THE CLASSIFICATION OF LEGENDRE IMMERSIONS

TOM DUCHAMP

ABSTRACT. The main result of this paper is a homotopy theoretic classification
of Legendre immersions from a compact manifold into a contact manifold. The
paper also includes normal form theorems for Legendre submanifolds as well
as a multi-jet transversality theorem for Legendre immersions.
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1. INTRODUCTION

A smooth manifold M?7t! equipped with a one form of satisfying the non-
degeneracy condition that n A dn™ never vanishes is called a contact manifold and
an immersion ¢ : £® — M 2"+ satisfying the condition ¢*n = 0 is called a Legendre
immersion.

Such immersions arise in both classical and quantum mechanics, [AM], [Arl]
and [E], in the study of partial differential equations, [Ly] and in complex anal-
ysis as peak-interpolation sets for the algebra A(D) of functions holomorphic on
the strictly pseudoconvex domain D, continuous on D [BS], [CC1], [CC?2], [HS],
[R1]. A classification of Legendre immersions is, therefore, of some interest and is
the subject of the present paper. The related problem of classifying Lagrangian
immersions into symplectic manifolds was studied by Lees [L] using ideas of M.
Gromov|[Gr].

In [L], Lees classified homotopy classes of Lagrangian immersions into a symplec-
tic manifold by using the work of Weinstein [W1] to adapt the proof of Haefliger
and Poenaru [HP] of the classification theorem for combinatorial immersions to the
symplectic setting. The strategy here is the same. The main technical result needed

Date: June 17, 1996.

1991 Mathematics Subject Classification. Primary: 53C15; Secondary: 51A50, 58F05, 57R42.

Key words and phrases. contact manifold, symplectic manifold, Legendre immersions,
transversality, totally real submanifolds.

Postscript copies of this paper are available at http://www.math.washington.edu/ duchamp/.

1
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to use the Haefliger-Poenaru machine is a certain homotopy extension lemma (Sec-
tion 5 of this paper). Lees’ proof does not readily adapt to our case because it is
based on the construction of symplectic isotopies of a symplectic manifold which
are localized on a small open set and the corresponding construction does not work
on contact manifolds. This necessitates a different proof of the homotopy exten-
sion theorem. Apart from this, we proceed as Lees does; but because we do not
have to consider the cohomological condition of Lees our proof is more straightfor-
ward. Because we wish to prove certain extension theorems with no analogue in [L]
and because the results here are of interest to complex analysts, we present here a
relatively detailed exposition.

The outline of the paper is as follows. Section 2 contains a statement of the
main results. In Section 3 several applications of the results stated in Section 2
are presented. Section 4 contains various theorems on normal forms for Legendre
immersions in the spirit of Weinstein [W1]. In Section 5 a homotopy extension
theorem is proved. Section 6 contains the statement and proof of the classification
theorem for Legendre immersions. In Section 7 a version of the Thom transversality
theorem for Legendre immersions is proved and used to show that in the compact
case every Legendre immersion is homotopic to a Legendre embedding.

I wish to thank E. L. Stout for many helpful discussions. This paper arose
out of an effort to answer several questions raised by him in [St]. Discussions
with M. Bendersky, A. M. Chollet, R. Hain, and D. Ravenel were quite useful.
D. Bennequin carefully read an early draft of the paper, who found an error in my
original proof of the Homotopy Extension Lemma in Section 5. Claude Viterbo
fixed the error, and the proof given in Section 5 is essentially his.

Remark [added June, 1996] The original version of the paper was distributed
in preprint form in 1982. In view of the imminent publication of Gromov’s book
[Gr] in which he presents a general theory of which the main result of the present
paper 1s a corollary, I chose not to publish. Gromov’s book, however, refers to
the preprint, and the repeated requests for copies of the preprint indicate that it
should be made more widely available. Apart from correcting the error in the my
original proof of the Homotopy Extension Lemma and updating the bibliography,
I have kept the paper pretty much in its original form. The reader should consult
Gromov’s book [Gr] and the paper of Audin [Au] for more recent bibliography.

2. DEFINITIONS AND STATEMENT OF RESULTS

In this section we review the definition of Legendre immersion, define the various
types of homotopies of such immersions and state our main results concerning the
homotopy classification of Legendre immersions.

A contact manifold is a pair (M, n) consisting of a manifold M of dimension
2n 4+ 1 and a one form n with the property that the (2n + 1)-form n A (dn)” is a
volume form. The Reeb vector field of (M, n) is a vector field X, determined
by the conditions n(X,) = 1 and X, |dy = 0. A horizontal vector is a vector
annihilated by 1 and the rank 2n subbundle of T(M) consisting of all such vectors
will be denoted by H(M).

Example 2.1 (Circle Bundles). A good example to keep in mind it the case where
M is the total space of the canonical circle bound of a Kahler manifold and 7 its
holomorphic connection one form. In this case X, is the vertical vector field defined
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by the circle action on M and H(M) is the bundle of horizontal vectors of the
connection.

It is not hard to see that the form dn defines a symplectic structure on the bundle
H(M) and it can be shown [W1, p. 8] that one can always find a complex structure
J:H(M) — H(M) on H(M) which is compatible with the symplectic structure,
e, if X and Y are vectors based at p € M then dp(JX,JY) =dn(X,Y). We will
assume that such a complex structure has been chosen; and in the case where M 1is
the boundary of a strictly pseudoconver domain, we assume that J is the restriction
of the complex structure map of the ambient compler manifold. We let g denote the
unique Riemannian metric on M in which X, is a unit vector orthogonal to H(M)
and such that g(X,Y) = dn(JX,Y) for allp € M and X,Y € T(M),. Note that
the form h = g + idn defines a Hermitian structure on H(M).

Let ¥ be an n-dimensional manifold. An immersion ¢ : ¥ — M is called a
Legendre immersion if ¢*n = 0. If ¥y C ¥ is a closed subset of ¥ a germ
at Yo of a Legendre immersion ¢ : V — M, where V is a neighborhood of
Yy, is an equivalence class of Legendre immersions of neighborhoods of ¥j (two
immersions are said to be equivalent if they agree on a neighborhood of ¥g). The
germ of ¢ at g is denoted by [p]. An £-regular homotopy relative to [¢] is a
smooth family ¢; : ¥ — M of Legendre immersions, ¢ € [0, 1], with [¢;] = [¢] for
all .

Notice that if ¢ : 3 — M is a Legendre immersion then its derivative ¢ : T(Z) —
T(M) in injective, it takes values in H(M), and it satisfies the condition ¢*dn =0
so that . T(X), is a Lagrangian subspace of the symplectic vector space H (M), )
for all p € X. We view the derivative ¢, : T(X) — H(M) as an infinitesimal version
of ¢. Notice that homotopies of immersions induce homotopies of their derivatives.
We formalize this observation in the following definitions which are the infinitesimal
analogues of Legendre immersion and homotopy:

For ¥y C ¥ a subset of ¥ an £-bundle injection of T'(X) |5, into H(M) is
a vector bundle injection ® : T(X)5, — H(M) such that ®*dn = 0. The ¢-bundle
injection @ is called an integrable £-bundle injection if there is an immersion
¢ :V — M defined on a neighborhood of ¥g with ® = ¢, 5, .

Remark 2.2. If ¥y C ¥ is an embedded submanifold and @ : T'(X)p, — H(M) is
an {-bundle injection over an immersion ¢ : ¥g — M such that ®p(z,) = ¢ then ®
is integrable. (To prove this, use the exponential map to find a suitable immersion
of a neighborhood of T into M.)

Two f-bundle injections ®; : T(X)y, — H(M), j = 1,2 defined on neighbor-
hoods V;, j = 1,2 of a closed set ¥ are said to be equivalent if they agree over
some neighborhood of Xy. The equivalence class of ®; is called a germ at Xg
of an f-bundle injection and is denoted by [®1]. Let [®] be the germ at Xg of
an f-bundle injection, then an £-homotopy of £-bundle injections relative to
[®] is a smooth family &, : T(X) — H(M), ¢ € [0, 1], of -bundle injections with
(@] = [@].

Our first result is a semi-local classification theorem for Legendre immersions:

Theorem 2.3 (Semi-local Classification).

L. Let ¥g C X be a closed subset of ¥ and let @y : (TX)x, — H(M) be an
integrable L-bundle inclusion over a map o : Xg — M. The map o extends
to a Legendre immersion ¢ : V. — M defined on a neighborhood of Xo(M).
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2. Moreover, there is a regular homotopy ¥y : V — M of immersions extending
@ with the following properties:
(a) Yo«|Zo = Po, Y1 = p; and
(b) Yix : T(X)n, — H(M) an £-bundle injection for allt € [0,1].

Our main result is Theorem 2.4. It is a global immersion theorem which classifies
relative isotopy classes of Legendre immersions. Recall that a subset ¥y C X is
called a smooth neighborhood retract if there is a smooth nonnegative function
¥ — R with Zy = f~1(0) and with df nowhere zero on the open set f=1([0,1])—
Y. The sets Vo = f71([0,¢]), 0 < ¢ < 1 are called tubular neighborhoods of
Yo.

Theorem 2.4 (Homotopy Classification). Let Xq C X" be a compact, smooth neigh-
borhood retract and let [pg] be the germ at Yo of a Legendre immersion into the
contact manifold (M*"+1 p).

1. If @ : T(X) — H(M) is an £-bundle injection with [®] = [po=] then there is a
Legendre immersion ¢ : ¥ — M with [¢] = [po] and ¢ and & are L-homotopic
relative to [®].

2. Moreover, the mapping d : ¢ — @ nduces a bijection between £-regular homo-
topy classes of Legendre immersions relative to [¢o] and {-regular homotopy
classes of L-bundle injections relative to [po+].

3. The subspace of injective, Legendre tmmersions s dense in the space of all
Legendre tmmersions with the Whitney C*-topology.

4. If ¢ : ¥ — M to homotopic to a Legendre immersion ¢ then there is another
Legendre immersion ' which is C-close to v and {-homotopic to .

We now wish to relate the notion of Legendre immersion to the complex structure
defined by J. Notice that if ¢ : ¥ — M is a Legendre immersion then the derivative
v« 1 T(X) — H(M) extends as follows

€ . T(X)C =T(T)©C — H(M)
X+1Y = pa(x) + Tes(Y)

to an injection of complex vector bundles—in fact ©* : T(X)€ — @, H(M) is a
complex bundle isomorphism. We may thus give complex analogues of ¢-bundle
injections, f-regular homotopies, etc. A vector bundle map @ : T(X)x, — H(M)
over a subset ¥y C ¥ is called a C-bundle injection if the map &€ : T(¥)s, —
H(M) is an injection (and hence an isomorphism) of complex vector bundles. A
C-bundle injection @ : T(X) — H(M) is called integrable over Xy C X if there
is an immersion ¢ of a neighborhood of ¥4 into M such that ¢,|s, is an ¢-bundle
injection with @5, = p,x,. The definitions of C-bundle homotopy and germs
of C-bundle maps should be clear.

Note that a C-bundle injection is not necessarily an £-bundle injection. However,
the next lemma shows that in the above theorems (and elsewhere in this paper)
all £-bundle injections and homotopies of £-bundle injections can be replaced by
C-bundle injections and homotopies of C-bundle injections.

Lemma 2.5. Let ¥ be an n-dimensional manifold and (M?"*1 n) a contact man-
ifold with an almost complex structure map J : H(M) — H(M). Then there is
a map ® — ®° which assigns to each C-bundle injection ® : T(X) — H(M) an
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L-bundle injection ®° : T(X) — H(M) which is C-homotopic to ®. Moreover, if
®*dn =0 at * € ¥ then ®, = ®.. The assignment & +— &' depends smoothly on
.

