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Abstract

Principal curves were introduced to formalize the notion of “a curve
passing through the middle of a dataset”. Vaguely speaking, a curve is
said to pass through the middle of a dataset if every point on the curve
is the average of the observations projecting onto it. This idea can
be made precise by defining principal curves for probability densities.
Principal curves can be regarded as a generalization of linear principal
components — if a principal curve happens to be a straight line, then
it is a principal component. In this paper we study principal curves in
the plane. We show that principal curves are solutions of a differential
equation. By solving this differential equation, we find principal curves
for uniform densities on rectangles and annuli. There are oscillating
solutions besides the obvious straight and circular ones, indicating that
principal curves in general will not be unique. If a density has several
principal curves, they have to cross, a property somewhat analogous to
the orthogonality of principal components. Finally, we study principal
curves for spherical and elliptical distributions.



1 Introduction

The problem of fitting one or two-dimensional manifolds to point sets in
two, respectively three, dimensions occurs in a variety of contexts, such as
modeling of object boundaries in two or three-dimensional images (Banfield
and Raftery (1992), Brinkley (1985), Martin et al (1993), Schudy and Bal-
lard (1978, 1979), Shechan et al (1992)), and reconstruction of objects from
range data (Fang and Gossard (1992), Goshtasby (1992), Hoppe et al (1992,
1993), Muraki (1991), Solina and Bajcsy (1990), Vemuri et al (1986)). It is
typically not reasonable to assume that the unknown manifold is of a simple
parametric form, like an ellipsoid. Fitting methods need to be flexible and
able to accommodate a variety of shapes.

Manifold fitting is fundamentally different from regression. It is worthwhile
to contrast the respective goals for the case of two-dimensional data. In
regression, we are given points (z1,%1),...,(Zn,yn). The goal is to find a
function f(z) summarizing the dependence of the response variable Y on
the predictor variable X; the two variables are thus treated asymmetrically.
Under the assumption that f is linear, a common choice is the least squares
straight line. There has been a large amount of research on nonparamet-
ric regression methods that make only very general assumptions about the
nature of f.

In manifold fitting, we are also given points x,...x, € R The goal is
to find a one-dimensional manifold I' summarizing the association between
the variables X7 and X,. The two variables are treated symmetrically. It is
usually clear from the context whether the manifold should be topologically
a circle or a closed interval. Under the assumption that I is a straight line, a
common choice is the largest principal component. Nonparametric methods
not relying on the linearity assumption have typically been crafted on an
ad-hoc basis. This is not satisfactory, and a theoretical underpinning would

be desirable.

To statistically analyze the behavior of fitting methods we need a stochastic
model that is thought to give rise to the data. A simple model is to assume
that the data points are i.i.d. observations of a two-dimensional random vec-
tor distributed according to some (unknown) density p. Then two questions
arise: (1) Which characteristic of the density are we trying to estimate, and
why? (2) How can we estimate this characteristic?



In the context of regression, answers to those questions are well under-
stood. We usually estimate the conditional expectation E(Y | z), because it
minimizes the expected squared prediction error E(Y — f(X))? among all
functions f. There are many approaches to estimating E(Y | ), often based
on local averaging. The amount of averaging or, more generally, the com-
plexity of the model is typically chosen to minimize an estimate of expected
squared prediction error, like the cross-validated residual sum of squares.

In the context of manifold estimation the situation is not as clear cut —
there are no generally accepted answers to questions (1) and (2) above.
In this paper we discuss answers based on the concept of principal curves.
Principal curves were introduced in Hastie (1984) and Hastie and Stuetzle
(1989) to formalize the notion of “a curve passing through the middle of a
dataset”. Vaguely speaking, a curve I' is said to pass through the middle
of a dataset if every point x on the curve is the average of the observations
projecting onto it.

To make this idea precise, Hastie and Stuetzle (1989) define principal curves
for probability densities.

