HIERARCHICAL COMPUTATION OF PL HARMONIC EMBEDDINGS

T. DUCHAMP, A. CERTAIN, A. DEROSE AND W. STUETZLE

1. INTRODUCTION

With the advent of laser scanning systems, extremely large colored meshes are becoming
commonplace, and with them the need to efficiently store, transmit, render and edit them.
One approach, which has the additional feature of supporting texture mapping is to construct
multiresolution representations of meshes. This approach was developed by Lounsbery et al.
[10, 11], Schroder and Sweldens [13], and Certain et al. [2].

Because the method applies only to meshes with subdivision connectivity, a algorithm for
approximating unstructured meshes by ones with this property was developed by Eck et
al. [4]. We call this process remeshing. The key step in the remeshing algorithm is the
construction of “PL harmonic embeddings” from regions of the mesh into the plane. These
maps furnish local parameterizations of the mesh which are then used to construct the base
complex on which the multiresolution representation lives [4] , as well as to provide efficient
texture mapping [2].

In [4] PL harmonic maps were found by the conjugate gradient (CG) algorithm, which,
because the problem is a sparse linear least squares problem, has complexity O(n?) in the
number of faces. Constructing PL. harmonic maps is, by far, the most time-consuming part
of the remeshing process. In this paper, we present a method for computing PL harmonic
maps that appears to have complexity O(n), thereby speeding up the remeshing algorithm.

Our approach is to replace the CG algorithm by the preconditioned conjugate gradients
(PCG) algorithm [5]. Our preconditioner is a hierarchical preconditioner, i.e. it is constructed
from a multiresolution decomposition of the space of piecewise linear functions on the domain
of the harmonic map, and this multiresolution decomposition is, in turn, crafted from a
hierarchy of meshes together with interpolation operators defined in terms of the mean value
property of harmonic maps. The inspiration for this approach is previous work of Schroder
and Sweldens [12] who used techniques of Dobkin and Kirkpatrick to construct a similar
multiresolution expansion for piecewise linear functions.

We recently learned that a similar approach to speeding up the computation of harmonic
maps was developed independently by Aaron Lee [9].
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The paper is organized as follows. In Section 2 we discuss the definition of harmonic maps on
simplicial surfaces. In Section 3 we define the piecewise linear analogue of harmonic maps.
We explain our mesh hierarchy in Section 4, and we use it in Section 5 to construct the mul-
tiresolution expansion. Section 6 contains the exposition of our hierarchical preconditioner.
We give the results of our numerical experiments in Section 6.2.

2. HArRMONIC MAPS

In this section we show that every simplicial surface has a natural underlying complex-
analytic structure. We then use this observation to define the notion of harmonic function
on a simplicial surface.

2.1. Conformal structures. Let K be a simplicial complex whose topological realization
M = | K| is homeomorphic to a compact 2-dimensional manifold. We call such a complex a
simplicial surface. Suppose that in addition there is a piecewise linear embedding

F:|K| — R®.
We call the pair (K, F) a (triangular) mesh.

We will show that the embedding F' endows M with a conformal (or complex analytic)
structure. This means that there is a natural notion of complex analytic function on |K]|;
hence, many of the techniques of complex analysis can be used to study |K]|. In particular,
the notion of harmonic function makes sense. As far as we know, the construction presented
here was invented by Lipman Bers [1].

There are a number of equivalent definitions of conformal structure. We give here the one
that is best suited to our present needs. A conformal structure is given by the following data:
a collection of open sets U; C M covering M, together with a collection of homeomorphisms

onto open sets in the complex plane, called a complex analytic atlas. The individual maps
¢; are called charts and they are required to satisfy the compatibility condition that

gj0¢; ¢ (U; UU;) — ¢ (U UU;)

are all holomorphic (complex analytic). Recall that a complex analytic map is also a con-
formal map (it preserves angles).; hence, the term “conformal structure”. !

!Surfaces with conformal structure are sometimes called Riemann surfaces. The reason for this is that a
conformal structure gives enough information to compute the angle between two tangent vectors to a point
of M; whereas a Riemannian metric gives an inner product on the space of tangent vectors. Riemannain
metrics thus induce conformal structures. Thus a Riemannian metric contains more information than does
a conformal structure.