Proof. Let {V,}Y_, be a finite cover of ¥ with V, C U, for U, C X open, let
pa X — [0,1] be a smooth function with support contained in U, and with
pav, = 1 and let {ba1,...ban} be a framing of T'(X) over U, for 1 < o < N.
Denote the Hermitian inner product of H(M) by A.

Now suppose inductively that ®;_; : T(X) — H(M) is a C-bundle injection,
E—1

C-homotopic to & = &gy and that ®;_; is an £-bundle injection on | Ig . We will
ji=1

define a C-bundle map @ : T(X) — H(M) which is C-homotopic to ®3_; with

k
®; an ¢-bundle injection on |JV — j and with &3 , = ®p_1 5 at all 2 € ¥ with
ji=1
®;_,,.(dn) = 0. First set Ekj = ®_1(bg;), j=1,2,...,n and define {Eﬁl, . ,Eﬁn}
inductively by: %1 = Ekl and
=1, 90 7
=5 h(byi, brj) 7
brj = by — Y —LLI L
o7 h(biby) !
for 5 =2,3,...,n. Finally define ®; on Uy by

@ (brj () = (1 — pr(@))br; + pr(2)bi;
for x € Uy and extend to T'(X)|y, by linearity, and extend @y, to all of ¥ by defining
(I>k:(1)k—1 onE—Uk. O

We close this section with two corollaries.

Corollary 2.6. Let X" be a compact manifold whose complexified tangent bun-
dle T(X)C is trivial. Then ¥ embeds as a Legendre submanifold of every contact
manifold M of dimension 2n + 1.

Proof. Take ¢ : ¥ — M to be the constant map. Then the pull-back ¢* H(M) — X
is trivial. Hence, there is a C-bundle injection ® : T(X) — H(M) over ¢. Now
apply part (1) of Theorem 2.4. O

Corollary 2.7. Let g : Bg — M2 t! be an immersion of the smooth p-dimensional
manifold Lo into the contact manifold (M,n), such that p < n and ¢in=0. Then

there s an n-dimensional manifold X containing X and a Legendre immersion

¢ : X — M extending oo if and only if the quotient bundle 3 H(M)/T(3Z)€ — %o

1s the complexification of a real vector bundle over Xg.

Proof. Suppose an immersion as in the corollary exists. Then since € : T(X)€ —

¢*H(X) is an isomorphism extending the complex vector bundle inclusion ¢ :
T(%0)€ — @*H(M) it follows that ¢*H(M) and T(E)&D/T(EO)C = (T(X)z,/
T(%0))€ are isomorphic.

Conversely, let i H(M)/T(20)€ be isomorphic to £ ® C — %, for £ — %
a real vector bundle. The Hermitian inner product on H(M) yields an ¢-bundle
injection ® : F @ T(Xg) — H(M) extending ¢g-. Now identify Xy with the image
of the zero section of £ — Xg.

By Remark 2.2 the map @ : T(E)|z, — H(K) is integrable and Theorem 2.4 (2)
applies. Let ¥ C E be the neighborhood of 3 of Theorem 2.3 (1). O
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Remark 2.8. Let ¢y : ¥y — M be as in Section 2 and suppose that Xy is an
embedded submanifold of a fixed manifold ¥". Let N — ¥ be the normal bundle
of ¥ in X. If the map ¢g extends to a Legendre embedding of a neighborhood of
Yo, ¢ : V — M, it follows that the derivative map ¢, : T(V)|5, — H(M) induces
an isomorphism ®LNC — ¢*H(M)/T(20)€. The above corollary shows that the
existences of such an isomorphism is sufficient for ¢qg to so extend.

3. EXAMPLES AND APPLICATIONS

In this section we will consider several examples of contact manifolds and apply
the results stated in Section 2 to characterize their Legendre submanifolds.

The universal local model of a contact manifold is the space R?*"*! with contact
form.
n .
(3.1) no = du— ¥ ydx'
i=1
where (z,y,u) = (2',..., 2", y1,...,yn,u) are coordinates on R*"*1. Darboux’s

Theorem states that every contact manifold is locally equivalent to an open sub-
manifold of (R***! ng). Suppose now that f : R™ — R.is a smooth function. Here,

and elsewhere, we will use the notation df(z) = %@, . %(f)) when no confusion
is likely to arise. The map
) RTL N R21’L+1
(32) J(f)
v (z,df (z), f(2))

is easily seen to be a Legendre embedding.

A construction due to Weinstein [W1, p. 25] extends this example as follows. Let
¥ be the hypersurface in R"*! given as the zero set of the function g : R"*' — R
with dg never zero on . Let (z,v) € R” x R = R"*! be coordinates and let
F :R™! — R be a function with g = %. Then the following map is a Legendre
immersion

e Rn+1 . R2n+1
{ (z,v) — (z,dFy(z), F(z,v)

where F,, = F(—,v) : R™ — R is smooth. This construction can be used to give
an explicit Legendre embedding of the unit sphere S* ¢ R™*! into R**!: choose
(F(z,0) = (J2]* = 1)o +13/3.

Example 3.3 (Legendre Submanifolds of RS). It is possible to determine precisely
which surfaces admit injective immersions into R”. (Arnold [Ar2] gives an inde-
pendent and different proof of an equivalent result.)

First observe that oriented surfaces all embed in R®. To see this represent an
oriented surface X as the zero set of a function g which is negative on the bounded
component of R?/Y and such that the lines #! = constant, v € R intersect ¥ at
most twice (and at those points once with v > 0 and once with v < 0). Setting

F(z,v) = [g(x,t)dt one obtains a Legendre embedding of ¥ into (R”,10).
0

To determine which unoriented surfaces ¥ admit injective, Legendre immersions
into R® observe that by virtue of Corollary 2.6 we need only determine which sur-
faces have trivial complexified tangent bundles. This problem is solved by a routine
application of obstruction theory. The only obstruction to triviality of T(X)€ is
its first Chern class. However, if ¥ is not compact or has non-empty boundary
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H?(X;Z) vanishes. Therefore, we may assume that ¥ is a closed unorientable
manifold. c c
Since the bundles T(X)€ and m are isomorphic and ¢; (m ) = —c1(T(X)°)

we can identify C1(7T(X)€) with its mod 2 reduction w(T(X)€) = wa(T(Z) @
T(X)) = wi(X) where w; denotes the ith Stiefel-Whitney class. However, every
closed unorientable surface can be expressed as a direct sum N#T, where T} is
an oriented surface of genus g and N is either K| the Klein bottle, or RP?, real
projective space. It is now an easy exercise in algebraic topology to show that
wi(X) = 7*wy(N) where 7* : N#T, — N = N#T,/N is the quotient map. Again
it is not difficult to show that #* : H?(N;Zs) — H?(X;Z2) is injective and that
w1(K)? = 0 but wl(RP2)2 # 0. Therefore, the only surfaces which do not
immerse into R’ as Legendre submanifolds are the direct sums of RP?
and closed orientable surfaces.

Example 3.4 (Exact Lagrangian Submanifolds). A Legendre immersion @ : £ —
R?*! gives rise to a Lagrangian immersion ¢ : £* — R** where R?" is equipped
n .
with the standard symplectic form w = Y da’ Ady;. Forif 7 : R*"T! — R*" is the
i=1
projection @ (z,y,u) = (z,y) then setting ¢ = 7 o & gives the desired immersion.
However, not every Lagrangian immersion is of the form 7 o . To see this set

n .
6 = > y;dz* and note that n = du — 7*#. Then observe that the condition &*n =0
i=1

implies that for ¢ = 70 &, d(¢*u) = ¢*0 and hence the pull-back ¢*# must be
exact for ¢ to be of the form 7o @. If ¢*8 = df for some function f on ¥ then the
map @(p) = (p, f(p)) defines a Legendre immersion of the required form.

More generally, let (N7 df) be a symplectic manifold,set M = NxR = {(p, u)}
and set n = du — 7*0 with 7 : M — N the project map. An exact Lagrangian
immersion is an immersion ¢ : X® — N for which ¢*f is exact. Tt is easy to
see from the argument above that a necessary and sufficient condition for a
Lagrangian immersion ¢ to lift to a Legendre immersion ¢ : ¥ — M is
that ¢©*f be exact. If ¥ is connected then @ is uniquely defined up to addition of
a constant.

An important special case of the above construction is the following. Let X be
an n-dimensional manifold without boundary. Let J(X) be the space of one-jets of
real-valued functions on X and denote the one jet of the function f at the point
p € X by j(f)p. Since j(f), is completely characterized by the pair (df,, f(p)),
there is a diffeomorphism

{ J(Z)=T*(Z) xR
J(F)p = (dfyp, f(P))

Therefore, the vector bundle J(X) will be identified with the bundle T*(Z)xR — X
and ¥ will be identified with the image of the zero section i : & «— T*(X) x 0 —
J(X). There are projection maps 7p : J(X) — T*(X) and u : J(X) — R. The form
ny on J(X) defined by

ns(X) = du(X) — a(7. X)
for X € T(J(X))(a,u,) Mmakes J(X) into a contact manifold. If zl, ... z") are

coordinates on J(X) then ng = du— 3 y;dz’. In particular (J(R"), nrn) coincides
i=1
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with (R2”+1, no). Note also that if fy is the fundamental 1-form on 7*(X) then
Ny = du — 770y

It is easy to see that given a smooth function f : ¥ — R and a diffeomorphism
7 : 3% — X the mapping

e, (fim)=3(f)oT: T = J(X)
is a Legendre embedding since j(f)*du = df and j(f)*mhy = df* 0y = df.

The next theorem was stated and proved in [W2] with the condition n # 3. We
give a proof valid for all dimensions.

Theorem 3.5 (Weinstein [W2]). Let " be a smooth manifold with Euler charac-
teristic zero and let i7 : ¥ — T*Y denote the zero section. Then there is a smooth
family of exact Lagrangian immersions ¢y : ¥ — T*X, t € [0, 1], with p1 = ir and
01(X) Nir(X) = . Moreover, p; can be made arbitrarily C°-close to ip for allt.
Finally, if ¢} is another such family then @1 and ¢} can be connected by a smooth
family ¢ - X — T*(X)/7(2), t € [0,1] of exact Lagrangian immersions such that
w; is CO-close to i for all t.

Proof. Set M = J(X)/X, and homotope the f-bundle injection i, : T(X) —
H(J(X)) to an f-homotopic ¢-bundle injection ¥ : T(X) — H(M) that is C°
close to .. (This can be done because the Euler characteristic of ¥ is zero.) Let
¥ : ¥ — M denote the map of base spaces associated to ¥. Next apply Theo-
rem 6.14 to obtain a Legendre immersion ¢ : ¥ —C J(X) which is C°-close to
i: Y — J(X) and a smooth family, @; : ¥ — J(X),t € [0,1], of Legendre im-
mersions, C%close to i. Given two such families ¢ and @} apply Theorem 6.14 to
obtain a third family ¥; : & — M of Legendre immersions connecting ¢1 and @
such that \i’t is C%close to i. O

Example 3.6 (Periodic Lagrangian Submanifolds). Yet another class of Legendre
submanifolds arose in Einstein’s treatment [E] of the Bohr-Sommerfeld quantization
conditions. Let (N?" df) be an exact symplectic manifold and let S = R/27
with coordinate function u(mod2x). Set M = N x S' and n = du — 7*6 with
7 : M — N the projection map. Then a necessary and sufficient condition for a
Lagrangian immersion ¢ : ¥ — N to lift to a Legendre immersion ¢ : ¥ — M is
that the cohomology class 5=[v*6] € H'(Z;R) be integral (i.e. for all closed loops
7 in X the integral % f7 ©* in an integer). The lift ¢ : X — M determines a global

phase function ¥ on ¥ and that such a function exist is Einstein’s quantization
condition in [E].