Definition of principal curves: Let X denote a two-dimensional random
vector distributed according to a probability density p, and let I' C R? be
a smoothly embedded closed interval (arc) or circle (loop). For each point
x € R?, let d(x,T') denote the distance from x to I'. Because I' is compact,
for each x € R? the distance d(x,T') is realized by at least one point of I,
Of course, there may be several such points; a point x with several closest
points on the curve is called an ambiguity point. The projection map

mr:R* =T,

is the map which assigns to each x € R? a point 7r(x) € I realizing the
distance from x to I, i.e.

d(x,T) = [lz — mr(x)]| -

Notice that the map 7r is well-defined only on the complement of the set
of ambiguity points of I'. But the set of ambiguity points has Lebesgue
measure zero (see Hastie and Stuetzle (1989)) and can be ignored in prob-
ability calculations. It is not difficult to show that =nr is continuous on the
complement of the set of ambiguity points.



The vague notion that every point on the curve should be the average of the
observations projecting onto it can now be formalized:

Definition 1 (Hastie and Stuetzle (1989)) A curve I is called self-con-
sistent or a principal curve of a density p if K(X|7rr(X) = x) = x for
almost every x € I

The notion of projection also leads to a natural definition of the distance
between a random vector X or its associated density, and a curve I':

d*(X,T) = E(|X - =r(X)[|*).

Principal curves as generalizations of linear principal components:
Besides formalizing the notion of “a curve passing through the middle of a
dataset”, principal curves share two properties with linear principal com-
ponents, which make them appear as a natural generalization (Hastie and
Stuetzle (1989)):

e If a principal curve happens to be a straight line, then it is a (linear)
principal component.

e Principal curves are critical points of the distance function in the vari-
ational sense: let I' be a principal curve, and let I'; be a smooth family
of curves with I'g = I', then

d
—d*(X,T =0

dt ( ’ t) i—o

Linear principal components share this property if I'; is restricted to

be a smooth family of straight lines. The largest principal component

minimizes the distance to X, the smallest principal component max-
imizes the distance (among all lines passing through the mean), and
the others are saddlepoints.

Summary of results: The goal of this paper is to further contribute
to the theoretical understanding of principal curves. We now present an
informal synopsis of our results:

1. Suppose that I' C  is a principal arc for a density p with compact
support 2. Then I satisfies the following transversality conditions:



(1) the endpoints of I' lie on the boundary of €; (2) I' intersects the
boundary orthogonally; (3) the endpoints of I' are (weakly) convex
points of Q.

2. If I'y and I'y both are principal curves for a density p, they cannot be
linearly separable.

3. Suppose that I' is a principal curve for a density p. Under appropriate
conditions on I' and p, the curvature of I' can be expressed in terms of
certain conditional moments of p. Principal curves that satisfy these
conditions are called regular.

4. Regular principal curves are solutions of a system of ordinary differ-
ential equations. These equations can be used to calculate principal
curves for uniform densities on rectangles and annuli. There are os-
cillating solutions besides the obvious straight and circular ones, indi-
cating that principal curves in general will not be unique.

5. Any two regular principal curves of a density intersect.

6. The only regular principal arcs for a radially symmetric density are
straight lines through the center.

7. While the uniform density on a circular disk has a circular principal
curve, the uniform density on an ellipse does not have an elliptical
principal curve.

Notation and conventions: The following notation is used throughout
the paper: Lr denotes the length of I'; A denotes either the closed interval
[0,Lr] when T' is an arc, or the circle of circumference L when T is a loop;
x = x(s) denotes an arc length parameterization of I'. The unit tangent
and normal vector fields to I' are written T(s) and N(s), respectively, and
oriented so that the pair (T(s), N(s)) is consistent with the standard orien-
tation of R?. The angle between the positive z-axis and T(s) is denoted by
0(s).

The map

) { R? — A

X 5= Ax)

defined by the formula mr(x) = x(A(x)) is called the projection index (see
Hastie and Stuetzle (1989)).



Finally, throughout this paper @ C R? denotes a compact, connected region
with smooth boundary 0€2. The density p is assumed to be supported on
Q, strictly positive on the interior of 2, and smooth on all of Q.

2 Transversality Conditions

The goal of this section is to study the endpoints of principal arcs.

Lemma 1. IfI' C Q is a principal curve of p, then the line connecting any
point x € § to its projection wr(x) intersects I' orthogonally:

((x = 7r(x)), T(7r(x))) = 0
for all x € Q.

Proof. Choose a point x € Q. If 7p(x) is an interior point of I' then the
identity follows from the fact that 7p(x) is a point of I' realizing the distance
between x and I'.