HARMONIC EMBEDDINGS 3

We extend this definition to manifolds with boundary as follows. If M has a boundary M
and ¢ : U — C is a chart whose domain intersects M then the image of ¢ is an open set in
the closed upper half plane and ¢ we require ¢ to map points of M N U into the real axis.

We now have enough machinery to define the conformal structure on | K| induced by the map
f. For each vertex v € K, let U, C |K| denote the interior of the simplicial neighborhood
of v, and let ¢, : U, — C be the chart constructed as follows: If v is an interior vertex of
valence n, write U, as the union

n
U, =T
k=1
where Ty, = |{v, v, vk+1}| — [{vk, Vks1}], and v, = vy (i.e. T} is a triangle with the side

opposite v removed).

Next let 05 be the angle of T}, at the vertex v, and set

k—1 n
©1=0, 0, => 0 fork>1and©=> 0.

j=1 j=1
Let fi : T — C be the isometry defined by the equations
fe@) =0, felor) = llok — o]l fi(vis1) = [[vrs1 — vl

where || || is the Euclidean norm in R3. Finally let ¢ : C — C be the map ¥(z) = 2 where
a=2m/0. vto0 & C. Then The chart ¢, is defined as follows:

(2.1) éu(p) = €71 o fi(p) for p € Ty
If v is a boundary vertex of valence n + 1, write U, as the union
U, = T
k=1

where T, = {v, vk, Vi1 }| — [{vk, Vg1 ], let ¥ : T — H ={z : Im(z) > 0} denote the map,
¥(z) = z* where a = 7/0, and define ¢, by the formula

(2.2) bu(p) = €™ o fi(p) for p € Ty
We leave it to the reader to check that the maps ¢, : U, — C form a complex analytic atlas.

Remark 2.3. Notice that on the interior of T (but not on its boundary) the map f, : T — C
is, itself, a conformal coordinated chart. Hence, any computations done on the interior of a
face can be done in terms of these coordinates.

Remark 2.4. A different atlas for a simplicial surface was given by Grimm and Hugues in
[6]. Because this atlas is not conformal, it is not suitable for our purposes.
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Ficure 1. Image of simplicial neighborhood of a vertex in the case where
all triangles are equilateral. (a) valence = 3, (b) valence = 6, (c) valence = 10.

2.2. Harmonic maps on Riemann surfaces. Suppose that M is a compact Riemann
surface with piecewise smooth boundary dM. Suppose further that M is diffeomorphic to
a disk. We want to construct an embedding of M into the plane with prescribed boundary
values. More precisely, suppose that

Fy:0M — R?
is a piecewise smooth embedding onto the boundary of a compact, convex region 2 C R2.
Our goal is to find a homeomorphism

F:M—Q

such that F'|sy = Fy which is a diffecomorphism on the interior of M. The construction of f
uses the notion of harmonic map. The construction is due to Choquet [3] and Kneser [§].

We begin by recalling some basic facts concerning harmonic functions on Riemann surfaces.
Let M be a smooth compact surface with boundary M, and let g be a Riemannian metric
on M. Suppose f: M — R is a smooth function. The harmonic energy of f is the quantity

Bl = [ 1drzas,,

where | |, is the norm with respect to g and dA, is the area element on M induced by g.
Let g = gijdz'dz? where z', i = 1,2 are local coordinates on M.Then the integrand has the
local coordinate expression

df*dA = )" g of a—f\/det(g) dzt A dz?.

— oxt OxJ
1<4,5,<2

where as usual, g¥ denotes the inverse of the matrix g;;, and det(g) denotes the determinant
of Gij-

We now consider the functional

EF:H—R

on the space of smooth functions on M with fixed boundary value fs : OM — R, where fj
is a smooth function. The critical points for F are called harmonic functions, and it is a
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classical result that there is a unique harmonic map f assuming the prescribed boundary
values fs. That map is called the harmonic extension of fs.

