(i.e., are farther than the farthest corner of the cube from Fig.2: An octree
the sensor), the cube is outside. If all those points are cybe and its truncated
closer than the closest cube corner, the cube is inside. cone.

Otherwise, it is the boundary case. Possible missing data is treated as points
that are very close to the sensor. If we can label parts of the depth map as
background, data at those locations are treated as being infinitely far away.

Our labeling method is simple, but conservative. For instance, if all the points
projecting onto the hexagon are actually behind the cube, but some of them are
inside the truncated cone, we would erroneously label the cube to intersect the
surface. This, however, is not a problem because the next subdivision level will
most likely determine that all the children of the cube lie in the exterior of the
object and therefore remove them.

2.2 Generalizations to multiple views

If multiple views are available, we have a choice of two processing orders. We can
traverse the whole octree once and use the consensus of all the views to determine
the labeling for each cube (simultaneous processing), or we can process one view
at a time, building on the results of the previously processed views (sequential
processing).

In simultaneous processing, we traverse the octree as we did in the case of a
single view. However, the cube labeling process changes slightly.

— A cube is labeled inside the object only if it would be labeled inside with
respect to each single view.

— A cube is labeled outside if 1t would be labeled outside with respect to any
single view.

— Otherwise, the cube is labeled boundary and is further subdivided, unless
the maximum subdivision level has been reached.

We use sequential processing if we later obtain a new view that we want to
integrate into a previously processed octree. We recursively descend the octree
and perform the occlusion test for each cube that has not been determined to
lie outside of the object. If the new view determines that a cube is outside, it
is relabeled and the subtrees below it are removed. Similarly, a boundary label
overrides a previous inside label, in which case the cube’s descendants must be
recursively tested, potentially up to the maximum subdivision level.

Although both processing orders produce the same result, the simultaneous
processing order is in general faster [10]. In sequential processing the silhouette
of the object often creates a visual cone (centered at the sensor) that separates

volumes known to be outside from those speculated to be inside. The algorithm
would have to recurse up to the finest subdivision level to accurately determine
this boundary. In simultaneous processing, however, another view could deter-
mine at a rather coarse level of subdivision that at least part of that boundary
is actually outside of the object, and the finer levels of the octree for that sub-
volume need never be processed.

2.3 Mesh extraction

The labeling in the octree divides the space into two sets: the cubes known to lie
outside of the object and the cubes that are assumed to be part of the object. Our
surface estimate will be the closed boundary between these sets. This definition
allows us to create a plausible surface even at locations where we failed to obtain
data [1]. The boundary is represented as a collection of vertices and triangles
that can be easily combined to form a mesh.

The octree generated by the algorithm has the following structure: outside
cubes and inside cubes do not have any children, while the boundary cubes have
a sequence of descendants down to the finest subdivision level. We traverse the
octree starting from the root. At an outside cube we do nothing. At a boundary
cube that is not at the finest level, we descend to the children. If we reach the
maximum subdivision level and the cube is either at the boundary or inside we
check the labeling of the six neighbors. If a neighboring cube is an outside cube,
we create two triangles for the face they share. In an inside cube that is not at
the maximum subdivision level, we check whether it abuts with an outside cube,
and in such case create enough triangles (of same size as the ones created at the

finest level) to cover the shared part of the face. The triangles are combined into
a closed triangle mesh.

Fig. 3. Eight views of a chair data set, registered points, result from using a previous
method, result from our method.

2.4 Reconstruction results

We have tested our method with both real and synthetic data. One of the real
data sets consisting of eight views of a miniature chair is shown in Fig. 3, along

with the data points, and failed surface reconstruction from another algorithm [5]
that was our original motivation for this method. Even though we have cleaned
the data and removed most of the outliers, some noisy measurements close to
the surface remain, especially between the spokes of the back support of the
chair. The algorithm from [5] works with an unorganized point cloud and does
not use any extra knowledge (such as viewing directions, etc.) in addition to the
points. It works quite nicely if the data does not contain outliers and uniformly
samples the underlying surface. Unfortunately real data, such as this data set,
often violate both of those requirements. In contrast, our method is able to
correctly recover the topology of the chair as shown in the rightmost image.