Suppose that xg = 7r(x) is an endpoint of I'. Without loss of generality, we
may assume that the orientation of I' has been chosen so that To = T(xg)
is outward-pointing. Note that the inequality ((y — xo), To) > 0 is satisfied
for all y € © such that 7r(y) = xo. For otherwise, the distance from y to I
would be strictly less than ||y — xo|. Consequently, the subset 71" (x0) N Q
is contained in the half-plane H = {x € R*| ((x — xq), To) > 0}.

Suppose that the proposition is false. Then ((y —xg), To) > 0 for some
point y € Q with 7(y) = x¢. Since p is continuous on {2 and strictly positive
on the interior of £, there is an open set ¢ C H, such that (i) 7r(Q) = xo,
(i) p > 0 on @ and (iii) ((y —x0),To) > 0 for all y € . But these
conditions together imply that the point E(X | 7r(X)) is contained in the
interior of H, violating the self-consistency condition E(X| 7p(X) = xq) =
xo ( Xg is on the boundary of H). |

The following proposition is an immediate consequence of Lemma 1:

Proposition 1. If I' C Q is a principal arc then ' satisfies the following
transversality conditions:

1. the endpoints of T' lie on the boundary 0€);
2. T intersects 082 orthogonally;
3. the endpoints of I are (weakly) convex points of 0f).



3 Normal coordinates

Suppose that T' is a principal curve for p and that there are no ambiguity
points in the support of p. To interpret self-consistency as a curvature
condition we need the notion of normal coordinates.

Definition 2. The normal coordinate map of I' is the map vr : AxR — R?
defined by the formula

vr(s,v) = x(s) + vN(s)

and the normal coordinate transformation is the map pur : @ — A X R

defined by the formula
pr(x) = (A(x), (x = x(A(x)), N(A(x)))) -
The components (s,v) of ur(x) are called the normal coordinates of x.

By virtue of our assumption that € does not contain ambiguity points of
I', the normal map is a left inverse of the normal coordinate transformation

pr:
vr o ur = tdgq.

We can now state a formal definition of regularity:

Definition 3. A smooth curve I' C Q is called regular if the following con-
ditions are satisfied:

1. Q contains no ambiguity points of I
2. The map pr : @ — A x R is a diffeomorphism onto its image.
3. The image pur(Q) is of the form

ur() = {(5,0) € A x R v_(s) < v < 04(s)},

where v_ and vy are smooth and v_(s) < 0 < v1(s) on the interior of

A.

Remark 1 Regularity condition (3) implies that for all x on the boundary
of Q the line segment joining x to mr(x) is not tangential to the boundary
at x.



Figure 1 shows a regular arc and a regular loop. Regularity implies that for
any s € A the set V(s) = {v| (s,v) € ur(2)} of points in Q projecting onto
x(s) is an interval:

Figure 1: A regular loop and a regular arc.

For later reference, we now calculate the Jacobian determinant of the normal
map. Recall that the curvature function k = k(s) is given by the formula

b
==.

K

Let 2 and j denote the standard unit vectors in R?. Differentiation with
respect to s of the identities

T = cos(6)r + sin(#)y and N = —sin(6)2 + cos(f);y

yields the Frenet formulas

dT dN
E =xN and E = —krT.
Then w =x'(s) + vN'(s) = (1 — vs(s)) T(s) and w = N(s).
3 v
The Jacobian determinant giac,y)) of the normal coordinate map is now
8,



easily computed:

dz,y) |Ovp(s,v) " dvr(s,v)
s, v) Js dv

= |(1 —vk(s))T(s) x N(s)| =1 —vk(s).
(1)

4 Self-consistency as a Curvature Condition

Suppose that I' is a regular principal curve for a density p. We will now derive
a relation between the curvature of I' and certain conditional moments of p.
We do this by rewriting the self-consistency condition in normal coordinates.
Recall that I' is called self-consistent if E(X | 7p(X) = x) = x for almost
all x € I'. By definition of conditional expectation, this is equivalent to the
condition that

/ xp(x) dx = / 7r(x) p(x) dx
o (4) ' (4)

or

L_l (x — 71(x)) p(x) dx = 0 2)

for all measurable A C I'. Because I is assumed to be regular, Equation (2)
can be rewritten in normal coordinates:

d(z,y)

'Up(X(S) + UN(S)) 8(8, ’U)

/ dvds =0,
{(s,v)€nr(Q)|s€A}

where A now denotes a measurable subset of A. This implies that

~/1/(s) vp(x(s) + vN(s)) (s, 0) dv=0 s—a.e.
Substituting (1) for the Jacobian of the normal map gives
[ o)+ () dv = w(s) [0 plx(s) + N () dv =0, (3
V(s V(s

for all s € A.