Lemma 2.5. The harmonic energy depends only on the conformal class of g. That is if
g = e’g, for X\ : M — R smooth, then

Proof. The lemma follows immediately from the two identities

VATE) = ¢ /At (g) and 79 = ¢ g"
U

Corollary 2.6. Let ¢ : (M, g) — (N, h) be a biholomorphism between two compact Riemann
surface (possibly with piecewise smooth boundary), and let f : N — R be a smooth function.
Then

Enlf] = Ey[f o ¢l

Proof. Let g = ¢*h. Then by the change of variables formula

1 1
Bl =5 [ Vdrtiaa = [ s o o),

But because ¢ is a biholomorphism ¢ is conformally equivalent to g. The result follows from
Lemma 2.5. 0

As an application of Corollary 2.6, consider the case where M is diffeomorphic to the a disk.
The Riemann Mapping theorem states that (M, g) is biholomorphic to the unit disk in the
complex plane. We may identify (M, g) with the unit disk in the plane equipped with the
Euclidean metric. Letting (u,v) denote the standard coordinates on R?, we have

b= [ () (2

This is the classical “Dirichlet integral.” In these coordinates, the Euler-Lagrange equation
for F is Laplace’s equation

0%f  O%f

oz o

Af = 0.

Planar embeddings of disks. Suppose that M is biholomorphic to a disk and that M has
a piecewise smooth boundary OM. Let Fy: OM — R? be a continuous map. The harmonic
extension of Fjy is the unique map F : M — R?, whose coordinate functions are the harmonic
extensions of the coordinate functions of Fj. Then we have the following theorem (see [3]

and [8]).
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Theorem 2.7 (Choquet). Let M be a Riemann surface that is homeomorphic to the disk
and Fy : OM — R? be a continuous embedding onto the boundary of a convex region 2 C R2.
Let F : M — R? be the harmonic extension of Fy. Then F maps the interior of M
diffeomorphically onto 2.

Remark 2.8. If the convexity condition is relaxed, then the extension f exists and is unique,
but it is no longer a diffeomorphism, or even a homeomorphism.

3. PL HARMONIC FUNCTIONS

In this section, we define the piecewise linear analogue of harmonic functions, called PL
functions and examine some of their basic properties.

3.1. Definition of PL harmonic functions. Consider a mesh F : |K| — R3. The
underlying space M = | K| has two structures: a PL structure given by the simplicial complex
K, and a conformal structure (M, g) induced by the embedding F. The functional E,
depends on the conformal structure, but it can be computed in terms on the PL structure,
only.

Let T, C |K|, @ = 1,...,n be the collection triangular faces of |K|. Notice that the union
of the interiors of the faces is an open subset of | K| of full measure (i.e. the complement has
measure zero). It follows that

1 1
(3.) Bl = [ lirid, = > | 1artaa,,

where f : M — R is a piecewise smooth function.

Fix a and let ¢, : U, — C be the coordinate chart centered at a vertex v of T,. By virtue
of Remark 2.3 and Corollary 2.6, we can compute the integral

1
33 | larkas,.

by isometrically embedding 7" into the Euclidean plane and using standard Euclidean coor-
dinates. Let (z,y) be Euclidean coordinates, identify each face T,, with a Euclidean triangle
in the (z,y)-plane, and let f, : T,, — R be the restriction of f to T;,. Then

2,4 Ofal’ | |0fa
/Ta|df|gdAg—/Ta{'E + Dy }dxdy,
and consequently
Ofa ol
(3.2) Z/ {' fo '8—2 }d:ﬂdy.
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We can evaluate the integral explicitly in the case where f is a piecewise linear function on
K. It suffices to evaluate the integral over a single triangle T' = T,, on which f is linear. Let
vj, J = 1,2,3 denote the vertices of T'. An elementary computation shows that

(3.3) %/T{ % A }dIdy:

(a3, ol F(01) = f(02)? + ap, | f(v2) = fvs)]* +ag, [ f(v3) = f(01) )
where

Jdy

DN | —

o _ L1 (vn—vs)-(va—ws)
e [(v1 —v3) X (v2 — v3)]
a (U2 - Ul) ) (Us — Ul)
v2,03

[(v2 —v1) X (v3 — V1)
(V1 —v) - (V1 — )
(V3 — v2) X (v1 —va)|

e}
v3,V1

N = N~ N

The final formula for Ejqm[f], in the case where f is a piecewise linear function on an
complex K, involves certain spring constants, which we now define. For e = {u,v} an
internal edge of K let

_ B
Ke = au,v + au,v ’

where T;, and T are the faces of K adjacent to e. If e is a boundary edge let

«

Rup = au,v ’

where T, is the face of K adjacent to e. The next theorem summarizes our computation of
Eharm [.ﬂ .

