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FIGURE 9.5. Left: sketch of strut on an automobile. Right: Simplified model of the
system. The values of m, k, and v in the figure are similar to those found in automobiles.
The mass is divided by four because the weight of an automobile is distributed over four
wheels.

EXAMPLE 9.3. (AUTOMOBILE STRUTS) A similar analysis can be done for the mechanical system
modeling the struts on an automobile. Place the z-axis and the y-axis so that x = y = 0 at equilibrium,
so the forces of gravity and the spring cancel—for this reason we make no mention of the force of gravity.
Then, as shown in Figure 9.5, the spring force Fp, and the damping force Fiqmp both depend on the
relative values of « and y. Newton’s second law of motion then implies that the function z = z(t) is a
solution of the differential equation

ma" = —y(@' —y'(t)) — k(z —y(t)) or ma" +~va' +ka =~y (y) + ky(t).
Assume that the automobile is moving at a constant speed along a straight (but not flat!) road. For
simplicity, also assume that the rise and fall of the road is given by the sine function
y(t) = acos(wt),
where a > 0 is a constant and w depends on the speed of the car. The steady-state solution is then
z(t) = aR(w) cos(wt — @) ,
where both R(w) and ¢ have yet to be determined. Since both R(w) and ¢ are independent of a, there
is no loss of generality in setting a = 1.
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FIGURE 9.6. Notice, that the maximum response is only slightly above 1. This implies
that the amplitude of oscillations in the road is never amplified by the struts, and, in
fact, it is reduced except at frequencies of around 20 Hz (cycles per second).

As in earlier examples, set z(t) = Re (2(t)), where z(t) = Ae’! is a solution of the complex diffe-
rential equation
m 2" +'YZI + k2= kezwt +"/(eu‘)t)l — (k+i'yw)e“"t
Proceeding as above we arrive at the equation {(—mw2 + k) +- 'ywi} Ae™t = (k + ywi)e™?. Hence,
ktqwi it wi +(y/m)wi

)= mZ =W wis (- ) + (fm)i

and
_| e« /mwi wi + (y/m)?w?
(g —wf) + (r/musi] Y (e — w2 + (9/m)Pe
Figure 9.6 shows the graph of R(w) for the numerical values of m, v, and k given in Figure 9.5.
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