This example can be generalized as follows. Let (N, w) be a symplectic manifold
with [w/27] € H?(N;R) an integral cohomology class. Then there is a circle
bundle 7 : M — N with connection form 5 such that dnp = #*w. An immersion
¢ : X — N is Lagrangian precisely when ¢*(M) — 3 with the induced connection
form 75, is flat. In that case, the holonomy representation w1 (M) — U(1) can be
interpreted as a cohomology class 5=[n,] € H'(M; R/Z) which vanishes if and only
if the connection n, has no holonomy. The vanishing of %[n(p] 15 a necessary and
sufficient condition for the map ¢ to Lft to a Legendre immersion ¢ : ¥ — M.
Note that the image of 5-[n,] in H?(X, Z) under the Bockstein homomorphism of
the exact sequence 0 — Z — R — R/Z — 0 is the Chern class of ¢*(M) — X and
5[] is an example of a Chern-Simons invariant.
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Stout considered the example of the Hopf bundle S%?n + 1 — CP” in [St]. The
natural inclusion ¢ : RP" — CP" is a Lagrangian immersion with respect to the
standard Kahler form CP". One can show that 5-[n,], reduced (mod 2), is the
standard generator of H*(RP™;Z/2) and, therefore, ¢ does not lift to a Legendre

immersion into S?**!. In fact, RP" seldom embeds as a Legendre submanifold of
S2n+1.

Proposition 3.7. The only integers for which RP" embeds as a Legendre subman-

ifold of S aren = 1,3 and 7.

Proof. (This argument is due to D. Ravenel). First note that on any map ¢ from
RP" into $?"*t! is homotopic to a constant map and, therefore, the pull-back
bundle ¢*H(S?"+1) — RP" is trivial. Hence, by Corollary 2.6 we need only
determine the integers for which T(RP™)¢ is trivial.

It is well-known that T(RP™) is trivial for n = 1,3,7. (For n = 7 note that
the framing of the tangent bundle of the unit Cayley numbers is invariant under
derivative of the antipodal map and for n = 3 recall that all orientable three-folds
have trivial tangent bundles.)

Next observe from [MS, pp.45-47] that the total Stiefel-Whitney class of T(RP")€
is (I + w)**+? = 1 from which the (mod 2) binomial theorem yields n = 2™ — 1,
m an integer.

We now show that if n is larger that 7 then T(RP")€ @ 1€ (and, hence,
T(RP")€) is not trivial. (1¢ denotes the trivial complex line bundle.) Adams
[Ad] showed that the reduced complex K-group f(O(RP”) is an additive cyclic
group of order 2[*/2 generated by vC, the complexification of the canonical line
bundle on RP". However, by [MS, p. 45], T(RP")€ @ 1€ = (n + 1)v©. Since
(n41) < 2?2 for n > 7 it follows that T(RP™)€ is not trivial (or even stably
trivial) for n > 7. O

4. NORMAL FORMS FOR LEGENDRE IMMERSIONS

In [W1] Weinstein obtained various generalizations of the classical Darboux
lemma and used them to give normal forms for Lagrangian immersions. In this
section the methods of [W1] are used to obtain analogous results for Legendre
immersions.

The following version of the Darboux lemma is fundamental to our subsequent
development.

Lemma 4.1. Let 19 and 11 be two contact forms on a manifold M which agree
on the closed set C C M. On a sufficiently small neighborhood N of C' the forms
ne = no +t(m — no), fort € [0,1] are all contact form. Let X,, denote the Reeb
vector field on N associated to the contact form Suppose that C s contained n an
open 2n-dimensional submanifold U C N and that X, are transverse to U for all
t. Then there is an open neighborhood N’ C N of C and a vector field 7 on N’
whose unit ttme flow p satisfies the equation pu*n, = ng n a neighborhood of C. The
vector field 7 —and hence its flow—depend smoothly on 11 and on the submanifold
U.

Proof. First let  be any contact form on N with X, transversal to U and let o be
a one form vanishing on C. There is a unique decomposition @ = ¢ - 7+ [ where
B(X,) = 0 (see Section 2). Because X, is transversal to U the equation X, (f) =g
can be integrated to yield a smooth function f defined on a neighborhood V of C
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in N with f =0on UNV. Since X,,_| (df —gn) = 0 and dn m(ar) is nondegenerate,
there is a unique vector field Z, characterized by the conditions Z,_ 5 = f and
Zoldy = a—df = B+ (gn — df). The Lie derivative £z, can be computed as
follows

Ezan:d(ZaJ 77)+ZQJ d?]:df-{—a_df:a.

Note that 7, vanishes on C'.

Apply the considerations of the above paragraph to the forms n = 1, and a =
171 — 1o to obtain vector fields Z,,0 < ¢t < 1, vanishing on C and defined on a
neighborhood V. C M of C. Let v4(p,s) denote the flow of 7, and set p;(p) =
vi(p,t). (Since Z; is zero on C the functions y; are defined on a neighborhood
N' of C.) Following the proof given in [W1], one shows that ufn; = ng. Now set
1 = p1. By construction p; depends smoothly on 11 and U and p; is the identity
on C. O

Remark 4.2. The fact that the condition Lz, (1) = 0 holds on C implies that the
flow of Z; leaves 5, fixed on C'. But in general the flow of Z; will not fix dm
even at points of C'. The flow of Z; will only keep dn; fixed at points for which
LZldﬂl = Cl?]l - d?]o =0.

Theorem 4.3 (Normal Form for Legendre Immersions). Let ¢ : ¥ — M1 pe
an immersion into the contact manifold (M,n) with ¢*n = 0 and ¢*dn = 0 on
a closed set g C X. Then there is a neighborhood N C J(X) of g and a local
diffeomorphism ¢ - N — M extending oz, with o*n = ns. The assignment p — ¢
depends smoothly on .

Proof. We first define a local diffeomorphism ¢ : V' — M from a neighborhood of
Yo in J(X) into M with ¢jyay = ¢|vnz. Use a fixed Riemannian metric on ¥ to
identify 7*(X) with T(X) and let ¢ : J(Z) = T(X) x R — M be the map defined
by

(4.4) Y(y,5) = exp(J (2. Y) + 5X 4(), 1)

for Y € T(X), p € & where J T(M) — H(M) C T(M) is the composition of
the projection T(X) = R - X @ H(M) — H(M) and the complex structure map
J: HM) — H(M) and exp : T(M) x R — M is the exponential map of the
Riemannian manifold M —of course 1 is only defined on a neighborhood V of g in
J(X). A standard computation with the exponential map which utilizes the facts
that ¢*np, = 0, ¢*dyxs, = 0 and that ¢(V,JZ) = dn(Y,Z) for Y, Z € H(M)
(see Section 2) shows that ¢*n = 5y and ¥*dn = dng on Ey. Clearly ¢ depends
smoothly on ¢.

Now set g =z and n; = ¢*npand let U = VN (T*E x (0)) C J(X). Note that,
after shrinking V if necessary, it follows from the equations 9o = 11 and dny = dm;
on Yy that the vector fields X, and X, agree on X, and are transverse to U.
Lemma 4.1 now applies to give a diffeomorphism p of a neighborhood N of ¥y into
V with p*n, = . Finally set ¢ = ¢pop : N — M. Since ¢ and p depend smoothly
on ¢ so does . O

Corollary 4.5. Let g : % — M?"t! be an immersion into the contact manifold
(M, n) with ¢*n = 0 and ¢*dyp = 0 on a closed set Xy. Then there is a smooth
family of immersions ¢, : V — M,t € [0,1], defined on a neighborhood of Yo with
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win =0 and p;dn =0 on Xg and v a Legendre immersion.! The homotopy of vy
depends smoothly on po and pi(p) = po(p) at all points p € V for which ¢5,(n) =0

and @5, (dn) = 0.

Proof. Since 9z = ¢ and ¢ is regularly homotopic to ¥, it follows that the im-

mersions ¢o = Yoz NNE — M and 1 : NNYE — NEZ M are regularly
homotopic. In fact, in the notation of the proof of Lemma 4.1, the family of maps
w1 - NNE — M defined by ¢:(p) = ¥ ovi(p,1),0 <t < 1 is a regular homotopy
between o and @1 with @z, = oz, and @;n and p;dn vanishing on X, for all
t € [0,1]. Note that, given ¢, a Riemannian metric on ¥ and the Hermitian metric
on H(M), the above arguments give a constructive method of obtaining the maps
@ and ¢y which depends smoothly on ¢. O

We close this section with two technical results which we need in Section 5 and
Section 6.

Proposition 4.6.

(1) Let ¥ and M be as above with 90X = 0 and let K be a finite cell complez.
Let ¢ : ¥ x K — M be a continuous map, smooth on each cell of K, with ¢s =
P(—,8) : X — M a Legendre immersion for all s € K. Then there is a neighborhood
NCJ(X) ofE and a map ¥ : N x K — M, extending ¢, smooth on each cell of K
and such that the local diffeomorphism Uy = ¥( ,s) : N — M satisfies Uin = ns
for all s € K.

(2) If 0L # 0 and o : & x K — M 1is as before then there is a collaring ¥ of &
and an extension ' : X' x K — M with ¢’ a Legendre immersion for s € K and
@' smooth on cells of K and v’ extends as in the previous paragraph.

(3) Now choose a point so € K and set ¥g = W, (by (2} we may assume that
0Y. = 0) and let g C ¥ be compact. Then there are neighborhoods V. C X of X
and U of sq with the property that there are (cell-wise) smooth families of functions
fs : 2 — R and diffeomorphisms 7, : V — X i X for s € U with fs; near zero and
7s near the identity in the C'°-topology such that

(4.7) Vs =vooj(fs)ots,s €U
on'V.
Proof. (1) This is an immediate consequence of Theorem 4.3 with C' = X.

(2) First extend 9 to a cell-wise smooth map ¢ : &/ x K — M where ¥/ is a smooth
collaring of . Now apply Corollary 4.5 to the family ¢;,s € K with ¥y = 3.

(3) By compactness of Xy and continuity of ¢ there are neighborhoods V' of Xy
and U’ of sy such that there is a smooth family ¢, : V! — N,s € U’ of Legendre
immersions such that p,, = ¢ : V! — N, the zero section and ¥, = ®;, o ;.
After shrinking V’ and U’ we may assume (again by compactness of Xg) that
s = a5 0T, where 75 1 V — X is a diffecomorphism into ¥ and a; : V — J(X) is a
section. Because g, is a Legendre immersion it follows that a; = j(f;) for a unique
function f; : 7,(V) — R. By shrinking V and U if necessary we can extend f; to
3. Clearly, the families 7, and fs are cell-wise smooth. O

1Tn [CC2] Chaumat and Chollet give an example of a subspace of M which is locally contained
in Legendre submanifolds of M but not globally contained in any Legendre submanifold.
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Theorem 4.8. Let K be a finite cell complex, . C K a closed subcompler, g
an embedded submanifold of a manifold ¥",0% = 0, and (M?"*1 n) a contact
manifold. Let ¢ : ¥y x K UX x L — M be a simplez-wise smooth map with
o(—,8) = ¢, satisfying ¢in = 0 and let e T(X)g, x K — H(M) be piece-wise
smooth family of (-bundle injections extending . : T(Xo) x K UT(X)g, x L —
H(M). Then there is a neighborhood V' of Yo and a family of Legendre immersions
YV x K — M, agreeing with ¢ on the intersection of their domains and with
YV x K — M, agreeing with ¢ on the intersection of their domains and with
Vs T(X)5, x K — H(M) ¢-homotopic to V.

