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Abstract

This paperpresentsa completesystemfor scanningthe
geometryandsurfacecolor of a 3D objectandfor display-
ing realistic imagesof theobjectfromarbitrary viewpoints.
A stereo systemwith activelight producesseveral views of
denserangeandcolordata.Thedatais registeredandasur-
facethat approximatesthedatais constructed.Thesurface
estimatecanbefairly coarse, as theappearanceof finede-
tail is recreatedby view-dependenttexturing of thesurface
usingcolor images.

1. Intr oduction

Convincing virtual reality environmentsrequirerealistic
object models,but suchmodelsare often difficult to con-
structsynthetically. We have built a semi-automaticsystem
thatcanacquirerangedata,registerit, constructamodelthat
incorporatesbothgeometryandcolor, andrenderit from an
arbitraryviewpoint. In this paper, we describethe system,
emphasizingview-dependenttexturingof geometricmodels.

2. 3D object reconstruction

3D objectreconstructionconsistsof threesteps:dataac-
quisition,registration,andsurfacereconstruction.

2.1.Data acquisition

In order to keep our systeminexpensive and to better
control the acquisitionprocess,we built our own scanner
for acquiringrangeandcolor data.Our scannerconsistsof
four digital color camerasanda slideprojectorsitting on a
computer-controlledturntable(seeFig. 1). The slide pro-
jectoremitsa verticalstripeof white light into theworking
volume.

The rangedatais obtainedthroughtriangulation. In an
otherwisedarkroom,theverticallight stripeilluminatesthe

Figure 1. The scanner hardware .

Figure 2. Range thr ough triangulation.

sceneandtheobjects,andappearsin thecameraimagesas
shown in Fig. 2. The illuminatedpixels in thecenterof the
stripe are pairedwith pixels in the other imagesby inter-
sectingthe epipolar line (shown dotted)of a pixel in the
left imagewith the imageof the stripe in the right image.
Triangulationyieldsthe3D coordinatesof thesurfacepoint
correspondingto thepairedpixels. Thewholescenecanbe
digitizedastripeata time,by sweepingthestripeacrossthe
scenein smallsteps.Finally, we take a color image.Back-
groundpixels aredeterminedby back lighting objectsand
trackingwhich pixelschangecolorandintensity.

Accuratetriangulationrequiresaccuratelylocating the
centerof the stripe in a cameraimage. However, the in-
tensitydistribution acrossthewidth of thestripeis approx-
imately Gaussianonly if the illuminatedsurfaceis locally
planarandthewholewidthof thestripeis visibleto thecam-
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Figure 3. Error sour ces in rang e by triangulation.

era. CurlessandLevoy [2] noticedthat with morecompli-
catedgeometrythe rangeestimatesbecomesystematically
distorted.Figure3 (adaptedfrom [2]), shows threesources
of errorin estimatingrangeby triangulation.

Figure 3(a) shows the ideal situation. In Fig. 3(b) the
beamis partially occludedin the right camera,andthe es-
timateof thestripecenteris shiftedto the left. In Fig. 3(c)
thebeamis aimedat a sharpsilhouettecornerof theobject,
andonly half of thebeamhits thesurface.Bothstripecenter
estimatesareshiftedto theleft. Figure3(d) shows thebeam
at a creaseon thesurface.Both theright andtheleft beams
areforeshortened.

To solve theseproblems,we implementedan algorithm
for locatingcentersof stripesbasedon spacetimeanalysis
[2]. Our algorithmreducedboththemagnitudeandthefre-
quency of theerrorsillustratedin Fig. 3. Let usassumethat
the beamis wide enoughto cover several pixels in the im-
age,that its intensityhasGaussiandistribution,andthatwe
move thebeamin stepsthataresmallcomparedto thebeam
width. As thebeamsweepspastthepointonthesurfacethat
correspondsto a given pixel, the intensityof the pixel first
increasesandthendecreases.Becausetheshapeof thetime-
varying intensityprofile is alwaysGaussian,the time when
thebeamwascenteredonthepixel canbereliablyestimated
from thatprofile.

Spacetimeanalysisassignsto eachpixel in eachimage
thetime at which thebeamwascenteredon it. We canuse
this information to find a correspondingpixel in the right
imagefor eachpixel in theleft imageasfollows. Choosea
pixel in theleft imageandnotethetimewhenthebeamwas
centeredat thatpixel. The epipolarline of thatpixel in the
right imageis parameterizedby thetimewhenthepixelsun-
dertheline wereilluminatedby thebeam.Theimageloca-
tion correspondingto theoriginal pixel is foundin subpixel
accuracy by finding thelocationon theline thatcorresponds
to the time associatedwith the original pixel. The 3D co-
ordinatesof the surfacepoint arefound by triangulationas
before.
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Figure 4. The results of hierar chical space carving
after 2 to 7 octree subdivisions. On the right: the
smoothed initial surface , and the result after mesh
optimization.