Fig. 4. Chair after 4, 5, 6, and 7 subdivisions.

Figure 4 shows intermediate results of our method
using the chair data set, displaying the octree after 4,
5, 6, and 7 subdivisions. The final mesh in Fig. 3 was
obtained from the level 7 octree. We smooth the mesh
before displaying using Taubin’s method [11]. Notice
that the spokes and the holes between them have been
robustly recovered despite the large number of outliers
and some missing data. This is partially due to the im-
plicit removal of outliers that the algorithm performs:
in most cases, there is a view that determines that the
cube containing an outlier lies outside of the object.
Fig. 5 also shows the results from a synthetic data set.
The smoothed result appears above, while the result Fig.5: Simulated temple
after applying Hoppe’s mesh optimization algorithm dgta :Set7 our results and a
[6] appears below. simplified mesh.

2.5 Discussion

The simplicity of the algorithm leads to a fast implementation. This again allows
interactive selection of the subdivision level. For example, with the chair data

set one could first subdivide the octree six times. Within ten seconds or so the
user can see the current approximation, which is not good enough since all the
holes in the object haven’t been opened yet. An extra subdivision step (25 sec.
later) shows that now the topology of the current approximation agrees with
that of the real object.

It is important to notice that holes often can be correctly detected and mod-
eled using only indirect evidence, i.e., using the fact that the scanner can see
through the hole. Curless and Levoy suggest using a backdrop [1], placing planes
behind the holes that can be detected. However, all range scanning methods
based on optical triangulation have limits on how narrow cavities can be scanned.
Better results can be obtained if a color (or even intensity) image can be ob-
tained with the range scan (typically easily available with scanners using optical
triangulation), the background may be segmented out using image segmentation
methods, or even user interaction.

Some methods that employ signed surface distance functions are unable to
correctly reconstruct thin objects. Curless and Levoy [1], for example, build a
distance function by storing positive distances to voxels in front of the surface
and negative distances to voxels behind the surface. In addition to the distance,
weights are stored to facilitate combining data from different views. With this
method, views from opposite sides of a thin object interfere and may cancel
each other, preventing reliable extraction of the zero set of the signed distance
function. Our volumetric method carves away the space between the sensor and
the object and does not construct a signed distance function. In case of a thin
sheet of paper, our algorithm would construct a thin layer of octree cubes (voxels)
straddling the paper.

3 View-based rendering

Rendering statically textured surface models produces images that are much
less realistic than photographs, which can capture intricate geometric texture
and global illumination effects with ease. This is one of the main reasons why
image-based rendering algorithms have become popular. This section proposes
a new rendering method that does not require creating a full 3D object model.
Rather, we create independent models for the depth map observed from each
viewpoint, a much simpler task. Instead of having to gather and manipulate a
set of images dense enough for purely image-based rendering [4,7], our method
only requires images from the typically small set of viewpoints from which the
range data were captured. A request for an image of the object from a specified
viewpoint 1s satisfied using the color and geometry in the stored views. This
section describes our new wview-based rendering algorithm and shows results on
non-trivial real objects.

The input to our view-based rendering system is a set of color images of
the objects. Along with each color image we obtain a range map for the part
of the object surface that is visible in the image. Registering the range maps
into a common coordinate system gives us the relative camera locations and

orientations of the color images with respect to the object. We replace the dense
range maps by sparse triangle meshes that closely approximate them. We then
texture map each triangle mesh using the associated color image. To synthesize
an image of the object from a fixed viewpoint, we individually render the meshes
constructed from the three nearest viewpoints and blend them together with a
pixel-based weighting algorithm using soft z-buffering.

3.1 A simple approach

To better understand the virtues of our approach, it is helpful to consider a
more simple algorithm. If we want to view the object from any of the stored
viewpoints, we can place a virtual camera at one of them and render the asso-
ciated textured mesh. We can even move the virtual camera around the stored
viewpoint by rendering the mesh from the new viewpoint. But as the viewpoint
changes, parts of the surface not seen from the original viewpoint may become
visible, opening holes in the rendered image. If, however, the missing surface
parts are seen from one or more other stored viewpoints, we can fill the holes
by simultaneously rendering the textured meshes associated with the additional
viewpoints. The resulting image is a collage of several individual images. Because
individual meshes are likely to overlap, the compound errors from the actual
range measurements, view registration, and polygonal approximation make ar-
bitrary which surface is closest to the camera and therefore rendered. Also, the
alignment of the color information is not perfect, and there may be additional
slight changes in the lighting conditions between the views. These errors cause
the unnatural features visible in Figure 6(a).