Proof. Because Yy is an embedded submanifold we can extend ¢ : ¥g x K — M
to a simplex-wise smooth family of immersions ¢/ : V/ x K — M with ¢/ = ¢
on V' x L and ¥, = ¢ on T(X)s, x K,V' a neighborhood of Xy. Now apply
Corollary 4.5. O

Normal form for transverse curves. Although we do not need it later, we
include here a normal form theorem for curves which are transverse to the contact
distribution. This result was used by Globevnic and Stout [GS].

Identify R with the u-axis {(0,0,u)} C R***' and let 5o = du — 3 y;dz’ be as
in equation (3.1).

Theorem 4.9. Let (M,n) be a contact manifold of dimension 2n + 1 and let 7y :
R — M be a curve such that the pullback v*n never vanishes. Then there is an
extenston of v

.U —-M
to an open neighborhood U C R*™ ! such that

®*n = fno
where f 1s a smooth positive function on U.

Proof. We will express ® as a composition of diffecomorphisms ® = &30 P50P; 0 Py,
where ®q : Uy — M is a diffeomorphism extending y and ®; : U; — U;_1,5 =1,2,3
are diffeomorphisms between open neighborhoods U; of R C R* T

Step 0: Choose a framing for the contact distribution along v, say 7 : R —
H CT(M), k=1,2,...,2n. This gives an identification of R***! with the pull-
back bundle v* H — R, which is isomorphic to the normal bundle of the curve. Use
the exponential map to construct a local diffeomorphism ®q : Uy — M with the
property that the vectors ®.8/0x and ®0.0/0y;, i = 1,...,n, span the contact
distribution at all points in the image of . It follows that

®5n = gno at all points of {0} x {0} x R.

where ¢ is a positive function defined on Uy.

Step 1: By virtue of Step 0, we may replace M by Uy, and assume that 75
is a contact form on Uy, which agrees with fn along the u-axis. Moreover, by
restricting Up if necessary, we may assume that 7 is of the form

n:g{du—Z(didmi—l—bidyi)}

i=1
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where a; and b are smooth functions which vanish along the u-axis, and ¢ is a
positive smooth function. Set

0 =du—">_ (a;da’ + b dy;) .

i=1
The functions a; and b° are uniquely determined. Because we are only interested
in 7 = g6 up to a non-zero multiple, we are free to set

"\ (9a;(0,0,u) , Ob(0,0,
g(;p’y’ u) =1—= Z < a (au U) 2 _ (au U) yi) )
i=1

With this choice of g, the form n = gf satisfies the identities

EJ dn=0and n=mn
Ou

at all points of the u-axis.
Step 2: Let X, be the Reeb field of . Recall that this means that X, satisfied
the 1dentities
XnJ dn:OananJ n=1.
Observe that by Step 1, X, = 2 along the u-axis.

du
Let v; : Uy — R?™*! be the restriction of the flow of X, to an open subset of

Uy. Now define a map
@, : U; — R
by the formula ¢1(z,y,u) = vy(z,y,0). (That a suitable neighborhood U; exists
follows from the fact the X,(0,0,u) = %, and hence v4(0,0,u) is defined for all
t,u e R.)
By construction,

(4.10) ®7du = du and P4 <3i> =X,.
u

Set 71 = ®in. Then 1 = du along the u-axis. Moreover, equations (4.10) imply
that 7, satisfies the identities

d d
(4.11) a—uJ dn = 0 and a—uJ m=1

on U;.
Step 3: Equations (4.11) and the standard identity

0 0
Lojoum = d (a—uJ 771) + a—uJ dm

imply that the Lie derivative L£5,5,m1 vanishes. Thus, n; is independent of u and
its exterior derivative defines a symplectic form on a neighborhood of the origin of
R?. By Darboux’s theorem there is a diffecomorphism and after shrinking U if
necessary, there is therefore a diffeomorphism of the form

q)2 : U2 — Ul : (CE‘, Y, U) — (¢(£1 y)a 1//}(1‘7 y)au)
such that the 1-form ns = ®37n; satisfies the identity dns = ZZ dz* A dy;. By

shrinking again if necessary, we may assume that Us is contractible.
Step 4: The form 7, satisfies the conditions

12 = 1o on the u-axis
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and

dns = Edmi A dy; = dng on all of Us.

Hence, there is a function h such that
dh = 7]2 — 7]0

and dh(g04) = 0. We may therefore choose h so that it vanishes along the u-axis.
Next let ®3 : Uz — Us be the diffeomorphism whose inverse is defined by the
formula

<I>§1 ey, u) — (z,y,u+ h(z,y,u)),
where Uz = <I>51(U2). Notice that (q)gl)* 7o = n2. By construction, the map &3
satisfies the two conditions
®3ns = no and ®3(0,0,u) = (0,0, u)
Step 5: Set U = Us and & = &g o0 Py 0 By 0 Py : U — R T, O

Remark 4.12. Suppose that v and (M, n) are real-analytic. Then the metric on
M can be chosen to be real-analytic and all constructions in the proof yield real-
analytic objects. Consequently @ is real-analytic as well.

5. THE HoMoTOPY EXTENSION THEOREM

In this section we prove a homotopy extension theorem for families of Legendre
immersions which will be needed in Section 6 to prove the classification theorem
for Legendre immersions. As mentioned in the introduction, my original proof was
incorrect; the proof given here is essentially due to Claude Viterbo.

Theorem 5.1 (Homotopy Extension Theorem). Let (M, n) be a (2n+1)-dimensional
contact manifold. Let ¥y C X be a compact subset of an n-dimensional manifold
3™ with open neighborhood V C X. Let

Y VxKxI—M

be a cell-wise smooth family® of Legendre immersions, where K is a finite complex
and I is the unit interval [0,1], and let Yo N x K — M be a cell-wise smooth
family of Legendre immersions extending the the restriction of ¢ to V x K x {0}.
Then there is a cell-wise smooth family of Legendre immersions

Y UXxKxI—=M
such that

g )Yz, s,t) for (z,s,t) VI x K x T
P(x, s, t) = {1/]0(;5’5) for (z,s,t) € (X — 72) x K x I,

where Vi and Va are open sets with g C Vi CVi C Vo C Vo C V and Vo compact.

Remark 5.2. There is no loss of generality in assuming that X, is a compact, n-
dimensional submanifold with smooth boundary N. Next observe that we can
choose a collaring of N and identify V with the manifold [-2,2) x N. Moreover,
without loss of generality we replace ¥y by [—2,0] x N and ¥ by [-2,2) x N.

2By cell-wise smooth we mean that 1 is continuous and that there is a partition of I into closed
subintervals, I, ..., Inx, so that ¢ is smooth on V' x A x I; for each cell A of K and all ;.
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Notation. The following notation will be in force throughout this section. Points
on ¥ will be written in the form z = (zg,2’) € [-2,2) x N when necessary, and
points on J(X) = T*([-2,2)) x R x T*(N) will be written p = (2o, yo,u,p'), 2o €
[-2,2), (yo,u) € R? p' € T*(N). In particular, the contact form ns on J(X)
assumes the form

Ny = du — yodzo — On

where fx is the canonical 1-form on T*(N). We will make use of the following
natural inclusions and projections (see Example 3.4):

S CTHE) & THE) x (0) C J(D), jo: % J(5),
7 JE) =X mp J(E) = T(X), 7x : T (X)) — X.

The symbol Vs, é € (0,2) denotes the open neighborhood of g, N| x [—2,4). The
symbol s denotes an arbitrary element of the finite cell complex K. Families of
maps ¢ : X x K x I — Y, X and Y smooth manifolds will always be assumed
to be cell-wise smooth and we will use the notations ¢, +(p), ¥(p, s,t) and ¥,(p,1)
interchangeably where (p, s,?) is an element of the space X x K x T .

The proof of Theorem 5.1 requires the following lemma.

Lemma 5.3 (Micro-compressibility). Let ¢, : V — M, (s,t) € K x [a,a+ b] be
a family of Legendre immersions. Then there i1s a number ¢, > 0 such that for
each & € (0,1/4) there is another family of Legendre immersions fJ;s,t V=M,
(s,t) € K x [a,a+ eq] with

1. %s,t(l‘) = 1/)s,t(x) fOT z e Vs,
2. 1/js,t(‘l‘) = t)5,a(z) forx €V — Vas, and
3. Ys.a(®) = s o(x) forz e V.

Given the lemma the proof of Theorem 5.1 is as follows:

Proof. First observe that, after shrinking V if necessary, we may assume that 1 is
defined on the set V x K x [0,1+b) for some b > 0. To see this apply Theorem 4.3
to obtain a family of contact diffeomorphisms ¥ : U x K — M, U C JY(V) a
neighborhood of ¥o C JY(X) with ¢(z,s,1) = ¥(z,s),z € V,s € K. Then, after a
possible shrinking of V', there are a number ¢ > 0, afamily f : VX Kx[l—¢, 1] = R
of functions with f(z,s,1) = 0 for all (z,s) and afamily7: Vx K x[l—¢, 1] = X
of diffeomorphisms with 7(z, s, 1) =  for all (2, s) such that the identity

(5.4) P(x,s,t) = V(i(f(z,s,t)oT(x,s,1))

holds for (z,s,¢) € V x K x [l —¢,1]. Now extend f and 7 in any way to the
interval [1 —e, 14 b] for b > 0 sufficiently small. Then, by virtue of the compactness
of £y x K and the equations f(z,s,1) = 0 and 7(z,s,1) = z, and after another
shrinking of V', the required extension is given by the formula (5.4).

Next apply Lemma 5.3 to each number a € [0, 1+5) to obtain intervals [a, a+¢£,4]
on which conditions (1), (2) and (3) of Lemma 5.3 hold. By compactness of [0, 1]
it is covered by a finite set of such intervals, say

IO = [0760]111 = [(11’(11 +€1]a"' :Im = [amaam+€ﬂ’L] .
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Start by applying Lemma 5.3 to ¢ : V x K x Iy — M with 6 = 6, = 1/4
to obtain a family 1o : V x K x Iy — M with ¢f = 1 on Vj;4 x K x Iy and
Yo(z,s,t) = (x,5,0) on V — V5.

Then apply Lemma 5.3 to ¢ : Vs, x K x Iy — M with § = §; = 6,/3 to
obtain a family ¢} : Vs, x K x Iy — M with ¢, = ¢ on Vs, x K x I; and
1,7)’1(;r,5,t) = Y(z,s,a1) = Yj(z,s,a1) for (z,s) € (Vs, — Vs,) x K, € I, and
Pi(z,s,a1) = Yy, s,a1) for (z,5) € Vs, x K. Therefore, we can extend 1/)’1~ to
V x I by the formula ¢|(z,s,t) = ¢¥4(z,s,a1) for x € V — V5. Define ;1 :
Vx K x[0,a14+¢1] — M by

5 [ o(x,s,t) fortel0,a4]
VI(CE,S,t) - { 1/}/1(.1‘,5,t) fort € Il~

Now inductively assume that we have constructed a family 1/:]' Vx K x[0,a5+
6]'] — M with
i@, 5,1) = Y(x,s,t) for (x,s,t) € Vs, x K x[0,a; + ¢;]

I T do(x,s)  for (z,s,t) € (V = Vs, ) x K x [0,¢5], 6; = 1/3°F2

Apply Lemma 5.3 to the interval ;41 with é = 6,41 = 6;/3 to obtain a family
1/);'4.1 : Véj_l x K x Ij+1 — M with

Pz, s,1) for (z,s,t) € Vs, x K x Ij11
Y(x,s,a;41) for (x,s,t) € (Vs,_, — Vs,) x K x Ij41.