Let
fV(s) vp(x(s) + vN(s)) dv

Jo(sy P(x(s) + vN(s)) dv

po(s) =

10



denote the mean of the transverse density on V(s) induced by p, and let
02 (s) denote its variance. Equation (3) can then be rewritten as

K(s) = _mals) (4)

Equation (4) relates the curvature of I' to first and second moments of the
density induced on the normal line to the curve at s. Consider the case where
p(x) is uniform. If x(s) happens to coincide with the transverse mean, i.e.
the center of the normal line segment, then the curvature £(s) has to vanish.
Otherwise, the center of curvature is in the direction of the transverse mean.
This makes intuitive sense: Consider an infinitesimal segment of the curve
centered at x(s). As shown in Figure 2, the set of points projecting onto
this segment is wedge shaped. If the center of the normal line segment falls
below x(s), then the part of the wedge below the curve is longer than the
part above the curve. In order for the mean of the segment to fall on the
curve, the segment thus has to open up as we go upwards, meaning the
curvature of I' has to be negative.

Figure 2: The center of curvature of a principal curve I' points in the direc-
tion of the transverse mean.
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5 Self-consistency as a Differential Equation

Equation (3) can be thought of as a differential equation satisfied by princi-
pal curves. Unfortunately, it cannot be used to find principal curves because
the integration boundaries in the moment integrals themselves depend on
the curve. In order to use a differential equation for finding principal curves,
we proceed differently: We define a differential equation in such a way that
its solution curves, when they are regular, are actually principal curves. This
differential equation expresses curvature in terms of transverse moments of

p.

Definition 4. The k-th transverse moment of the density p at (x,8) is the
function py : Q x S' — R defined by the formula

+(X.0)
pe(x,8) = [ o4 oN(9)) do
v_(X,0)

The integration boundaries vy = v4(x,8) and v_ = v_(x,0) are determined
by the condition that x + v4 N and x + v_ N be the boundaries of the line
segment around x obtained by intersecting the line {x + vN : v € R} with
the support Q of p. This line segment is called the transverse line segment
at (x,0) and is denoted by ((x, ). Similarly V(x,0) = {v : v_(x,0) < v <
v4(x,0)} is called the transverse interval of Q at (x,8).

The mean and variance of the transverse density

p(x+oN(b))

pé_xﬁ)(‘v) = W, D_(X, 0) S v < ’U_}_(X7 0)

can be written in terms of transverse moments:

p (x,0)
fio (x, 6
pa (%, 0)

)
2 _ ) _ <. 0)2
01 (Xv 0) - 1o (X 0) M1 ( 70)

1 (X, 0) =

Consider now the following system of first order differential equations, which
we call the principal curve equations:

d dé 0 0

& cos(f)r +sin(f)y; — = tia (x,6) = 'uJ‘z(X7 ) . (5)

ds ds  p2(x,0)  py(x,0)° + 02 (x,0)
Clearly, any solution of this system satisfies the self-consistency condition (4).
This simple observation yields the following theorem.

12



Theorem 1. A regular curve I is a principal curve of the density p if and
only if it is a solution of the system of equations (5).

Remark 2. It is worth noting that the system (5) may be singular along
the boundary of Q. Suppose that I' is a principal arc. By virtue of the
transversality conditions, the boundary of the support at the endpoints of
I' is convex. If it is strictly convex, all transverse moments pj vanish, and
the self-consistency condition degenerates at the boundary.

6 Principal Curves for Uniform Densities

Our first example is the uniform density on the rectangular strip
Qa,b:{(‘r7y): OS.Z‘SI), —a/2§’y§a/2}

of length b and width a.

For symmetry reasons, the horizontal line y = 0 and the vertical line z = b/2
are principal curves. If the region is square, then the same is true for the
two diagonals. We will shortly see, however, that for long strips many other
regular principal curves exist.

