Lecture 04
Euler's Method
Review.

Direction Fields

General solution:
\[y = y(t, c) \]

I.V.P.:
\[\begin{cases} \frac{dy}{dt} = F(t, y) \\ y(t) = y_0 \end{cases} \]

Unique solutions \(\iff \) integral curves do not cross!

Unique solution of I.V.P.:
\[\begin{cases} \frac{dy}{dt} = F(t, y) \text{ } \text{ } \text{ } \text{ } \text{ nice } \\ y(t_0) = y_0 \end{cases} \text{ initial value problem} \]

Theorem: If \(F \) is nice, I.V.P. has unique solution.
Special case:

\[\frac{dy}{dt} = F(y) \quad \text{autonomous DE} \]

Example \(\frac{dy}{dt} = y(1-y) \)

![Graph showing the function \(F(y) = y(1-y) \) with equilibrium points at 0 and 1, indicating unstable and stable behavior.]
Example

Consider the ODE $y' = f(y)$ where the graph of $f(y)$ is displayed below (flipped along the diagonal and aligned with the direction field):

Question: Where are the equilibrium points? Which ones are stable and which ones are unstable?
Examples.

Free fall with air resistance:
\[
\frac{dN}{dt} = \frac{N}{m_0} - \frac{\gamma N}{m}
\]

\[V_b = 9 \text{ volts} \]
\[
\frac{dV}{dt} + \frac{1}{RC} V = \frac{1}{RC} V_b
\]

\[
\frac{dT}{dt} = -k \left(T - T_a \right)
\]

Assume \(T \rightarrow T_a \) = const Newton's Law of Cooling.

General Form
\[
\begin{cases}
\frac{dy}{dt} + ky = ky_a \\
\frac{dy}{dt} = -k (y - y_a)
\end{cases}
\]

\(k > 0 \)

Stable fixed point.

\(y = y_a \)
Example. Classify the fixed points of the ODE
\[
\frac{dx}{dt} = (1-x^2) (4-x^2) x^2
\]

Solution.
Example. Classify the fixed points of the ODE
\[
\frac{dx}{dt} = (1-x^2)(4-x^2)x^2
\]
So let \(f(x) = (1-x^2)(4-x^2)x^2 \)
\[
= (1-x)(1+x)(2-x)(2+x)x^2
\]
\(f(0) = 0 \) for \(x = 1, -1, 2, -2, 0 \).

These are the fixed points.

- Graph \(f(x) \) (only the sign of \(f(x) \) is important!)

\[
\begin{array}{cccccccc}
+ & + & + & D & - & - & O & + & + & + & + & + & +
\end{array}
\]

\[-2 & -1 & 0 & 1 & 2\]

\[
\begin{array}{cccccccc}
\text{stable} & \text{unstable} & \text{semi stable} & \text{stable} & \text{unstable}
\end{array}
\]

\[-2 & -1 & 0 & 1 & 2\]

\[
\begin{array}{cccccccc}
\text{unstable} & \text{stable} & \text{semi stable} & \text{stable} & \text{unstable}
\end{array}
\]

\[-3 & -2 & -1 & 0 & 1 & 2 & 3 & 4\]
Numerical Solution of Differential Equations

Simplest method: Euler’s Method

Based on the tangent line approximation:

\[y(t) \approx y_0 + y'(t_0)(t - t_0) \]

Example: \(y' = y, \ y(0) = 1 \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>(y_n)</td>
<td>1.000</td>
<td>1.100</td>
<td>1.210</td>
<td>1.331</td>
<td>1.464</td>
<td>1.611</td>
<td>1.772</td>
<td>1.949</td>
<td>2.144</td>
<td>2.358</td>
<td>2.594</td>
</tr>
<tr>
<td>(y(t) = e^t)</td>
<td>1.000</td>
<td>1.105</td>
<td>1.221</td>
<td>1.349</td>
<td>1.492</td>
<td>1.649</td>
<td>1.822</td>
<td>2.014</td>
<td>2.226</td>
<td>2.460</td>
<td>2.718</td>
</tr>
</tbody>
</table>

Figure 2.5. Euler’s method applied to the initial value problem \(y' = y, \ y(0) = 1.0 \), with step size \(h = 0.1 \).
The method in general:

To solve the IVP

\[\begin{align*}
\frac{dy}{dt} &= F(t, y) \\
y(t_0) &= y_0
\end{align*} \]

Proceed as follows:

1. Choose a step size \(h > 0 \).
2. Set \(n = 0 \).
3. Set \(y'_n = F(t_n, y_n) \).
4. Set \(t_{n+1} = t_n + h \).
5. Set \(y_{n+1} = y_n + y'_n \cdot h \).
6. Increase \(n \) by one and go to step (2).
Example

\[y' + y = 10 \cos(\pi t), \quad y(0) = 0 \quad h = 0.1 \]
Caution: h can't be too big!

\[
\frac{dy}{dt} = (10-y)y, \quad y(0)=1 \quad h = 0.2
\]

<table>
<thead>
<tr>
<th>t</th>
<th>yapprox</th>
<th>yexact</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>1.</td>
<td>1.</td>
<td>0.</td>
</tr>
<tr>
<td>0.2</td>
<td>2.8</td>
<td>4.50853</td>
<td>-1.70853</td>
</tr>
<tr>
<td>0.4</td>
<td>6.832</td>
<td>8.58486</td>
<td>-1.75286</td>
</tr>
<tr>
<td>0.6</td>
<td>11.1608</td>
<td>9.78178</td>
<td>1.37897</td>
</tr>
<tr>
<td>0.8</td>
<td>8.56977</td>
<td>9.9699</td>
<td>-1.40012</td>
</tr>
<tr>
<td>1.</td>
<td>11.0211</td>
<td>9.99592</td>
<td>1.0252</td>
</tr>
<tr>
<td>1.2</td>
<td>8.77035</td>
<td>9.99945</td>
<td>-1.2291</td>
</tr>
<tr>
<td>1.4</td>
<td>10.9272</td>
<td>9.99993</td>
<td>0.927318</td>
</tr>
<tr>
<td>1.6</td>
<td>8.9008</td>
<td>9.99999</td>
<td>-1.09919</td>
</tr>
<tr>
<td>1.8</td>
<td>10.8576</td>
<td>10.</td>
<td>0.857553</td>
</tr>
<tr>
<td>2.</td>
<td>8.99537</td>
<td>10.</td>
<td>-1.00463</td>
</tr>
</tbody>
</table>