1/);-+1(l‘,8,t) = {

Use this last formula to define 1/)}_1_1 on V x K x I;41 and define 1/:]'_,_1 Vx K x
[0,aj41 + €j41] — M by the equation

~ Pi(x,5,1) for ¢t € [0, aj41]
ir1(x,s,1) =
Vit ) { Yipa(z,s,t) fort € [aj41, 541 + €j41]

After m repetitions the required family is obtained. O
We now turn to the proof of Lemma 5.3.

Proof. Without loss of generality assume @ = 0 and b = 1. The proof consists of a
series of reductions to increasingly simpler cases.

Reduction 1. It is sufficient to prove the lemma in the case where M is an open
neighborhood of ¥ C J(X) and where t, ; is of the form

(55) ws,t = j(fs,k) OTst: Vi—MC J(E)

with 7, : Vi — V32 a family of diffeomorphisms into ¥ with 75 0(z) = « for all
x€Viand f,; : Vajo — R a family of functions with f; o(z) = 0 for all .

To see this apply Theorem 4.3 to the family 1, o : ¥ — M to obtain a family of
diffeomorphisms ¥, : M’ — M with ¥*(n) = nx where M’ is an open neighborhood
of ¥ in J(X) and where the equation ¢, ¢ = ¥, 0 jo : V' — M holds. By choosing
e > 0 sufficiently small, it follows from the compactness of the sets K x Vs, § € (0,2)
that 1, ; can be written in the form

1/}s,t =V, Oj(fs,t) O Tst

for 7, ; and f,; as above. Hence we may replace M by M’ and 1, by the fam-
ily (5.5).
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Reduction 2. In this step we show that, given £ > 0 sufficiently small and M’ C
M C J(X) a sufficiently small neighborhood of £ C J(X), the following condition
holds: For all 6 € (0,1/4) there is a family of diffeomorphisms v, : M’ — M,
preserving 7y such that for ¢ € [0, €] the family ¢ , given by the composition

. 5
Ts,t Jo t

v
1/);’t:V1—>Ef—>M'i>M
satisfies the conditions:

1/};,0 = 1/}5,0
;,t(:‘?) = wg,t(x) for z € Vs
s0(z) = s o(x) forz e Vi — Vas.

(5.6)

It follows that we may once more replace M by M’ and that we may assume that
the family 4, ; is of the form

(5.7) Ysr=jooTss: L — M C J(X).

We will construct the maps nyt as the unit time flows of a family of vector fields
X;S,r These vector fields are infinitesimal automorphisms of the pair (J(X), ns) and
are the analogues of symplectic vector fields.

To construct Xfyt, begin by letting g be a real-valued function on the contact
manifold (M, n) with X, (g) = 0, where X, is the Reeb vector field of M. Then
there is a unique vector field on M, written X, characterized by the conditions
i(X,)n = g and i(X,)dn = —dg. In terms of local coordinates (z,y, u) with n =

du — Y0 yid2t, X, = ai and ¢ = g(z,y) the vector field X, is given by the
u
formula
dg '\ 0 dg 0 dg 0
5.8 X,=g—- = | — — -],
(5.8) g <g Xi:y 33/2') du + ;(8:52 Oy;  Oy; Oz

and an easy computation shows that the Lie derivative Lx n vanishes. The vector
fields Xfyt will be of the form X s for g‘;t a suitable family of functions, which we
now construct. ’

Let U be a neighborhood of jo(V1) with U C M compact and such that 7#(U) C
Vaje, U = Uy x (—c,c) C T*(X) x R, ¢ > 0 and such that for all z € 7(U) the
sets 7=1(z) N U are convex neighborhoods of jo(z) in the vector space 7=1(z). Let
po : T*(M) — [0,1] be a smooth function with pg = 1 on Uy and with compact
support supp (po) contained in mp(M) and such that wx(supp(po)) is contained
in Va/5. Set p = pgpomp : M — [0,1]. By compactness of V1 x K and the
condition f; o = 0 it follows that for ¢ > 0 sufficiently small there are inclusions
§(fs)(V1) C Uy x [—¢/2,¢/2] for all (s,t) € K x [0,¢].

Define a family of functions g, ; : M — R. by the formula

9s,t(p) = p(p) fs 1(7(p)), (s,t) € K x [0,¢€]

for p € supp(p) and extend by zero to all of M. Let X, ; be the family of vector
fields associated to g, ; and use the product decomposition J(X) = T(X) x R to
write X, ; in the form:

0

X1 =Y, hg 1—.
it tt 5
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The local formula (5.8) shows that h; ; is independent of u, asis Y ;, and that both
hs ¢ and Y, ; vanish outside of the support of pg. Since X ¢ is identically zero, the
compactness of K insures that by choosing € > 0 sufficiently small, the inequality

hs < 2
(v,s,t)ETI*I(lgi(xKX[QE” ,t(U)| < C/

holds. It is now clear that the unit time flow of X, ; yields a family of diffeomor-
phisms

ver: M — M, (st)€K x[0,¢]
where M’ is the open neighborhood of jo(V1) given by the formula
M’ = {u € T*(2)|po(v) > 0} x (—¢/2,¢/2) U M — supp(p).
Now choose any é € (0,1/2). Let k : 3 — [0, 1] be a function whose support is

contained in Vi and such that k = 1 on V. Let gfyt = (ko m)gs +, and denote the
associated vector fields by

0
Xf,t = Ysé,t + hg’ta_u
with notation as before. Because k depends only on z in local coordinates (z,y, u),
it follows from formula (5.8) that the equation h? , = (kow)h, ; holds and, therefore,

so does the inequality |h§7t| < ¢/2. The unit time flow of Xfyt then furnishes a family
of diffeomorphisms

I/f’t ‘M’ — M.
On the set U N 7~ 1(Vj) the function pg = 1 and, consequently, the formula

a 2 : afs 1 8
5 3
Xou = f“(:‘?)au * p Ozt dy;

holds. It follows then from the convexity of #=1(z) N U that the formula

vy (g, u) = (2, g+ dfs e u + fia(2)
is satisfied for sufficiently small (y,u) and z € Vs. Also, since Xfyt has support

contained 1n 71'_1((/25) and since Xg,o = 0 for all s € K it is now clear that condi-

tions (5.6) hold.

Reduction 3. Replace M by M’ as in step 2 and suitably restrict €. Then by
virtue of the previous step we need only prove the lemma for the family of Legendre
immersions

Ts,t

IR AL SEL Vi 105}

Since N is compact and 7, o(z) = z for (z,s) € Vi x K, for ¢ > 0 small the maps
Ty ¢ restricted to the set [—1/2,1/2] x N assume the form

Tor i [=1/2,1/2] x N = (=2,2) x N

To (20, 2') = (ks,e(20,2'), s, 1(20, 2'))
where
Cstwe i N —= N2’ — ¢ 4(20,2")
is a family of diffeomorphisms of N with ¢, 05, = idy and
ksio:[—1/2,1/2] = (=2,2) : 2o — ks (20, 2)



LEGENDRE IMMERSIONS 19

is a family of injective immersions with k; ; »/(20) = 0.
Reduction 4. In this step we show that we may further assume that the family
et [=1/2,1/2]x N = (=1,1) x N & M
is of the form
1/}§,t(l‘0, fv’) = (hs,t(f'@) + Zo, ﬂ?/) on Vis — Vas/a.

Since the family ¢ ; is cell-wise smooth, there is a smooth bijection v : [0, 1] —
[0, €] such that the map

®:[-1/2,1/2] x N x K x [0,1] = N

(I)(S(L Ila S, Z) = Sos,'y(z)(an ml)

is smooth on each of the sets [-1/2,1/2] x N x A x [0, 1], where A is a cell of K.
To ensure that ® is smooth, it is only necessary to choose v so that all derivatives
of 4 vanish on the finite set of values at which ¢ is not smooth in ¢.)

Pick § € (0,1/4) and let p : (—1/2,1/2) — [0,1] be a smooth function with
support in (—1/2,38/3) and with p =1 on (=1/2,6). Observe that the family

gogyt :[-1/2,1/2] x N — N

S‘le,t(IO; lJ) = Qos,tﬂy(p(:cg))/a(IOa xl)
1s cell-wise smooth and satisfies the conditions:

80;,0 = ¥s,0
(5.9) @5 (20, 2) = @5 1(x0,2)  for (zo,2") € Vs
Sols,t(mov 2') = ps0(z0,2") for (z0,2") € Vijz — Vas/a.

Next observe that for ¢ > 0 sufficiently small, the inequality
ko t(z0,2)| < 3/4

(0,05 4)€[= 112 1) 2]% N x K x[0,¢]
holds. For this value of € and for any § € (0,1/4) there is a family
K, [=1/2,1/2) x N — (=2,2)
satisfying the conditions

]‘7;,0 = ks,0
(5.10) k’;yt(fﬁm z') = ks ¢(zo, 2") for (zg,2") € Vi
k’gyt(fﬁm 2') = hy4(2') +xo for zg € (36/2,1/2),

where the map h, s : N — (—1,1) is defined by the equation
hs+(2") = ks 1(2,36/2) — 36/2.
The family of Legendre immersions

Wy [=1/2,1/2]x N = (=1, 1) x N & M

¥y (o, 2') = Jo(k o(x0,2), @} (20, 2"))
satisfies the conditions

1/{/970 = 1/)3,0
(5.11) st = ¥s,1 on the set V;
1/;2,%(:130, ') = (hs () + xo,2') on Vijs — Vas)s
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(The second condition is obtained by extending v ; to ¥g by the formula ¢ ,(z) =
s 1(z) for z € Xg.)

At this point we have reduced the problem to the following special case: The fam-
ily of Legendre immersions 1, ; is of the form on the submanifold N x (36/2,1/2):

¢s,t(x01 I‘/) = jo(ks,t(x()am/)7 ml) S M g J(E)

where ks 4(—, ') 1 (36/2,1/2) — (—=2,2) is a family of injective immersions satis-
fying the conditions:

ks o(zo,2") = xo, for (s,zo,2') € K x (36/2,1/2) x N

ks,t(IOa Il) = hs,t(xl) + xg

maX(s,t,x’)EKx[O,s]XN |hs,t($/)| < 3/4

We will show how to modify 4, ; on N x (36/2,1/2) to obtain another family of
Legendre immersions v , such that the following conditions hold

wg,t(fb) s 1(x) for z € Vs
§1(x) = Jjo(x) for 2 € Vi — Vas
(

S,
1/;;’0(;13) = ts0(x) forze Vi,

Choose a neighborhood U of N x [-1,1] C M C J(X) in M of the form U =
U’ x U" where

(5.12)

Ul — {(manOau) S R3 | |£L‘0| < a, |y0| < ba |U| < b}a

where 2 > a > 1, b > 0 and U” is an open neighborhood of the zero section
N CT*N and we are using the coordinates of Remark 5.2. We will be done if we
construct a family of curves

Ysw 1 (36/2,1/2) = U’ for (s,t,2") € K x [0,e] x N
with 7} ; . (du — yodzo) = 0 and satisfying the conditions

Ys,0,0(¢) = hs (2') + ¢ for ¢ € (36/2,76/4)
¥s.4,2(¢) = (¢,0,0) for ¢ € (26,1/2)
¥s,00(¢) =¢ for —¢ €(36/2,1/2)

For then the family 1/;;7t will be given by the formula
¥y (20, 2") = (Vs,4.0(20),2") €U x NCU' x U" C M.