Theorem 3.4. Let F': K — R? be a mesh and let (M, g) denote the conformal structure
on M = |K| induced by F. If f : K — R is a piecewise linear function then

Bylf] = 5 3 huelf(0) — f0)?.
{u,v}

By construction, the restriction of Ej.m, to the space of piecewise linear functions with fixed
boundary values is a positive definite quadratic functional. Therefore, if

fa:81K1—>R

is a fixed map, then it has a unique extension to a piecewise linear harmonic function
[+ |K| — R such that f|sx| = fs. This extension is called the piecewise linear harmonic
extension of fj.

Note that although the definition of the functional £, involves integration over faces of K,
its computation involves only edges of K. Indeed, E,[f] may be thought of as a “spring
energy”, where each edge {u,v} of K is viewed as a spring with (possibly negative) spring
constant Ky .



8 DUCHAMP, CERTAIN, DEROSE AND STUETZLE

3.2. Basic properties of PL harmonic functions. In this section we discuss some of the
basic properties of PL. harmonic functions.

Our analysis is based on the quadratic form
Q:CPLK)x CPHK)— R
defined by the equation

QUL =5 3w () = J(0)) (g(w) — 9(0)

{uw}eK

Notice that
Eglfl=Q(f. f).

This observation, combined with the definition of harmonic energy, shows that () is positive
definite inner product on CPX(K).

It is convenient to decompose the space of PL functions on K into functions which vanish
on the boundary and those which vanish on the interior. Let CI'X(K) denote the space of
PL functions on K that vanish on K, and let CJ(K) denote the space of functions that
vanish on the interior vertices of K. Then there is a direct sum decomposition

CPHE) = CyH(K) @ CFH(K),

and we write f = fo + fs.

Now suppose that f = fy + fs is the harmonic extension of fs. Our goal is to find fy. By
definition, fy is the unique function in CH*(K), which minimizes the quantity

Q(f7 f) = Q(va fO) + 2Q(f07 fa) + Q(fav fa) .
In particular, for all h € CI'H(K), the derivative

%Eg[f +th| = %Q(f +th, f+th) =2Q(f,h) +2tQ(h,h)
vanishes at ¢t = 0, and f; satisfies the equation
(3.5) Q(f,h) = Q(fo,h) +Q(fa,h) =0
for all h € CI'L(K). Notice that
g2

@Q(ftv ft) =2Q(h,h) >0

for all h # 0 in CPF(K); this shows uniqueness of the harmonic extension.

To solve Equation (3.5) it is convenient to express it in matrix form. For this we need a
basis for CPZ(K). One obvious choice is the “hat functions”. Recall that the hat function
centered at a vertex v € Vert(K), is the piecewise linear function ¢, that assumes the value
1 at v and that is zero at all other vertices. The set of hat functions centered on boundary
vertices span CFF(K) and the set of those centered on interior vertices span CFH(K).



HARMONIC EMBEDDINGS 9

Identify the interior vertices of K with the first n integers, and let
Ay = Q (6. 80) and by = Q (du. f5) -
for u and v interior vertices of K. Finally let ¢ = (¢”) be the column vector define by
¢’ = f(v). Then
E,f]=c"-A-c+2c" b,
and Equation (3.5) assumes the form
(3.6) A-c+b=0.

It is not difficult to verify that A, , # 0, only when u and v are end points of a common
edge of K, and because the valence of vertices of most meshes encountered in practice is
low, finding the harmonic extension of fj is a sparse linear least squares problem. Methods,
such as conjugate gradients, therefore apply. This is the approach taken in [4].

Although finding the PL harmonic extension is a sparse linear least squares problem, it is
poorly conditioned (the average valence of a vertex is on the order of 6, and the system (3.6)
is highly coupled). The standard conjugate gradients algorithm therefore requires O(n?)
time. We give here a hierarchical algorithm which takes O(nlog n) time.

The PL Laplacian is the linear operator
APL . OPL(K) — CPL(K)

on the space of piecewise linear functions on K defined by the formula

(3.7) Aprf(u) =Y Fup (f(v) = f(u) .