Fig.6. (a) The result of combining three views by repeatedly rendering the view-
based meshes from the viewpoint of the virtual camera. (b) Using the weights and soft
z-buffering produces a much better result.

We can improve on this by giving different weights to the views, with the
viewpoint closest to the viewpoint of the virtual camera receiving higher weight
than the others. The effect of self-occlusion can be minimized by using z-buffering
and back-face culling when rendering the individual views. Even with these im-
provements, several problems remain. The pixels where only some of the views
contribute appear darker than others. Even if we normalize the colors by divid-
ing the color values by the sum of the weights of the contributing views, changes

in lighting and registration errors create visible artifacts at mesh boundaries.
There are also problems with self-occlusion. Without z-buffering the color infor-
mation from surfaces that should be hidden by other surfaces is blended with the
color of the visible surfaces, causing parts of the front-most surface to appear
partially transparent. A third problem is related to the uniform weighting of
the images generated by the meshes. The color and surface geometry is sampled
much more densely at surface locations that are perpendicular to the sensor than
at tilted surfaces. Additionally, the range information is usually less reliable at
tilted surfaces.

In the next section we describe how we can produce much better images (see
Fig. 6(b)) using a more sophisticated approach.

3.2 Three weights and soft z-buffering

To synthesize an image of the object from a fixed viewpoint, we first select n
stored views whose viewing directions roughly agree with the direction from the
viewpoint to the object. Each selected textured mesh is individually rendered
from this viewpoint to obtain n separate images. The images are blended into
a single image by the following weighting scheme. Consider a single pixel. Let
r be the red channel value (green and blue are processed in the same manner)
associated to it. We set

where 7; is the color value associated to that pixel in the i*” image and w;
is a weight designed to overcome the difficulties encountered in the naive im-
plementation described above. The weight w; is the product of three weights
W; = Wy - We; - Wy;, Whose definition is illustrated in Figs. 7 and 8. Self-
occlusions are handled by using soft z-buffering to combine the images pixel by
pixel.

The first weight, wg, measures the proximity of the stored view to the current
viewpoint, and therefore changes dynamically as the virtual camera moves. Both
the appearance of minute geometric surface details and the surface reflectance
change with the viewing direction; the weight wy 1s designed to favor views with
viewing directions similar to that of the virtual camera. Figure 7 illustrates how
wy 18 calculated. All the views are placed on a unit sphere, and the sphere 1s
triangulated. The current viewpoint is placed onto that sphere, and we deter-
mine which triangle contains it. Only the views corresponding to the corners
of that triangle will get a nonzero wy. Specifically, we calculate the barycentric
coordinates for the current view point within the triangle. Each of the three
components of the barycentric coordinates corresponds to a corner of the trian-
gle, and the wy of the corner views is the corresponding component. The three
wy’s are all in the range [0.0, 1.0] and they sum up to 1.0.

The second weight, w,, is a static measure of surface sampling density. As
a surface perpendicular to the camera is rotated by an angle ¢, the surface
area projecting to a pixel increases by 1/ cos ¢ and the surface sampling density

viewing direction
of the virtual camera

% views around the
virtual camera

Fig.7. The views are placed on a unit sphere based on their viewing directions, and
the sphere is triangulated using the views as triangle vertices. The views corresponding
to the corners of the triangle surrounding the direction of the virtual camera are used,
and their weights we are the barycentric coordinates the virtual camera within that
triangle.

decreases by cos ¢. In our system, a weight w, = n - d is applied to each mesh
triangle, where n is the external unit normal of the triangle and d is a unit vector
pointing from the centroid of the triangle to the sensor. Figure 8(b) shows w,
with gray level encoding: the lighter the triangle, the higher w,. The scanning
geometry ensures that this value is in the range (0.0, 1.0].