Without loss of generality, any regular principal curve for the strip can
be assumed to be of the form y = f(z). Curves of a more general type
are excluded because they necessarily have ambiguity points in €,3, and
curves of the form z = f(y) are dealt with by interchanging the z and y
axes. Curves which enter and/or leave the strip are also excluded by the
regularity requirement.

A solution to the system of differential equations (5) is uniquely determined
by the boundary values f(0) and f’(0). To satisfy the transversality condi-
tions, any principle curve has to intersect the left boundary of the rectangle
orthogonally, meaning f/(0) = 0. The requirement that the support of the
density must not contain any centers of curvature places a restriction on
f(0) = yo:
a @
6<%
Ignore for the moment the fact that the rectangle has a right boundary and
consider the infinite strip. We can obtain closed form expressions for the
transverse moments and find explicit solutions of the system (5) in terms of
elliptic functions (see Duchamp and Stuetzle (1993) for details). Solutions

13



are periodic, and the period is monotonically increasing in [yp|. A given
starting value yo leads to a principal curve for the rectangle if the length b
is an integer multiple of the half-period. Numerical calculations show that
in order for a non-linear principal curve to exist, the aspect ratio b/a must
be in an interval I, ~ (0.9069 n,0.978 n), for some n. The number of such
intervals containing a given value b/a increases approximately linearly with
b/a. Consequently, rectangles with large aspect ratio have a large number
of principal curves.

y=a/b6
. \/\
""""" ey

Figure 3: An oscillating principal curve for the uniform distribution on a
rectangle

Consider next the uniform distribution on the annulus
QR17R2 = {(Tv qb) R <r < R2}7

where (7, ¢) are polar coordinates. For symmetry reasons there has to be a
circular principal curve. Using Equation (4) relating curvature to conditional
moments of the density, its radius can be shown to be

. 2(R?+ RiRy+ R2)
circe 3(R1+R2)

(6)

It is easy to see that all regular curves for the annulus are of the form
r = f(¢). After a possible rotation, we may assume that f attains a local
minimum at ¢ = 0. The regularity condition requires that no center of
curvature of I' lie in the annulus. A simple calculation at a local minimum

14



and a local maximum of f shows that f(¢) must lie between R,,;, = (2R1+

R2/3 and Rmax = (Rl + 2R2)/3

Because we did not succeed in finding an analytic solution of the principal
curve equations (5) for the case of the annulus, we used a variable-step
4th-order Runge-Kutta method (Runge-Kutta-Fehlberg).

Our experimental results indicate that solutions are periodic, with period
T(Ry, Rz, 79) depending on the initial value rg. In order for a solution to
be a principal loop, it has to be closed, meaning that T'(Rq, R3,70) = 27 /n,

n =1,2,3,.... This will be the case for a discrete set of values ro. Consider,
for example, the annulus €g45:. In addition to the circular principal loop
r = Tere = 0.760, there is one other principal loop, given by the initial

conditions r(0) =~ 0.646, #/(0) = 0. This principle loop has period T' = 7/4
and oscillates between the values r = 0.646 and r = 0.874. Initial conditions
of the form 7/(0) = 0 and r(0) < 0.646 give curves whose periods are slightly
greater than 7/2 and so cannot be closed; for 7(0) > 0.646, the period is
slightly smaller than 7/2 and again the curve cannot close (see Figure 4).

Figure 4: Three solutions of the principal curve equations on the annulus
Qo.45,1. From left to right the initial conditions are: r(0) = 0.646, r(0) =
0.634 and r(0) = 0.690. Only the first is a closed curve, and thus a principal
loop

Computing principal curves for a number of annuli with different aspect
ratios suggests that the number of principal loops increases with increasing
aspect ratio, while the period T( Ry, Rz, 7o) decreases with increasing aspect
ratio (see Figure 5).
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Figure 5: As the aspect ratio increases, the period of principal curves de-
creases. I'rom left to right are the three annuli €451, Qo651 and Qo751
with some principal curves on each. Two principal curves are shown for the
middle annulus. The right annulus also supports several principal curves
(not shown).

7 Principal Curves Cross

In analogy to linear principal components, densities in general will have
multiple principal curves. These curves satisfy conditions that are vaguely
analogous to the orthogonality of linear principal components.