2.2.Registration

To obtain completecoverageof the an object we have
to performscansfrom several viewpoints. Betweenscans,
the object is moved. Becausethe rangedatain eachview
is expressedin the sensorcoordinatesystem,to estimatea
surfacefrom thedata,andto projectthecolor imagesto that
surface,we have to align,or register, theviews. To register
a view to anotherone,we obtainan approximatesolution
by interactively matchingfeaturesandaligningtheviews in
3D. Then the coloredrangedataof one view is projected
onto thecolor imageof theotherone,thecolor imagesare
aligned,andthe3D datapointsthatprojectto thesamepixel
arepaired.Usingthepairedpointsa rigid transformationis
found that alignsmostof thepairs. The processis iterated
until convergencein thesamemannerasin theIteratedClos-
estPointsmethod[1]. Multiview registrationis handledby
first registeringviewspairwise,determiningandstoringaset
of reliablepoint pairs,andfinally simultaneouslyminimiz-
ing the distancesbetweenall the storedpoint pairs. More
detail for both pairwiseand multiview registrationcan be
foundin [6].

2.3.Surfacereconstruction

Oncethedatais registeredto a commoncoordinatesys-
tem,we constructa modelof thesurfaceof thescannedob-
ject througha two-phaseprocess.We createan initial sur-
faceestimateusinga hierarchicalspacecarvingmethod[8].
Spacecarvingrelieson the fact that if the scannercanob-
serve a surface,thespacebetweenthesurfaceandthescan-
ner is empty. The spaceis tessellatedinto cubes,and if
thereis a view (a rangescan)suchthat the cubeis either
in front of thedataor projectsontothebackground,thecube
is removed. Thespacecarvingis donehierarchicallyusing
an octree. Initially a large cubesurroundsthe data. Since
by definition it intersectsthe data,it is immediatelysubdi-
vided into eightsmallercubes,which thealgorithmtries to
remove. If a cubecannotberemoved(andis not behindthe
surfacein everyview) it is recursively subdividedandtested.
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Figure 5. (a) The triangle containing the view-
ing direction of the vir tual camera determines the
three views used to search for candidate rays. (b)
Though view 3 is closer to the current viewing di-
rection, view 4 is a better choice .

Thesurfaceestimateconsistsof thefreefacesof theremain-
ing cubes.Theinitial meshis simplifiedandbetterfitted to
the datausing the meshoptimizationalgorithmby Hoppe
etal. [5]. Thesurfacereconstructionprocessis illustratedin
Fig. 4.

3. View-dependenttexturing

The modelof the surfacethat we constructis displayed
by a view-dependenttexturing algorithmthatusestheorig-
inal color images. Ratherthan calculatinga texture map
that is pastedonto the surface,we usethe surfacegeome-
try to synthesizenew color imagesfrom the original input
images.In thefollowing wefirst describehow theinput im-
agesusedto synthesizea new imagearechosen.Thenwe
explain how the pixels in the input imagesthat correspond
to theobjectsurfacelocationvisible to a particularpixel in
the viewer are found. We describeour averagingscheme
for combiningthoserays,andwe finally discusstheprepro-
cessingstepsthatallow aninteractiveimplementationof our
texturingmethod.

3.1.Choosingviews

In principle,any cameraview thatseesthesamesurface
point as the viewer (a virtual camera)could contribute to
the color of the correspondingpixel. However, views with
viewing directionsfar away from that of the virtual cam-
erashouldnot beusedif closerviews areavailable. Other-
wise,self-occlusionsbecomemuchmorefrequentandonly
a small portion of the surface, if any, is likely to be visi-
ble bothto theviewer andto thedistantview. Additionally,
small errorsin registration,cameracalibration,andsurface
reconstructionleadto largererrorsin backprojectingsurface
pointsto the color images.In our implementationwe only
searchfor compatibleraysfrom threeinput imagesthathave
beentakenfrom nearbyviewing directions.
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Figure 6. (a) A ray from the viewer is cast thr ough
a pix el, inter secting the object surface , and is pro-
jected back to color images, producing candidate
pix els for coloring the original pix el. (b) A false
color rendering of the surface geometr y is used to
find the surface point visib le thr ough each pix el. (c)
The 3D point corresponding to the pix el pointed to
in (b) is projected into three color images.