Let f',¢' : R — [—1, 1] be two even smooth functions (see Figure 1) with support
on the interval [—1, 1] and satisfying the conditions:

F(0)=1, g () <0 for [(| < 1—e¢,
f(¢)>0 and ¢'(¢) >0 forl—c< (<1
[ Qe =1 S ©dc =0

where ¢ € (0,1/2) is be determined shortly.
Next set

¢

¢
f(¢) = /_1 f'(z)dz and g(¢) :/ g'(2)dz.

-1
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< / s Z N <
1 1 -1 —14 —c 1

FiGUuRrE 1. The graphs of f/({) and ¢'(¢).

The zg,y0 and u components of the family of curves 7, are defined by the
equations (see Figure 2)

\

(a) U (b) |

FI1GURE 2. The image of the curve 7, ; o/

To ensure that the map ( — 7, 1 »/({) defines an immersion we must choose the
constant ¢ so that the functions X, ; »/({) and Y; ; ;/(¢) have no common critical
points. It is an easy exercise to see that for each (s,t,z’) the derivative X ; »/(¢)
has at most two zeros contained in the interval (136/8,156/8) and, therefore, by
compactness of K x [0,¢] x N there is a number ¢ € (0,1/2) such that for all
(s,t,2') € K x [0,e] x N the zero set of X;,t,x'(o is contained in the interval
((134¢)6/8,(15—c)6/8). Because the critical points of Y; ; 5+(¢) lie outside of that
interval, the map ¢ — %, ¢ »/(¢) is an immersion.

It is an easy exercise to see that v, ;s has all of the required properties.

O

6. THE CLASSIFICATION OF LEGENDRE IMMERSIONS

In this section we prove the classification theorem for Legendre immersions. As
mentioned in the introduction, the proof here closely parallels the proof in [HP]
of the classification theorem for combinatorial immersions. Lees [L] has used the
techniques in [HP] to prove a classification theorem for Lagrange immersions.
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To state the classification theorem we must define several semi-simplicial com-
plexes. Semi-simplicial complexes are sometimes called simplicial sets. The geo-
metric realization of the semi-simplicial complex K will be written |K|. For basic
facts about semi-simplicial complexes see [Z].

Definition 6.1. Let (M?"*! n) be a contact manifold without boundary and let
¥ be a manifold, possibly with boundary. Let ¥; C ¥ be a compact smooth
neighborhood retract (see Remark 2.2) and let [¢] be the germ at Xy of a Legendre
immersion into M. The semi-simplicial space of Legendre immersions relative
to [p], written Z,(X, M), is the semi-simplicial complex whose simplices are smooth
families ¢ : ¥ x A? — M of Legendre immersions with [¢;] = [¢] where 1y = ¥(—, 1)
and whose face and degeneracy maps are induced by the face and degeneracy maps
of the standard simplex A? C R?t!. Note that if K is a semi-simplicial complex
then a semi-simplicial map from K to Z (X, M) is a simplex-wise smooth map,
¥ X x |K| — M with [¢;] = [¢] and ¥k = 0 for all s € |[K|. Similarly the space
Co(T(X), H(M)) of £-bundle maps relative to [¢] is the semi-simplicial space

whose simplices are smooth maps ¢ : T(X) x A? — H(M) with ¢( ,1) = ¢; an
£-bundle injection and with [1},] = [¢,] for all ¢ € A? together with the obvious face
and degeneracy maps. If ¢ = () we will simply write Z(X, M) and C(T'(M), H(M)).
Again a semi-simplicial map K — C,(T(X), H(M) is a simplex-wise smooth map
¢ : T(Z) x |K| — H(M) with 1, an £-bundle injection such that [1},] = [¢.] for all
s.

The map ¢ — 1, which assigns to a Legendre immersion its derivative ¢, :
T(X) — H(M) induces an injection of semi-simplicial complexes

d:Z,(E,M)— C,(T(X), H(M)).
The first form of the classification theorem is the following theorem:

Theorem 6.2. The map d : Z,(X, M) — C,(T(X), H(M)) is a homotopy equiva-
lence.

In the case where Xy C X is a compact embedded submanifold a slightly stronger
version of Theorem 6.2 can be given. Let ¢ : ¥y — M be an immersion with
¢*n=0and let ¢ : T(X)|z, — H(M) be an {-bundle isomorphism which extends
wx : T(Zo) — H(M). Of course when dimXy = dimX no extension is necessary.
We seek conditions under which the map ¢ extends to a Legendre immersion of X
into M whose derivative agrees with ¢ on .

Denote by Z5(3, M)°, resp. Cs(X, M)°, the semi-simplicial complex whose sim-
plices are smooth maps ¥ : ¥ x A? — M, resp. ¥ : T(X) x A? — H(M), as
above except that we only require that 1/35*@0 = @, for all s € A?—agreement on a
neighborhood is not required here. Differentiation defines an inclusion

& TS, M)° — Co(T(S), H(M))'’
and the following theorem holds.

Theorem 6.3. The map d° : Z;(S, M)° — Cg(T (), H(M))° is a homotopy
equivalence.

To prove the classification theorems we will need the following lemma (see [HP],

p. 80).
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Lemma 6.4 (Haefliger—Poenaru). Let p; : E; — B;,i = 1,2 be two fibrations of
semi-stmplicial complexes with p; surjective and let f . Ey — Fy be a map of
fibrations with associated map of base complexes fo : By — By. Then any two of
the following imply the third:

1. f is a homotopy equivalence,

2. fo ts a homotopy equivalence, and

3. the restriction of f to each fiber of F1 is a homotopy equivalence with the
corresponding fiber of F5.

Now let ¥y C ¥ and ¢ : V — M, V a neighborhood of ¥g, be as in Theorem 6.3
and suppose that ¥/ C X is a compact, n-dimensional, embedded submanifold with
Yo in its interior. The process of restriction to ¥’ induces maps

r1 I (S, M) — Z,(X, M)
and
re + Co(T(L), H(M)) — C(T(S), H(M)).

If ¥g C X is a compact embedded submanifold and ¢ an #-bundle isomorphism
as in Theorem 6.3, then there are corresponding maps rz° and 7" of the obvious
spaces.

Proposition 6.5. The maps rz, re, r1° and rc® are all fibrations. Moreover, their
tmages are path components of their respective spaces.

Proof. To show that r7 is a fibration let K be a finite complex and let ¢’ : ¥/ x
K x [0,1] — M be a piecewise smooth family of Legendre immersions with v , =
Y'(_, 5,1) equal to  in neighborhood of ¥ and with ¢} ; extending to a piecewise
smooth family g : ¥ x K — M of Legendre immersions. We must extend g to a
family ¢ : ¥ x |K| x [0, 1] — M such that the equality ¢, ; = ¥ , holds on X'.

First observe that K x 0 is a subcomplex of the cell complex K x [0, 1] and apply
Theorem 4.8 to obtain a family ¢" : V x K x [0,1] — M of Legendre immersions
of a neighborhood V of ¥/ compatible with g and extending . Now apply
Theorem 5.1 to obtain the family . Notice that this also shows that the image of
rz is a path component.

That r¢ 1s a fibration is immediate from Lemma 2.5 and the fact that C-bundle
injections enjoy the homotopy extension property. (This follows from the obser-
vation that a C-bundle injections ® : T(X)j4 — H(M), A C ¥ corresponds to a
section over A of the fiber bundle E' — ¥ x M — ¥ where E, ,y,p€ X, € M, is
the space of all complex vector space isomorphisms from T(E)pc to H(M),.) This
also shows that the image of r¢ is a path component.

The proofs that rz% and rc® are fibrations are entirely similar. O

The following two lemmas are special cases of the classification theorem.

Lemma 6.6. Let D™ C R" be the closed unit ball in R" centered at 0. Then the
map d: Z(D", M) — C(T(D"), H(M)) is a homotopy equivalence.
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Proof. Let D7 be the closed ball of radius € centered at 0 and set Zy = lir% (D2 M)
and Cy = hH(l) C(T(D.), H(M)). Then there is a commutative diagram

I(Dn, M) -5 C(T(D"), H(M))
lrz | re
T o, Co

with rz, re¢ and dg defined in the obvious way. We will show that rz and r¢ are
surjective fibrations, that dy is a homotopy equivalence and that the fibers of rz
and r¢ are contractible. The result then follows from Lemma 6.4.

That the maps rz and r¢ are fibrations follows from Proposition 6.5 and the fact
that the direct limit of a set of fibrations is a fibration.

To see that the maps rz and r¢ are surjective let 7. : D™ — D, be a diffeo-
morphism with 7, = id on a neighborhood of 0. Let ¥ : D, x A? — M (resp.
e T(D.) x A" — H(M)) be a simplex of Zg(resp. Cg). Then ¢’ = o (7. xidaq) :
D" x AT — M (resp. Y= 4o (Tex X idaq)) is a simplex of Z(D", M), (resp.
C(T(D™), H(M))) with = rz(4), (resp. ¥ = re(i).

To prove that the fibers of rz are contractible, let K be a finite complex and let
¥ D" x|K| — M be amap from K into Z(D", M) with rzot constant. Then there
is an € > 0 with ¢; : D, — M independent of s € |K|. Let R: D" x [0,1] — D" be
a family of diffeomorphisms of D" with R; = R( ,t) the identity on a neighborhood
of 0, Ry = idp, and Ry(D") C D.. Then the map ¥ : D" x |K| x [0,1] — M
defined by ¥(z,s,t) = ¢¥(R(z,t), s) is a homotopy between ¢ : K — Z(D", M) and
a constant map with rz o ¥ : K x [0, 1] — Zy constant. In a similar way one shows
that the fibers of r¢ are contractible.

Finally, to see that dg is a homotopy equivalence, let 1 : T(D.) x |K| — H(M)
be a map from a finite complex K into Cq. Since T(D,.) = D. x R™ we can define
a homotopy ¥ : T(D.) x K x [0,1] — H(M) by ¥((p,v),s,t) = 4((tp,v),s). Then
- \il(—,—,t) satisfies ¥; = 1 and Ug sends T(D.) x {s} to the single fiber
H(M)yo,sy of H(M) — M where ¢ : D. x K — M is the map of base spaces
associated to 1/: By Theorem 4.8 the map ¢ : {0} x K — M extends to a family
of Legendre immersions ¢’ : Do x K — M with t,. : T(Dery, x K — H(M)
equal to 9 : T(D:), x K — H(M), ¢ < e. Thus there is a homotopy N2
T(D.) x K x [0,1] — H(M) defined by

W ((p,v), 5,t) = - (tp, v)

between 1,5’ K —=Cypand dgo ¢/ : K — Iy — Cq. O

Remark 6.7. Lemma 6.6 applies also to the manifolds D* x D"~F (the corners of

D* x D"=* can be smoothed out by extending all maps to a neighborhood of
D* x D% in R™).

We now prove a special case of Theorem 6.3.

Lemma 6.8. Let ¢ : A¥ x D"=F — M be a Legendre immersion, where A*¥ denotes
a closed annular neighborhood of dD* in D¥. Then the map

d® T, (D" x D"* M)° — C, . (T(D* x D"=%), H(M))°

ts a homotopy equivalence.
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Proof. We begin by introducing some notation. Let Dfl“_ and D* denote the cover
of D*+! by disks defined by
DY = {(z%,2%,..., ") € DI | P > —1/2}
and
DF = {(z, 2%, ... ")y e oDF Y | 2R+ < 1/2).
and let A* denote the annular neighborhood of dD* defined by
AR = {2t 2R e oD | P < 1/2) .

The proof proceeds by induction on &, and it based on the following commutative
diagram:

T(ADM1 5 Dr=F M) L e(T(ADM! x DPF), H(M))

lrr lre
(6.9) I(DE < D=k M) S (T(DE x DPR), H(M))
lrz lre
d_

(AR x Dk MY L= e(T(AR x DPR), H(M))

Before we start the induction process, we make a two observations about the dia-
gram.