{u,w}eK
In terms of the PL Laplacian
1
Q(f.9) =3 D Fuw (f(w) = f(v)) (9(u) = g(v))
{uw}eK
1
=3 > g(w) Appf(u Z f(u)Aprg(u).
u€Vert(K) uEVert(K)

The next proposition is an immediate consequence of our analysis thus far.
Theorem 3.8. A function f € CYL(K) is the PL harmonic extension of fa if and only if
Apo(’U) = 0

for every interior vertex v of K and agrees with fy on OK.

From the definition of the PL Laplacian the condition Apyf(v) = 0 is equivalent to the
important mean-value property that

ijl Koy,v; f(vj) '

3.9 V) =
(3.9) /(@) .



10 DUCHAMP, CERTAIN, DEROSE AND STUETZLE

where vy, ..., v are the vertices of K adjacent to v.

The mean-value property of PL harmonic functions plays a crucial role in our analysis. The
property that the value of a PL. harmonic function at a vertex is a weighted average of its
values at neighboring vertices forms the basis of the interpolation scheme that we present in
Section 5.

We exploit the mean-value property in Section 4 where we construct a vertex hierarchy
in which vertices located at a given level are isolated from one another by vertices at a
coarser level. The mean-value property of PL harmonic functions can then be used to
craft interpolation operators that extend PL functions at coarse levels to increasingly fine
levels (see Section 5. This interpolation process, in turn forms the basis of our “hierarchical
preconditioner”.
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FIGURE 2. (a) A mesh (K, F), with |K| homeomorphic to a disk. (b) A PL
harmonic embedding that maps 0K into the unit circle.

3.3. PL harmonic maps. Our analysis of PL. harmonic functions extends to maps. We
call a piecewise linear map F : |K| — R? a PL harmonic map if each of its component
functions is PL harmonic. It is an immediate consequence of our analysis of PL harmonic
functions that K is homeomorphic to a disk, then every PL harmonic map F' is uniquely
determined by its boundary values; we call it the PL harmonic extension of the boundary
map. Figure 2 shows a harmonic map in the case where the boundary values all lie on the
boundary of a unit circle in the plane.

It is important to note that Theorem 2.7 does not hold for PL. harmonic maps. There is
no guarantee that PL harmonic maps are embeddings. Figure 3 gives an example where the
image of the boundary is convex, yet the PL harmonic extension fails to be an embedding.
Because the PL maps are dense in the Sobolev space of functions with square integrable
first derivative, Theorem 2.7 guarantees that after repeated subdivision, the PL harmonic
extension will approach an embedding in the L?sense. We conjecture that if all spring
constants are positive then every PL harmonic map with convex boundary values is an
embedding, but we have not yet shown this.
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FiGURE 3. A PL harmonic map from a complex K with convex boundary
values, yet is not an embedding.

4. HIERARCHICAL REDUCTION OF UNSTRUCTURED MESHES

A key component of our algorithm is a mesh reduction algorithm. It is based on ideas
of Kirkpatrick [7] and Schroeder-Zarge-Lorensen [14]. Klrkpatrick considered only planar
meshes, but his method easily generalizes to arbitrary simplicial surfaces.

The goal of the algorithm is to construct a hierarchy of increasingly coarse, simplicial surfaces
Ko=K, K4, , Ko, ..., K,

with nested vertex sets and whose underlying topology agrees with that of K (see Figure 4).
For £ = 0,1,2,..., we call the complex K_, the reduced complex at depth —k. Such a

hierarchy of surfaces defines a hierarchy of meshes
F i |K_| — R

defined by F_j(v) = F(v) for all v € Vert(K_x). We view F_, as an approximation of the
original mesh F. Thus, we also require that the reduction algorithm roughly respect the
geometry defined by F. Although the spaces |K| are all homeomorphic, we do not require
the PL maps F} to be embeddings.

Roughly speaking, the reduction algorithm proceeds by selecting an independent set? S of
vertices of K that have valence strictly less than 12. Each vertex of S is surrounded by a
polygonal neighborhood. Retriangulating the polygonal neighborhoods of the vertices of S
after first removing the central vertex results in a new simplicial complex, with fewer vertices.
Iterating this process yields the hierarchy. For meshes that are homeomorphic to disks, the
set S is guaranteed to contain at least 1/24 of the total number of vertices [7], but typically
it contains 1/4. Thus the number of iterations required to completely reduce the mesh is

2A set is said to be independent if no two vertices are joined by an edge of K.
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K_14 K_13

FIGURE 4. Results of the reduction algorithm applied to the mesh Ky (11776
faces). The algorithm terminates with K_; = K_15 (60 faces).

on the order of logn in the number of vertices. Figure 4 illustrates the result of our mesh
reduction algorithm applied to a topologically complex mesh.