To facilitatetheselectionof suitableviews,theviewsare
organizedas illustratedin Fig. 5(a). Our algorithmplaces
a vertex correspondingto eachviewing directionof the in-
put imageson a unit sphere,and then computesa Delau-
nay triangulationof the sphereusingthosevertices. When
renderinga frame,anextra vertex correspondingto thecur-
rentviewing directionis placedon theunit sphereasshown
in Fig. 5(a). Thetrianglecontainingthatvertex determines
the threeviews within which the algorithmwill searchfor
candidateraysfor the surfacepointsvisible to the viewer.
Notethattheseviewsarenotalwaysthethreeclosestviews,
thoughtheclosestoneis guaranteedto beamongthethree.
For example,in Fig. 5(b)view ? is closerto thecurrentview
direction thanview @ . However, we prefer to useview @
becauseA , B , and ? all lie to the “left” of the currentview.
If thereis somepartof thesurfacevisible to theviewer but
occludedin views A andB , that locationis morelikely to be
visible in view @ thanin view ? .

3.2.Finding compatiblerays

Whenour viewer is aimedat an object,the first task in
determiningthe color of a particularpixel is to locatethe
point on theobjectsurfacethatis visible throughthatpixel.
Figure6(a) shows a ray throughoneof the viewer’s pixels
endingat its first intersectionwith theobjectsurface.Candi-
dateraysthatmight seethesamesurfacepointareobtained
by projectingthe intersectionpoint back to the input im-
ages. For example,the viewer pixel marked by the arrow
in Fig. 6(b)correspondsto apointon thedog’ssnout,which
projectsback to the dots displayedin the threeimagesin
Fig. 6(c).

We canusegraphicshardwareto determinethe surface
point visible througha givenpixel. Themethod(alsoused
by Gortleretal. [4]) is illustratedin Fig.6(b). First,theaxis-
alignedboundingbox for thetrianglemeshrepresentingthe
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Figure 7. The vir tual camera sees two points J andK
, but they project back to pix els of camera 1 that

actuall y see points L and M .

objectis calculated.Thenthecoordinatesof eachvertex are
scaledand translatedso that the boundingbox becomesa
cubewith unit-lengthsides.Now the N , O , and P coordinates
of eachvertex can be encodedin the red, green,and blue
componentsof its color, so that whenthemeshis rendered
in theviewer, animagelike theonein Fig. 6(b) is produced.
Within eachtriangle,thegraphicshardwareinterpolatesthe
color, andthereforealsotheencodedsurfacelocation. The
surfacelocationvisible througha pixel is thengivenby the
pixel’s color. A slightly slower alternativewould beto con-
sult thez-buffer to determinethesurfacecoordinates.

Oncethe surfacepoint correspondingto a viewer pixel
hasbeendetermined,candidateraysareobtainedby project-
ing thatpointbackto theinput imagesasshown in Fig. 6(c).
To performtheseprojections,eachcamera’s internalandex-
ternalparametersmustbe known. In our case,the internal
parametersareobtainedfrom cameracalibrationparameters;
theexternalparametersareobtainedby registeringtherange
mapsinto acommoncoordinatesystem.

As Fig. 7 illustrates,not all the candidateraysobtained
through backprojectionshould be accepted. The virtual
cameraof theviewer seestwo surfacepoints, Q and R , and
thosepointsarealsoclearly visible to camera2. However,
point Q is not visible to camera1 dueto self-occlusion;the
rayfrom camera1 pointingat Q seespoint S instead.Point R ,
on theotherhand,is visible to camera1, thoughjust barely,
but in this caseminuteerrorsin calibration,registration,or
surfacereconstructionleadpoint R to projectto a pixel that
really seesT instead. We candetecttheseproblemseasily
if we retain the original rangemapsfor eachcamera.For
example,we cancalculatethedistancefrom point Q to cam-
era1 andcompareit to therangemapvaluefor thepixel Q
projectsto. If thesedistancesdiffer significantly(asthey do
in thiscase),thentheray is rejected.

3.3.Combining rays

The colorsof thecompatibleraysareaveragedtogether
via aweightingschemethatusesthreedifferentweights:di-

(a)                                                    (b)                                                    (c)

Figure 8. (a) A view of a toy dog. (b) The sampling
quality weight. (c) The feathering weight.

rectional weight, samplingquality weight, and feathering
weight.

The taskof the directionalweight is to favor raysorigi-
natingfrom views whoseviewing directionis closeto that
of thevirtual camera.Not only shoulda view’s weight in-
creaseasthecurrentviewing directionmovescloser, but the
otherviews’ weightsshoulddecrease,leaving only theclos-
estview whentheviewpointscoincide.Our algorithmuses
thebarycentriccoordinatesof thecurrentviewing direction
with respectto thedirectionsof thethreesurroundingviews
asthe directionalweight. The barycentriccoordinateslin-
early interpolatethe threepoints to producethe fourth. In
our casethe pointslie on a sphereratherthana plane,but
thebarycentriccoordinatescanstill becomputedby radially
projectingthe vertex of the currentview directiononto the
planartriangleformedby thesurroundingthreeviews.