1. First notice that all vertical maps are fibrations, and the fibers of the maps
rz and r¢ in the lower rectangle are of the form Z,,(D* x D"=F M)" and
Co. (T(D* x D"=F) H(M)) for all k. Similarly, the fibers of the maps rz
and r¢ in the upper rectangle are of the form Z, (Di X D”_k,]W)0 and
Co. (T(D% x D"=F), H(M)) for all k.

2. Also notice that because A* x D"~ % ig diffeomorphic to dD* x D”_(’“_l)7 the
bottom row of the diagram is of the form

T(ADE x D=1y 2 e(r(@pt x D=y g(M))

3. By Lemma 6.6 and Remark 6.7, the middle arrow is always a homotopy
equivalence.

4. Although the maps rz and r¢ are not surjective, their images are path com-
ponents (see Proposition 6.5). Tt follows that any horizontal arrows in Dia-
gram 6.9 which is a homotopy equivalence induces a homotopy equivalence
between the image of r7 and the image of r¢.

We now begin the induction process. Consider first the case £ = 1. Because
Al is diffeomorphic to D' we can apply Lemma 6.6 to conclude that the map
d_ :I(AL x D"=' M) — C(T(AL x D"~1), H(M)) in the bottom row is a homo-
topy equivalence. Next apply Lemma 6.4 to conclude that d induces a homotopy
equivalence of the fibers:

d:T,, (DL x D"™1 M)® — C,,(T(DL x D"~1), H(M))°.

(Although rz and r¢ are not surjective d_ : Image(rz) — Image(re) is a homotopy
equivalence, hence Lemma 6.4 still applies. A similar remark applies to future
applications of Lemma 6.4).

Inductively assume that the theorem holds for & < &y and that d_ is a homotopy
equivalence (and therefore a homotopy equivalence when restricted to the image of
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rz). Set k = ko + 1 and apply Lemma 6.4 to the lower square of diagram 6.9 to
prove the theorem for k = ko + 1.

Now consider the upper square. Since we now know that the fibers of r7 and r¢
are homotopy equivalent, via d4, and since d is a homotopy equivalence it follows
from 6.4 that d; is a homotopy equivalence. Finally, identify dy with d_ (with
k = ko + 1) to complete the induction step. O

Let ¥y C X be a smooth neighborhood retract then using the flow of the vector
field grad(f) one can prove the following lemma.

Lemma 6.10. Let V. be neighborhood of g such that there are maps ™ : V; x
[0,1] = Vi, k=1,2,3,... withF = 7%( ,t): Vi — Vi the following conditions hold
1. Té: = iClV1
2. le(vl) g Vl/k
3. 1 Vi — 1F (V1) is a diffeomorphism
4. 7F is the identity on a neighborhood of Xg
forallk=1,2,3,... and t €[0,1].

The next lemma is an immediate consequence of Lemma 6.10

Lemma 6.11. Let Xy C X be a compact smooth neighborhood retract and let ¢ :
U — M be a Legendre immersion on an open neighborhood of Xg. If V is a tubular
neighborhood of Xq then the spaces L,(V, M) and C,(T(V), H(M)) are contractible.

If in addition (i) Tq is an embedded submanifold, (ii) ¢ : g — M is an im-
mersion with Y*n =0, and (i) e T(X)z, — H(M) is an L-bundle isomorphism
extending ¢, : T(Zo) — H(M), then IJJ(V’ M) and C@(T(V),H(M))O are con-

tractible.

Proof. Let K be a finite complex and let p : V x K — M be a map from K
into Z,(V, M). Then p; = p(—, s) agrees with ¢ on a neighborhood V;;, for some
integer k and all s € K and the map ¥ : V x K x [0, 1] — M defined by ¥(p, s, t) =
p(rF(p), s) is a homotopy from p to a constant map p' : K — Z,(V, M). Hence
Z,(V, M) is contractible. The proof that C,(T(V'), H(M) is contractible is similar.

To prove that I@(V, M)? is contractible let K be a finite complex and let ¢ :
V x |K| — M represent a map from K into IQZ(V, M), If we can construct a
homotopy of ¢ to a map ¢’ with ¢'(—,s) : U — M independent of s for U a
neighborhood of ¥y in V we will be done by the first part of the proof. We will
only sketch the construction of the homotopy.

Let ¢g = ¢(—,s0) : V. — M for sg € |K| a fixed point in |K|. By Proposi-
tion 4.6(1) there is a contact immersion ® : N — M for N a neighborhood of ¥ in
J(X) extending ¢g. Further, there is a neighborhood V! C V' of ¥ with the prop-
erty that ¢; = ¢( , s), for s € |K| have representations ¢; = ®oj(fs)ors : V/ — M
as in 4.6(3). (Because @y« = J) on Xy and |K]| is compact the neighborhood of sqg
in |K| can be taken to be all of |K|.) Because 75 = id on ¥ and |K| is compact
it is possible to construct a homotopy of 75 to a family 7/ = id on a neighborhood
of Xy and 7, = 75 outside of a compact neighborhood of ¥y (This can be proved
using the classification theorem for smooth immersions, for example.) Therefore
after shrinking V' if necessary, we may assume that 7, = id on V’,. Finally, we
construct the required homotopy to a map ¢’ by constructing a family of n-vector
fields with support on a neighborhood of ¥y in N. Their flows yield the homotopy.
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To show that CQZJ(T(V), H(M)) is a contractible is much easier. Because V is a
tubular neighborhood of Xg there is a homotopy of bundle maps H : T(V) x [0, 1] —
T(V) with the following properties:

L. H(—,t): T(V)g, = T(V)|x, is the identity,

2. H(,1): T(V) — T(V) is the identity, and

3. H(TV,0) C (TV)s,.

Let g1 : T(V) x |K| — H(M) be a map from K into Cdj(T(V),H(M))O. Then
P T(V) x |K| x[0,1] = H(M) with @(v,s,t) = ¢1(H(v,1),s) is homotopy from
11 to a constant map. O

of Theorems 6.2 and 6.3. We will prove Theorem 6.2 only; the proof is formal and
applies equally well to Theorem 6.3 with only slight changes of notation.

Begin by assuming that ¥ is compact. We will do induction on the number of
handles that must be attached to a tubular neighborhood V' of ¥ to obtain X.

If no handles must be attached we are done by the preceding lemma.

Now suppose that d' : Z,(X', M) — C,(T(X'), H(M)) is a homotopy equiva-
lence and that & = X/ Uy D* x D"~%_ Then there is a map of fibrations (see
Proposition 6.5)

T,(S,M) L C,(T(S), H(M))

rz | L re
T,(X, M) = Co(T(X), H(M))
Although r7 and r¢ are not surjective but they map onto connected components.
Consequently d’ : Tmage(rz) — Image(rc) is a homotopy equivalence. By Lemma 6.8,
d restricted to fibers is a homotopy equivalence. Therefore, d is a homotopy equiv-
alence by Lemma 6.4.
If ¥ 1s not compact the result follows by taking limits over compact submanifolds

of X. O

Remark 6.12. Parts (1) and (2) of Theorem 2.4 follow from Theorem 6.2. They
are restatements of the fact that the map d induces isomorphisms 7, (Z, (X, M)) =

T (Co(T(X), H(M))) and 7, (Z5(X, M)°) = 7, (Co(T(X), H(M))) for n =0, 1.

Remark 6.13. 1t follows from Lemma 2.5 that everywhere above we are free to
replace “f-bundle injection” and “l~homotopy” by “C-bundle injection” and “C-
homotopy.”

The following approximation theorem was used in Section 3 to prove a theorem
of Weinstein.

Theorem 6.14. Let Xy C X" be a compact, smooth neighborhood retract and let
[po] be the germ over g of a Legendre immersion into the (2n + 1)-dimensional
contact manifold (M, n). Suppose that ® : T(X) — H(M) is a C-bundle injection
over the smooth map ¢ : & — M with [®] = [po«] and choose € > 0.

1. Then there is a Legendre immersion ¢ : X — M) with

sup|(p) — ¢(p)| < € and with Y. and ® both C-homotopic relative to [po«].
peEX
2. If1q and i1 are two such Legendre immersions then there is an £-homotopy of

Legendre immersions ¢ : & — M relative to [pq] between them that satisfies
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the inequality sup|y:(p) — ¢(p)| < € for allt € [0,1]. Here | | denotes distance
PES

relative to the Riemannian metric on M.

Proof. A standard argument using a representation of ¥ as an increasing union of
compact manifolds with boundary shows that we need only consider the case where
Y is compact. Then extending ® to the double of ¥ allows for a further reduction
to the case ¥ = 0.

Choose a smooth triangulation of X so fine that if ¢ C X is an open n-simplex
then there is a geodesically convex ball U, C M of diameter at most ¢ such that
(o) CU,. I 7 =14 is a k-simplex set U; = J,..,U;, where 7 < o means that 7
is a simplex contained in 7. Let X denote the union of all closed k-simplices.

Construct open covers of X inductively as follows. For each vertex v € ¥g let
v € Q, CC W, CC V, be open sets with V, compact and ¢(V,) C U, and such
that the sets V,, are pairwise disjoint. Let Qq = Uy @y, Wo = U, W,, and Vy = U, V.
We can choose the cover so that the complement X1 — Qg consists of a collection
of disjoint closed 1-disks, one contained in each 1-simplex of X. Inductively assume
that open sets Qr CC Wi, CC Vi covering Xy have been constructed, and that the
complement Xj 11 — Qy consists of a collection of disjoint, closed (k + 1)-disks, one
contained in each (k 4 1) simplex of ¥. For each such disk, say D' C 7, where 7
is a (k + 1)-simplex, choose open sets D' C Q. CC W, CC V, with V, compact
and ¢(V,;) C U,. We may assume that the sets V, are pairwise disjoint. Now set
Qr41 = QrUUres, ., @, with similar definitions for Wy11 and Vi 41. By shrinking
if necessary, we may assume that Y12 — V41 consists of a disjoint union of closed
(k + 2)-disks.

Proceed inductively to construct 1 as follows. Suppose that for each k < kg — 1
there is a C-homotopy ®F : T(X) — H(M),0 < t < k+ 1 relative to [pg] with base
maps ¢F : T(Z) — M satisfying the conditions

1. For each o C Xy, o¥(V,) C Uy;

—k —
2. ¢p4m=0and <I>’,:+1 =prpeon Q = Uogzk Qs
3. ®F =@ on ¥ — W* where W* = U,cxs, Wo. (For k= —1 set oF = @)

Define ®F0 : T(X) — H(M) satisfying (1), (2) and (3) as follows. For t < kg set
<I>f° = <I>f”_1. For ¢t > ko and o an open kg-simplex, define ®; on all of V,, by using
Theorem 2.4(1) to obtain a homotopy ®; : T(X)v, — H(M)jy,, ko <t < ko +1
fixed on a neighborhood of @k_l U Xy with base maps ¢; : V, — U, satisfying the
following conditions:

1. @ro+1 18 a Legendre immersion,
2. (¢k0+1)* = <I)k0+17 and

3. Dy, = 07|V,

Now set <I>ic° = <i>t on @U U NV, and <I>ic° = <I>f”_1 on V, — W, and use the
homotopy extension property to extend to a C-homotopy ®; : T(X)|v, — H(M)v, -
Do this for every kg-simplex and set <I>f° = @]]:g_l on ¥ — W*. The required
immersion is ¥ = @p41".