(a) . (b)-

FIGURE 5. (a) An independent set S of vertices in K (shown as heavy dots),
together with polygonal neighborhoods of each vertex of S (lightly shaded
regions). (b) The result K ; obtained by retriangulating the polygonal neigh-
borhoods of vertices of S.

Our criterion for adding a vertex v to S is that it have valence less than 12 and that we can
retrangulate the polygonal neighborhood surrounding it without changing the underlying
topology. A secondary consideration is that the radius of the neighborhood be relatively
small. This leads to the following definitions.
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Definition 4.1. Ifv € K is a vertez, let P, C |K| be the polygonal neighborhood of all faces
of K containing v. The radius, r, of P, s the length of the longest edge of K joining v
to a vertex in the boundary of P,. P, is said to be non-degenerate if no two non-adjacent
boundary vertices in P, (excluding v in the case where v is a boundary verter of K) are
connected by an edge of K. Let {v,vq,..., vy} be the vertex set of P,. A retriangulation of
P, is simplicial complex P, whose vertex set is {v1,...,vn} and that is homeomorphic to a
P.

The following lemma (whose proof we leave to the reader) highlights the importance of this
notion of non-degenerate polygon.

Lemma 4.2. Let P,, be a non-degenerate polygonal neighborhood of a vertex v of a simplicial
surface K, and let K' be the simplicial complex obtained by replacing P, by a retriangulation
P!. Then the underlying spaces |K| and |K'| are homeomorphic.

Remark 4.3. The non-degeneracy criterion in Lemma 4.2 is a conservative one. A neces-
sary and sufficient condition for |K| and |K'| to be homeomorphic is that

Edges(K) N Edges(P'v) = {{vn,v1},{v1, va},.. . {vn_1,vn}}
if v in an interior vertex and that
Edges(K) N Edges(P'v) = {{v1,va},...{vn_1,vn}}

is v is a boundary vertex. We choose that more conservative criterion because it is faster to
test and gives satisfactory results.

Reduction step. With these definitions we can present a formal description of our reduction
step.

1. Initially let K_; = K, S =0, and let V denote the set of all vertices of K of degree at
most 11, sorted according to the radius of the polygonal neighborhood of each vertex.

2. Let v be the first element of V' centered at a non-degenerate polygon of K ;. If there
are no such vertices exit; otherwise add v to S.

3. Remove all vertices of P, from V.

4. Let K’ denote the complex obtained by retriangulating P,. In our implementation,
this is accomplished by performing an edge collapse along a shortest length, radial edge
of P, (see Figure 5).

5. Set K_; = K’ and go to Step (2).

Let Sy denote the set of vertices of K not in K_;. Observe that Sy is a non-degenerate
set and that K 1 is the simplicial complex obtained from K by retriangulating the polygon
neighborhood of each vertex of Sy. Iterating the reduction step yields the sequence Ky,
k =0,...,J (see Figure 4) together with a sequence of vertex sets S_j (we set S; equal
to the full vertex set of K ;). Notice also that every vertex of K is contained in precisely
one of the sets S . We say that a vertex v € S_j is a depth k vertex. Figure 6 contains a
description of our mesh reduction algorithm in pseudocode.
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k0
K() — K,
V «— {v € Vert(K_x) : valence(v) < 12 and P, non-degenerate };
sort V' by radius of polygonal nbhd;
repeat{
k—k+1, K ; «— K—(k—l); S =0
while ( V' # () do {
v «— First(V') such that P, is non-degenerate ;
if( v == NULL) break;
S_k — S_k U {U};
V — (V — Vert(F,));
K} « (collapse shortest radial edge of P,);
}
V «— {v e Vert(K_j) : valence(v) < 12 and P, non-degenerate };
sort V' by radius of polygonal nbhd;
Huntil (V == 0)

F1GURE 6. Pseudocode description of the mesh reduction reduction algorithm.