The samplingquality weight directly reflectshow well
a ray samplesthe surface. Our algorithm assignsto each
ray/pixel of eachinput imagea weightthat is definedasthe
cosineof theanglebetweenthelocalsurfacenormalandthe
directionfrom thesurfacepoint to thesensor. Thisweightis
illustratedin Fig. 8(b)for aview of thetoy dog.Thefeather-
ing weightis usedmostlyto hideartifactsdueto differences
in lighting amongthe input images.Without the feathering
weight, the silhouettesof the input views causenoticeable
discontinuitiesin coloringasaview contributesto pixel col-
orson onesideof a silhouetteedgebut not on theother. As
illustratedin Fig. 8(c), thefeatheringweight is zerooutside
of theobject,andit grows linearly to a maximumvalueof
onewithin theobject.

3.4.Precomputationfor run-time efficiency

The directional weight changesevery time the viewer
moves with respectto the object, so it must be recom-
putedfor eachframe. However, sincethe samplingqual-
ity and featheringweightsremainconstant,we preprocess
eachpixel of eachimageby storingtheproductof thosetwo
weightsin the alphachannelof a pixel, whereit is readily
accessible.

A largepartof theviewer’sprocessingtime is spentpro-
jecting objectsurfacepointsonto input imagesanda large
partof thattimeis spentin correctingfor thecylindrical lens



Figure 9. Our interactive viewer. Left: the color s
code the visib le surface points. Middle: the three
views that have been chosen as inputs, along with
bars that sho w the directional weight. Right: the
final image.

distortion. We avoid this calculationby preprocessingthe
input images(alongwith associatedinformationsuchasthe
weightsand rangedata)to remove the distortionsbefore-
hand.Theprojectionis furtheroptimizedby collapsingeach
view’sregistrationandprojectiontransformationsinto asin-
gle UWVYX matrix thattransformsahomogeneous3D surface
point into ahomogeneous2D imagepoint.

3.5.Resultsand discussion

We have implementedan interactive viewer for display-
ing view-dependentlytexturedobjects(seeFig. 9). Our ap-
proachdoesnot requirehardwaretexture mapping,yet we
candisplaycomplex texturedmodelsat interactive rates(5
to 6 framesper secondon an SGI O2). The only part of
thealgorithmthatuseshardwaregraphicsaccelerationis the
renderingof z-bufferedGouraud-shadedpolygonsto deter-
minewhich pointson theobjectsurfacearevisible in each
frame.Thealgorithmcanbeeasilymodifiedto workwith ar-
bitrary surfacedescriptions(NURBS,subdivision surfaces,
etc.) by finding thevisible surfacepointsusingthez-buffer
insteadof renderingtrianglescoloredby location.

Theweightingschemeis thesameasin view-basedren-
dering(VBR) [7]. In VBR eachrangescanis modeledsepa-
ratelyasatexturedmeshandseveralmeshesarecomposited
during rendering.However, if theobjecthasdepthdiscon-
tinuities,we cannotgetany rangedatafor many pixels (we
canonly triangulatesurfacepointsvisible to both cameras
andthe light source),andalthoughthecolor informationis
valid, it cannotbeused.In thecurrentmethodtherangedata
is first combinedinto a singlesurfacemodelover which the
color datais projected.This meansthatall valid color data
cancontributeto coloringa surfacelocationevenwhereno
rangevaluewasrecovered,aslong asthesurfacewasmod-
eledusingeitherdatafrom anotherviewpoint or by space

carving.In practise,thenew methodproducesbetterrender-
ingsthanVBR with thesameinputdata.

Our view-dependenttexturing is alsorelatedto thework
of Debevecet al. [3], but exact comparisonis not possible
asno implementationdetailsweregivenin thatwork.

4. Conclusions

We have describeda completesystemfor scanningand
displayingrealisticimagesof coloredobjects.Theoutputof
our stereosystemwith active lighting wasconsiderablyim-
proved by adaptingspacetimeanalysisfrom [2] to our sys-
tem. Thedataareregisteredinto a commoncoordinatesys-
tem, andan initial surfaceestimatecreatedby hierarchical
spacecarvingis simplifiedandbetterfittedusingameshop-
timizationalgorithm. Realisticimagesfrom arbitraryview-
pointsareinteractively displayedusingour view-dependent
texturemappingmethod.
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