Proposition 2 Suppose that I'y and 'y are principal curves for a density
p. Then they are not linearly separable.

Proof. Let X be a random vector with density p, and let I' be a principal
curve. Then

E(X) = Er E(X| rr(X) = 7) = B(mr(X))

As E(7mr(X)) is in the convex hull of I', the convex hulls of any two principal
curves have to intersect. |

We next show that, under mild convexity conditions on 2, any two regular
principal curves of a density must cross.

16



Theorem 2. Let I'y and I'y be two regular principal curves of the density p.
If I'y has endpoints, suppose that OS2 is strongly convez at those endpoints.
Then I'y and T'y intersect.

Proof. The proof is by contradiction and proceeds in two steps. Suppose
that I'y and I'y do not intersect. Then there must be points x; € I'y and
x3 € I'y for which dist(I'y, I'z) = dist(xy,x2) > 0. According to Lemma 2 be-
low these points must lie in the interior of the respective curves. This implies
that the line L joining x; and xg intersects both curves orthogonally, and
that the transverse distributions coincide. We will use the self-consistency
condition, which is satisfied by both curves, to locate their centers of curva-
ture on L.

Let V C L denote the connected component of the intersection of L with
Q! containing x; and x3. Let xg € £ be the mean of the transverse density
induced on V, and let o be its variance. Parameterize V by V = {xo +
uNy | e < u < b}, and set x; = xg + u;Nj.

Writing the self-consistency condition (4) in the form k; = —u;/(u? + o%)
shows that the u-coordinate of the center of curvature of I'; is given by the
formula ) ) )
us + o o
¢ =u — ——= = L, (7)
u; u;
First consider the case where uy and wuy have opposite signs, as shown in
Figure 6(a). In this case, d(xy,%2) is not a minimum. Next consider the
case where 41 and uy have the same sign. Without loss of generality assume
that uq < uz < 0, as shown in Figure 6(b). Equation (7) then implies that

1 < ¢, 50 again d(xy,xy) is not a minimum?. |

Lemma 2 Let I'y,1's be as in Theorem 2, and assume that they do not
intersect. Then the distance between I'y,1's is realized at interior points
x1 € I'1,x5 € T's.

Proof. Note first that the projection of x5 onto I'y is xy. This shows
that x; cannot be an endpoint of I'y, for, by virtue of the strong convexity
assumption, the only points in € projecting onto the endpoints of I'; are the
endpoints themselves.

We wish to thank Andreas Buja for this observation.
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Figure 6: (a) Curves I';, I'; intersect the normal L on opposite sides of the
mean; (b) Curves intersect the normal on the same side of the mean.

We now show that x; cannot be an endpoint of I'y. Let x. be an endpoint
of I';. By the transversality condition (2) of Proposition 1, I'y intersects
the boundary of Q orthogonally at x.. By virtue of Remark 1, the vector
from from x. to 7r,(x.) intersects the boundary transversely, and therefore
its inner product with the (inward pointing) tangent vector of I'y at x. is
positive. Consequently, z. cannot be the point on I'y closest to x;. |

8 Principal Curves on the Disk and the Ellipse

As shown in Section 6, any spherically symmetric density has a circle as
a principal loop. We now consider principal arcs for spherically symmetric
densities:

Proposition 3 Let p be a spherically symmetric density with compact sup-
port 0 a disk centered at the origin. Then the only regular principal arcs are
straight lines through the origin.

Proof. Suppose I is a regular principal arc. Without loss of generality we
may assume that I' enters 2 at the point (—r,0), where r is the radius of
Q. The transversality conditions require that the tangent of I' at (—7,0) be
horizontal. The straight line y = 0 obviously is a principal arc that satisfies
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these conditions. We will use the fact that I' is a solution to the principal
curve equations (5) and thus is uniquely determined by a point and a tangent
vector to conclude that I' and the straight line y = 0 coincide. However,
using a point and tangent vector on the boundary is too simplistic, because
the principal curve equations are singular on the boundary. We thus have
to argue as follows:

Suppose I' is not a straight line. Then there has to be a point x; with
curvature K(x;) # 0. Assume without loss of generality that x(x;) > 0. This
implies that that there must also be a point x3 with k(x3) < 0 (otherwise,
I' would not cross the principal curve y = 0, contradicting Theorem 2).
Therefore, there is a point xo € I' with x(xg) = 0. As a consequence of
the self-consistency condition (4) and spherical symmetry, I' intersects the
normal line {xg + vN(xg)} in the center of its intersection with €. Thus
the tangent line {xg + vT(xo)} passes through the origin. Because I' is a
solution of the principal curve equations (5), it is uniquelly determined by
xg and T(xg). This means that it has to be a straight line through the
origin, and we have reached a contradiction. |

Our understanding of principal curves for elliptical, non-spherical densities
is not as complete. Assume that pis a uniform density on elliptical region €.
Obviously, the major and minor axes of the ellipse are principal arcs. We do
not know if there are any others. Given that spherically symmetric densities
have circles as principal loops, one might suspect that elliptical densities
have ellipses as principal loops. However, this is not true in general:

Proposition 4 Let p be the uniform density on an ellipse that is not a
circle. Then there is no elliptical principal loop.

Proof.

Assume that the ellipse I' = {(z,y)| 2% + y?/b? = 1} is a principal curve
for the uniform distribution on a convex region  with smooth boundary
092, which is symmetric with respect to both the z- and y-axes. Using the
self-consistency condition, we determine a parameterization for the curve
09 and show that it is not an ellipse.

Parametrize I' as f(6) = (cos(8),bsin(f)). Then 0 can be written as z(8) =
() + v_(#)N(0), where v_(0) is the negative distance along the normal
between f(#) and 0 (see Figure 7). Let zy(0) = f(#) + v+(8)N(f) be the

point of intersection of the normal line with the z-axis.
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Figure 7:

It is not difficult to show that the set of ambiguity points of I' is the interval
of the z-axis joining the foci of the ellipse I'. It follows that the inverse image
V(8) of f(#) under the projection map 7r : € — I' is the interval joining
z(#) and z4(6). We now use Equation (3) and the fact that p is uniform to
express the self-consistency condition as

(24(0)” = v_(0)%)/2 + (04(0)° — v_(6)°)/3K(0) = 0. ()

Because I' is assumed to be an ellipse, both x(6) and v4(#) are known, and
Equation (8) can then be solved for v_(#).

It remains to show that z(#) = (z(#),y(#)) is not an ellipse, unless b = 1. If
the boundary were an ellipse, then its semi-major and semi-minor axes A, B
would be determined by the formulas (A4,0) =z_(0) and (0, B) = z_(7/2);
moreover, the error e(#) = (z(0)/A)? + (y(0)/B)* — 1 would be identically

Zero.
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To show that e(#) is not identically zero, it suffices to compute the second
derivative of e(f) at # = 0. One obtains the formula

1252 1

e”(0) = 6b* 5 —
(662 - 3+ 3T+ 23— 209)) 2+P°

It is not difficult, but messy, to give an analytic proof that ¢”(0) is positive
for 0 < b < 1. The proof proceeds by simplifying the term in parentheses
and isolating the numerator. Setting it equal to zero leads to the problem of
finding the zeros of a fourth degree polynomial in 2, which can be checked
to have no zeros between 0 and 1. |

9 Conclusion

Principal curves were introduced to formalize the notion of “a curve passing
through the middle of a dataset”. Vaguely speaking, a curve is said to pass
through the middle of a dataset if every point on the curve is the average
of the observations projecting onto it. This idea can be made precise by
defining principal curves for probability densities. Principal curves can be
regarded as a generalization of linear principal components — if a principal
curve happens to be a straight line, then it is a principal component. In
this paper we study principal curves in the plane. We show that principal
curves are solutions of a differential equation. By solving this differential
equation, we find principal curves for uniform densities on rectangles and
annuli. There are oscillating solutions besides the obvious straight and cir-
cular ones, indicating that principal curves in general will not be unique. If
a density has several principal curves, they have to cross, a property some-
what analogous to the orthogonality of principal components. Finally, we
investigate principal curves for spherical and elliptical distributions.

In a companion paper (Duchamp and Stuetzle (1995)) we analyze the ex-
tremal properties of principal curves. Like principal components, principal
curves are critical points of the expected squared distance to the data. How-
ever, the largest principal component minimizes the distance, whereas all
principal curves are saddlepoints. This explains why cross-validation does
not appear to be a viable method for choosing the complexity of principal
curve estimates.
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