The third weight w, which we call the blend weight, is designed to smoothly
blend the meshes at their boundaries. As illustrated by Figure 8 (c), the blend
weight linearly increases with distance from the mesh boundary. Like w,, the
weight w, does not depend on the viewing direction of the virtual camera. A
similar weight was used by Debevec et al. [2].

(a) (b) (c)

Fig.8. (a) An image of a toy dog. (b) Weight w,, is applied to each face of the triangle
mesh. (c) Weight w- smoothly decreases the influence of the view towards the mesh
boundaries.

Most self-occlusions are handled during rendering of individual views using
backface culling and z-buffering. When combining the view-based partial mod-
els, part of one view’s model may occlude part of another view’s model. Unless
the surfaces are relatively close to each other, the occluded pixel must be ex-

cluded from contributing to the pixel color. This is done by performing “soft”
z-buffering, in software. First, we consult the z-buffer information of each sep-
arately rendered view and search for the smallest value. Views with z-values
within a threshold from the closest are included in the composition, others are
excluded. The threshold is chosen to slightly exceed an upper estimate of the
combination of the sampling, registration, and polygonal approximation errors.

Figure 9 illustrates a potential problem. In the
picture the view-based surface approximation of
the rightmost camera has failed to notice a step
edge due to self-occlusion in the data, and has
wrongly connected two surface regions. When per-
forming the soft z-buffering for the pixel corre-
sponding to the dashed line, the wrongly connected
step edge would be so much closer than the contri-
bution from the other view that the soft z-buffering
would throw away the correct sample. However,
while doing the soft z-buffering we can treat the weights as confidence measures.
If a pixel with a very low confidence value covers a pixel with a high confidence
value, we ignore the low confidence pixel altogether.

Fig.9: Problems with unde-
tected step edges.

3.3 Implementation

Triangle mesh creation. We currently create the triangle meshes manually.
For each view, the user marks the boundaries of the object by inserting points
into the color image, while the software incrementally updates a Delaunay trian-
gulation of the vertices. When the user adds a vertex, the system optimizes the
z-coordinates of all the vertices so that the least squares error of the range data
approximation is minimized. Triangles that are almost parallel to the viewing
direction are discarded since they are likely to be step edges, not a good approx-
imation of the object surface. Triangles outside of the object are discarded as
well.

We have begun to automate the mesh creation phase. The segmentation of
the image into object and background is facilitated by placing a blue cloth to
the background and scanning the empty scene. Points whose position and color
match the data scanned from an empty scene can be classified as background.
The adding of vertices is easily automated. For example, Garland and Heckbert
[3] add vertices to image coordinates where the current approximation is worst.
The drawback of this approach is that if the data contains step edges due to
self-occlusions, the mesh is likely to become unnecessarily dense before a good
approximation is achieved. For this reason we will perform a mesh simplification
step using the mesh optimization methods by Hoppe et al. [6].

Rendering. We have built an interactive viewer for viewing the reconstructed
images (see Figure 10). For each frame, we calculate the dot product of the
camera viewing directions for the stored views and the viewing direction of the
virtual camera. The three views with highest dot product values (the weight

wy) are then rendered separately from the viewpoint of the virtual camera as
textured triangle meshes.

Fig. 10. Our viewer shows the three view-based models rendered from the viewpoint
of the virtual camera. The final image is on the bottom right.

Two of the weights, w,, and w.,, are static for each view, they do not depend on
the viewing direction of the virtual camera. We can apply both of these weights
offline. w, is the weight used to decrease the importance of triangles that are
tilted with respect to the scanner. It is applied by assigning the RGBA color
(1,1,1,w,) to each triangle. wy is the weight used to hide artifacts at the mesh
boundary of a view. It i1s directly applied to the alpha channel of the texture
map that stores the color information. We calculate the weights for each pixel
by first projecting the triangle mesh onto the color image and painting it white
on a black background. We then calculate the distance d for each white pixel to
the closest black pixel. The pixels with distances of at least n get alpha value 1,
all other pixels get the value %.

