

1. Let C_* and C'_* be chain complexes over the principal ideal domain R, and let $[C_*, C'_*]$ denote the chain homotopy classes of chain maps from C_* to C'_* . This becomes an R-module in the evident way: If [f] and [g] are chain maps, define r[f] + [g] = [rf + g], where [] denotes the equivalence class in $[C_*, C'_*]$. There is then a homomorphism

$$\varphi: [C_*, C'_*] \to \operatorname{Hom}_R(H_*(C_*), H_*(C'_*))$$

defined by $\varphi([f]) = f_*$. (The *R*-module on the right is the *R*-module of graded *R*-module homomorphisms from $H_*(C_*)$ to $H_*(C'_*)$.)

a. If C_* is a free chain complex over R, prove that φ is an epimorphism.

b. If C_* is a free chain complex over R and $H_*(C_*)$ is also free over R, prove that φ is an isomorphism.

1

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -T_EX