5. A HIERARCHICAL BASIS FOR CTF(K).

In this section we show how the hierarchy of meshes { K_;} described in the previous section
leads to a multiresolution decomposition

Cry —=Cfl = = O — ot = CPH(K)

of the space CPL(K) of piecewise linear functions on K. The inclusions are interpolation
operators

L © CPL(K,(]H_D) - CPL(K,]V)

for k=0,1,...,J — 1.

These interpolation operators are constructed from the mean-value property of PL harmonic
functions. We use the geometry of the mesh Fy : K, — R? to compute spring constants
and construct our interpolation operators to mirror the mean-value property. If f is a PL
function on K_ (441, to extend it to K_; we need only specify its values on S_;, and we do
this via the mean-value property.

Here is the formal definition of ¢z. Choose a PL map f € CP*(K_(41)), and let f' = :(f).
Because ¢ is interpolating, set

f'(v) = f(v) for v a vertex of K_1).
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For v € Sy UK _y, we set f'(v) =0 and for v inSy — K_j we set
Flw)y=> w; f(vy).
j=1

where n, is the degree of v in the complex K_g, v1, ... ,v,, are the vertices of K} incident
to v, and

Kj
> iy Ki
with x; the spring constant associated to the edge {v,v;} in K ;. Next choose a vertex
v e S_i and let ¢ € CPL(K_y) be the “hat-function” centered at v.

Wo,j =

To obtain a multiresolution decomposition of function in CPL(K), repeatedly apply the
interpolation to obtain function

¢v—k =100l O...Lk—l(é\;k)'

Because they share many properties with the lazy piecewise linear wavelets formed from hat
functions (see [15] ) we call these functions lazy PL harmonic wavelets. 1t is not difficult to
show that

0
CPE) = @) W)
k=—J
where
WER(K) = span{y;* + v e S}

are the level —k lazy PL harmonic wavelets. Although, this decomposition is not orthogonal
in the L%-sense. Figure 7 shows the lazy PL harmonic wavelets as a graphs over the harmonic
embedding of a disk onto a region in the plane. The z-coordinate is the value of the basis
function.

5.1. Analysis and Synthesis. As with ordinary wavelets, we can quickly convert between
the hat function and PL harmonic wavelet expansions of a function f € CTL(K).

Let ¢y, v € Vert(K), denote the hat function centered at v. Then any function f € CPL(K)
has a expansion

(51) f — Z c’ ng
ve Vert(K)

where ¢ = f(v), as well as an expansion of the form

(5.2) F=Y)0 dvugt.
k vES_ g

(We do not need a subscript on d” because each vertex appears at only one depth.)
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FiGURE 7. “Lazy PL harmonic wavelets” associated to the mesh hierarchy
obtained by applying the reduction algorithm applied to the disk in Figure 2.
The coarsest depth wavelet (bottom, right) is centered on boundary vertices,
causing its irregular shape.
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Analysis is the (linear) operation of computing the coefficients d* from ¢¥, and synthesis is
the (linear) operation of computing ¢” from d”. Both analysis and synthesis can be performed
rapidly and efficiently by means of the pseudo-code in Figure 8. Notice that if ¢ is not needed
later, the computation of d from ¢ can be done “in place”, as can the computation of ¢ from

d.

Analysis algorithm. Synthesis algorithm.
for all v € Vert(K) do d" « c¢; for all v € Vert(K) do ¢’ « d¥
for (k=0;k < J; k++) do for (k=J—1;k > 0;k-) do
for all v € S_j such that v ¢ 0K do for all v € S_j such that v ¢ 0K do
d’ «— d’ — Z Wy,; d™ c’ —c’+ Z Wy,;
i=1 1=1

FIGURE 8. The analysis and synthesis algorithms. (n, denotes the degree of
v € S_p in K_g; v; are the vertices adjacent to v; and k; is the spring constant
associated to the edge {v,v;} in K_j. Notice that because n, < 12, both the
analysis and synthesis algorithms have O(n) order of growth in the number of
vertices of K.)

6. PRECONDITIONED CONJUGATE GRADIENTS

The hierarchical basis that we constructed in the previous section can be used to construct a
“preconditioner” for the system, permitting us to use the preconditioned conjugate gradients

(PCG) algorithm[5, Page 527].