Figure 11 presents pseudo code for the view composition algorithm. The
function min reliable z() returns the minimum z for a given pixel, un-
less the closest pixel is a low-confidence (weight) point that would occlude
a high-confidence point, in FOR EACH pi xel

; Znin = mn_reliable_z(pixel)
Wliuc.h case .the z for the pi xel _col or = (0,0,0)
minimum high-confidence pi xel _wei ght =0
. . FOR EACH vi ew
point is returned. IF znin <= z[view, pixel] <= znin+thrsoft_z THEN
) : wei ght = owe * *
When we render a trla.ngle pi xel _col or += weight * col or[view, pi xel]
mesh with the described ENBII >'§el _wei ght += wei ght
colors and texture maps, END

the hardware calculates the
correct weights for us. The
alpha value in each pixel

col or[pixel] := pixel_color / pixel_weight
ND

Fig.11: Pseudo code for color blending.

is wy - wy. It is also possible to apply the remaining weight, wy, using graphics
hardware. After we render the views, we have to read in the information from
the frame buffer. Many graphics libraries, such as OpenGL, allow scaling each
pixel while reading the frame buffer into memory. If we scale the alpha channel
by ws, the resulting alpha value contains the final weight wg - w, - w,.

3.4 Discussion

View-based rendering takes a step from model-based rendering towards image-
based rendering. The advantage as compared to model-based rendering is that
making view-based models is much easier than making full models for a large
class of objects, such as the flower basket illustrated in Figs. 6 and 10. Addition-
ally, it provides view-dependant texturing of the object, which enables one to
create believable impressions of fine geometric detail through texturing without
actually having to model the fine geometry. Using static texturing the illusion
breaks once the object is rotated to a different angle from where the fine de-
tail was originally seen. The advantage of view-based rendering as compared to
image-based rendering methods [4,7] is that a much sparser sample set of images
has to be obtained and less data has to be stored, since the geometric informa-
tion enables us to view the same data from a continuous set of viewpoints close
to the one where the view was really taken.

We have demonstrated interactive viewing of our reconstructed models from
arbitrary viewpoints at speeds of up to eight frames per second.

4 Conclusion

We have presented two alternative approaches for surface reconstruction and
display using range and color data. One of the methods involves creating a single
object model that can then be viewed from an arbitrary viewpoint, the other
method creates a set of view-based models that are texture mapped using color
images, and composites a few of the models in image space to a final image. We
are currently working on view-based texturing of complete surface models, so we
can better compare the relative advantages of these two competing approaches.

References

1. B. Curless and M. Levoy. A volumetric method for building complex models from
range images. In Proceedings of SIGGRAPH °96, pages 303-312, August 1996.

2. P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering architecture
from photographs: A hybrid geometry- and image-based approach. In SIGGRAPH
96 Conference Proceedings, pages 11-20. ACM SIGGRAPH, Addison Wesley, Au-
gust 1996.

3. M. Garland and P. Heckbert. Fast polygonal approximation of terrains and height
fields. Technical Report CMU-CS-95-181, Dept. of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, 1995.

10.

11.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph. In
SIGGRAPH 96 Conference Proceedings, pages 43-54. ACM SIGGRAPH, Addison
Wesley, August 1996.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface re-
construction from unorganized points. In Proceedings of SIGGRAPH 92, pages
71-78, July 1992.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh opti-
mization. In Computer Graphics (SIGGRAPH ’93 Proceedings), volume 27, pages
19-26, August 1993.

M. Levoy and P. Hanrahan. Light field rendering. In SIGGRAPH 96 Conference
Proceedings, pages 31-42. ACM SIGGRAPH, Addison Wesley, August 1996.

K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, L. Shapiro, and W. Stuetzle. View-
based rendering: Visualizing real objects from scanned range and color data. Tech-
nical Report UW-CSE-97-04-01, Univ. of Washington, Seattle WA 98105, 1997.
Available through ftp://ftp.cs.washington.edu/tr/1997/04/UW-CSE-97-04-01.d.
K. Pulli, T. Duchamp, H. Hoppe, John McDonald, L. Shapiro, and W. Stuetzle.
Robust meshes from multiple range maps. In Proc. IEEE Int. Conf. on 3-D Imaging
and Modeling, May 1997.

R. Szeliski. Rapid octree construction from image sequences. CVGIP: Image
Understanding, 58(1):23-32, July 1993.

G. Taubin. A signal processing approach to fair surface design. In Proceedings of
SIGGRAPH 95, pages 351-358, August 1995.