The proof of part 2 is similar and is left to the reader. O
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7. TRANSVERSALITY

In this section we prove a transversality theorem for Legendre immersions. (A
similar transversality theorem for Lagrangian immersions also holds; but, because
its proof is almost identical to the one presented here we leave it to the inter-
ested reader to fill in the details.) Our proof is a modification of Morlet’s multijet
transversality theorem for C'°>-maps as presented in [M]. For general information
about jet spaces and related matters see [GG] or [H1].

Notation. Let (M?"*! n) be a contact manifold and let ¥" be a smooth man-
ifold. We will assume that M = X = (. Let C°°(X, M) denote the space of
smooth mappings from X into M equipped with the Whitney C'*°-topology, and
let £°(X, M) C C*®(X, M) be the subspace of Legendre immersions with the in-
duced topology. Let L*(X, M) C J*¥(X, M) be the subspace of k-jets of germs of
Legendre immersions of open sets of ¥ into M. Tt follows from Theorem 4.8 with
K and X; points that L°(X, M) = J%(X, M) = ¥ x M. For any space N let N*
denote its s-fold product and let N(*) denote its configuration space, i.e. the sub-
space of N* defined by the condition N©®) = {(p1,p2,...,ps) |pi # pj, for 1 £ j}.
Let o : (L*(X, M))* — ° be the projection map and set L* = a~1(X(*)). Finally
let j*(p), € J(X, M) denote the k-jet of a map ¢ : U — M at p € U, and define a
map

iF Lz, M) — ¢ () LF (2, M)
by the formula, jf(so)(plaPZJ e Jps) = (jk(so)l’lﬂjk(sp)lbﬂ e ajk(SD)Ps)'

Theorem 7.1. Let W C L¥(X, M) be a submanifold. Then the set
L3S, M) = {p € L(X, M) |j5(y) is transverse to W}
is a residual subset of L®(X, M).

To prove Theorem 7.1 we construct a large family of perturbations of Legendre
immersions, which are parameterized by polynomial maps and are localized on a
small neighborhood of a point of ¥. By “large” we mean that each k-jet can be
realized as the jet of an element of the family. One corollary of this construction is
that L¥(X, M) is an embedded submanifold of J*(X, M).

We begin by forming a class of polynomials which generate diffeomorphisms of
R" with prescribed k-jets at the origin. Choose pg € ¥ and let x; : U — R" be a
chart with x1(po) = 0. Let ¢ : U — M be a Legendre immersion, let g0 = ¢(po)
and let ys : V — R*T! be a chart centered at ¢q (i.e. x2(q0) = 0) satisfying the
two conditions:

1. x5(no) = n, where n = du — Eyid:ni (see 3.1)
i=1

2. 1=yxg0pox]" is the map z — (z,0,0).
We choose U and V so that x1(U) = Dy and x2(V) = Dy x D, x (—=86,6), where
D, denotes the open ball of radius » about the origin in R"™ and where é and ¢ are
positive real numbers.

Let P for k > 0, be the vector space of polynomial maps from R” to R” of
degree at most k, let PO be the space of translation maps and let P* be the space
of real-valued polynomial functions on R™ of degree at most k. Let

H:Pfx[0,1] — Pk
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be a smooth retraction of P} onto idg« and let p : R" — [0, 1] be a smooth function
with support in Da such that p = 1 on a neighborhood of D;. Given a polynomial
map, b € P* define a smooth map 7, : R” — R” by the formula,

mo(x) = H(b, p(x))(x)
Observe that 7, = idg= on R™ — supp(p) and that 7, = b on D;.

Lemma 7.2. There is a neighborhood B’ of idr= € P* such that ry is a diffeomor-
phism of R™ onto itself for all b € B'.

Proof. Since for b € P* the map 7, is the identity outside of the support of p, by
adding the point at infinity we can interpret 7 as a smooth family of maps of the n-
sphere, S™, onto itself with 7,5 = idg». Observe that the map b ~— 7, is continuous
(this follows from the definition of the Whitney C'*-topology on C*°(S™, S™)). Note
that the set of diffeomorphisms of the compact manifold S™ is open in C'*°(S™, S™)
by Proposition 5.8, page 61 of [GG]. The neighborhood B’ is therefore the inverse
image of the set of diffeomorphisms of S™. O

Now let b € PF*+! be a polynomial of degree k 4+ 1 and let f; : R®™ — R be the
function defined by the formula f3(z) = p(2)b(x), where p is the bump function
defined above. There is an open neighborhood B” of the zero function in P* with
the property that for all b € B” the inclusion

J(fs)(R") CR" x D, x (=6,6)

holds, where j(f;) : R® — R?"*! is the map defined by formula (3.2). Set B =
B’ x B" and for b = (b1, b3) € B define a Legendre immersion ¢ : U — M by the
formula

-1 .
- _ [ xz oj(froom,oxi(p) forpel

7.3 = -
73) @) { #(p) for p € U — x7 ' (supp p).
Notices that ¢g = ¢. The family ¢ is “large” is the following sense.

Lemma 7.4. Let Uy = x7'(D1). Then there is a neighborhood By C B of (id,0) €
Pk x P+l such that the map

®: U; x B — JH(Z, M)

(p,b) — 5" (v8)p

is a smooth embedding whose image is an open neighborhood of j*(p)(U1) in L*(3, M).
In particular, L¥(X, M) is an embedded submanifold of J*(3, M).

Proof. The map is clearly smooth. We next show that it is an immersion. Work in
the local coordinates defined by the maps x; and x2. We claim that the derivative
®, is injective at (p, (idr~»,0)) € U x B for all p € U;. Without loss of generality
we need only show that this is the case for p = 0.

Choose zg € D1, bg = (b1,b2) € B and set

d . .
I = go*(.CL‘Q, (bl, bg) = EH—Q(I)(t l‘o,ld—|— t (bl — ld),tbz).

We will interpret I as an element of R™ x P*(n,2n+1), where P*(n, m) denotes the
space of polynomials from R™ to R™ of degree at most k. (We have made use of the
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factorization R*"*' = R"” x R" x R and of the identification T'(J* (%, M))jr(p),s =
R™ x P%(n,2n + 1).) Suppose that I = 0. Then the computation,

d . . . . .
I = - {7°Gd +t (b1 — 1)1z, 55 (d(t b2) 0 (id + ¢ (b1 — id))s &,
t=0

¥ (tbz o (id 4+t (by —id)))ta, }
(20, 3% (b1 — id)a, j¥(dbs 0 id)o, j¥ (b2 0 id)0)
shows that zo = 0, by = id, and j¥(dbz)o = j*¥(b2)o = 0. The last two conditions
show that by = 0. Hence ®, is injective, showing that ® is an immersion.

By construction there is an inclusion ®(U; x Bg) C L*¥(Z, M) and j*(¢)(U1)
lies in the image of ®. It remains to show that ® covers an open set in L*(X, M)
containing 5% ()(U1). The result holds for k = 0 because JO(X, M) = LY(X, M) =
Yx M.

Assume that £ > 0 and choose a neighborhood C of (idr=,0,0) € P¥(n,2n+1) =
Pk x PF x P* so small that the map

XDy x C—JHZ,M) ¢ (2,0) = j°(x3" o boxi) -1,

is a diffeomorphism onto a neighborhood of j*(¢), in J*(X, M). By Lemma 7.2
we can choose C so small that each polynomial b € C'is of the form (b1, b3 0 b1, b3)
where by € B’. Suppose that b; : D; — D5 is a diffeomorphism onto an open set
n D2.

Now suppose that j* (1)p lies in the image of ¥ for p € U; and that ¢ is a
Legendre immersion. We claim that j¥(3), lies in the image of ®. Let ¢/ =
xz2o0ox;! U — R*™! for U' C D; a neighborhood of x5 = x1(p). Then 1
is of the form ¢/ = j(f) o 7 where 7 : U"” — Dy is a diffeomorphism into D, U"
is a neighborhood of zg and f : 7(U"”) — R is a smooth function. Let b] € B’
be chosen with j¥ (7)., = j* (b)), and let b, € p**! be such that jE+1(b )T(xu) =
7 (F)r(we). Now set by = bf, by = dbly and let bg be the kth order part of b.
Then j*(¢), = (%o, b1, b2 0 b1, bs). By shrinking C' we can arrange for (b}, b}) to
be contained in By showing that a neighborhood of j*(¢)(Uy) in L*(Z, M) lies in
the image of ® as was to be shown. O

of Theorem 7.1. Consider a point z = ((j(%¥1)p1, J(¥2)pa, - - -, §(¥s)p,) € W, where
Y, i1 =1,...,s are Legendre immersions of neighborhoods of p;; 1 =1,... s in X.
About each point p; chose a chart U; Z R” centered at p; with U; NU; = 0 for
i # j, let V; C U; be the inverse image of the unit ball in R”, let a; : L¥(X, M) — %
be the i-th component of the projection map a : LE(X, M) — ¥() and let W, be a
neighborhood of z in W with compact closure satisfying the condition a;(W,) C V;.
Choose a countable subset W, r € Z covering W and set

L, = {f € L=(X, M) |j* is transversal to W on W, } .

We claim that £, is open and dense.
Recall that a residual set is the intersection of a countable number of open dense
sets and note that

LX(D, M) ﬂﬁ

Since W, is compact, £, is open.
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To show that £, are all dense, we choose a Legendre immersion ¢ : ¥ — M
and show that v is a limit point of £, for each r. Fix r and recall that there is a
point z € L¥(Z, M) with W, = W,. Let p: R,, — [0, 1] be a function with support
contained in Dy and with p = 1 on a neighborhood of D;. Because U; N U; = 0 for
i # j we can use the construction in Lemma 7.4 on each of the sets U; to obtain
a smooth map ¥ : 3 x B — M, B a neighborhood of ((idg~,0),..., (idr~=,0)) in
the s-fold product (P¥ x P*+1)s such that 1, = ¥( ,b) is a Legendre immersion
for all b € B and such that the map

) =) x B — L¥E, M)
(pa b) e jf(d)b)P

is a submersion (and therefore transverse to W on Wr). It follows from Lemma 3.2
of [M] that there is a dense subset B’ C B with ¢ € L, for all b € B’. But,
Y= 1/)((1an 0),... (idgn,0) and hence a limit point of £,. O

We now give some easy corollaries of the transversality theorem. They are well
known results which can also be proved directly using the Darboux Theorem.

Corollary 7.5. When 0% = 0, the set of injective, Legendre immersions is a resid-
ual set in L2(X, M).

Proof. The equality L%(X, M) = ¥ x M implies the inequality LY(Z, M) = T2 x
M?. Let

W ={(q1,92,p1,p2) |1 # 92} C L3(Z, M).

Since W is a submanifold of codimension 2n+ 1, if ¢ is a Legendre immersion with
39() transversal to W then j9()(X) N W = () and ¥ is injective. The result now
follows from the transversality theorem. O

Theorem 7.6. Let " be a compact manifold (possibly with boundary) and let
(M?"*1 ) be a contact manifold without boundary. The space of Legendre embed-
dings of 3 into M is open and dense in L®(X, M). Moreover, ifp : X — M is a
Legendre immersion then arbitrarily near o in L°(3, M) are Legendre embeddings
which are £-regularly homotopic to .

Proof. We cannot apply Corollary 7.5 directly because ¥ may have a boundary. To
get around this problem let ¥’ be a collaring of T. then by 4.6(2)) the continuous
map induced by restriction, £°(X/, M) — L£°(X, M) is surjective. Since injective
immersions are dense in £°(X', M) they are dense in £2(X, M). Since ¥ is com-
pact every injective immersion is an embedding. Moreover, the set of embeddings
is open in £L®(X, M) because X is compact. O
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