Recall (see [5]) that CG is an iterative steepest descent algorithm for finding local minima
of a function. The performance of CG is heavily dependent on the basis used to compute
the gradient of the objective function. The natural basis to use is the basis of hat functions
of the mesh (this basis is the one in which the harmonic energy E|[f] can be most easily
computed). On the other hand, the hierarchical basis of PL harmonic wavelets consists
of functions that are roughly harmonic; it, therefore, is better suited to the problem of
minimizing the harmonic energy.

The preconditioned conjugate gradients (PCG) algorithm allows us to take advantage of
both the properties of the hat functions and those of PL harmonic wavelets. We compute
E[f] using the basis of hat functions, but we compute its gradient with respect to the basis
of PL harmonic wavelets.

In more detail, recall that

g = ZCUQASU = Zdv¢fL,v .

v
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(Because each vertex of K appears at only one level, we can drop the superscript —k in the
expression qﬁ;ﬁ) Thus, E = E(c) = E(d). By the chain rule

oFE 0 oF 0 oF 0c’ 0
d(B) = 3 5 e = 20 i s 305 = 2 2 2 908 945 Ak

Recall that c* = S;;d", where S;' is the matrix defining the synthesis operation. Thus, the
gradient can we written in the form

(6.1) grad(E ZZ acu —v, where B*" = a dw a dw Zs;gs;.

The matrix B = (B%?) = S-S is the “preconditioner” for our conjugate gradients algorithm.
An algorithm similar to the one for computing S can be used to rapidly compute B in O(n)
computations (where n is the number of vertices of K). Thus, each iteration of PCG can,
therefore, be done in O(n) time.

6.1. Description of Multigrid algorithm. We also experimented with two simple multi-
grid approaches to finding PL. harmonic maps, which we call multigrid conjugate gradients
(MCG) and multigrid preconditioned conjugate gradients (MPCG). Recall that our mesh re-
duction algorithm furnishes us with a hierarchy of increasingly complex meshes (K_g, f_x),
k = J,...,1,0, approximating the original mesh (K, M). In this approach either CG or
PCG is used to find a harmonic map on a coarse level mesh. We then use our interpolation
operation to extend the map to a finer level and use that extension as the initial guess for
CG or PCG at the finer level. We repeat this process until the finest level is reached.

6.2. Numerical experiments. To compare the performance of CG, PCG, MCG, and
MPCG, we experimented with two sequences of increasingly large geodesic disks taken from
the a mesh representing a small plastic bunny®. Our numerical experiments, which cover a
range of 4 orders of magnitude, indicate that both PCG and MPCG have order of growth
O(nlogn) in the number of vertices. MCG and CG appear to have O(n?) order of growth.

To obtain a machine-independent measure of computation cost, we defined a “cost function”
Cost(n). For each of the two algorithms, CG and PCG, we let

Cost(n) =its*n,

where n is the number of vertices of K and its is the number of iterations performed to
achieve convergence to within a fixed tolerance. To measure the cost of the multigrid al-
gorithms M PCG and MCG, recall that a harmonic embedding is found for each of the
meshes Ky, K_5, K_4, ..., If the number of vertices in K_o, is n, then the cost of precon-
ditioned conjugate gradients (PCG)is proportional to the product itsyng, where itsy is the

3The bunny mesh was supplied to us by Marc Levoy and his students at Stanford University
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FIGURE 9. Least squares fits to the observed computational time and cost

for a sequence of 40 disks ranging in size from 319 to 10329 vertices (small
dots). The large dot is the computational cost of computing the harmonic
map of a larger disk of 15369 vertices. The sequence of disks was taken from
the “bunny mesh.”
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FIGURE 10. Least squares fits to the observed computational cost per vertex
for a sequence of 40 disks ranging in size from 319 to 10329 vertices (small
dots). The large dot is the computational cost of computing the harmonic
map of a larger disk of 15369 vertices. The sequence of disks was taken from
the “bunny mesh”.

number of iterations of PCG required to compute the harmonic embedding of K. Thus,
the computational cost Cost(n) of our multigrid algorithm is proportional to the sum

Cost(n) = Z itsy * .

k

Figures 9 and 10 summarize our numerical experiments.*

4Computations were done on a DEC Alpha 500/266, equipped with 126MB of physical memory, rated at
1200MIPS peak.
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