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Abstract

We investigate the stochastic optimization problem of minimizing population risk,
where the loss defining the risk is assumed to be weakly convex. Compositions of
Lipschitz convex functions with smooth maps are the primary examples of such losses.
We analyze the estimation quality of such nonsmooth and nonconvex problems by their
sample average approximations. Our main results establish dimension-dependent rates
on subgradient estimation in full generality and dimension-independent rates when the
loss is a generalized linear model. As an application of the developed techniques, we
analyze the nonsmooth landscape of a robust nonlinear regression problem.

Key words: subdifferential, stability, population risk, sample average approximation, weak
convexity, Moreau envelope, graphical convergence

1 Introduction

Traditional machine learning theory quantifies how well a decision rule, learned from a limited
data sample, generalizes to the entire population. The decision rule itself may enable the
learner to correctly classify (as in image recognition) or predict the value of continuous
statistics (as in regression) of previously unseen data samples. A standard mathematical
formulation of this problem associates to each decision rule x and each sample z, a loss
f(x, z), which may for example penalize misclassification of the data point by the decision
rule. Then the learner seeks to minimize the regularized population risk :

min
x

ϕ(x) = f(x) + r(x) where f(x) = Ez∼P [f(x, z)] . (1.1)

Here, r : Rd → R∪ {+∞} is an auxiliary function defined on Rd that may encode geometric
constraints or promote low-complexity structure (e.g. sparsity or low-rank) on x. The main
assumption is that the only access to the population data is by drawing i.i.d. samples from
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P . Numerical methods then seek to obtain a high-quality solution estimate for (1.1) using
as few samples as possible. Algorithmic strategies for (1.1) break down along two lines:
streaming strategies and regularized empirical risk minimization (ERM).

Streaming algorithms in each iteration update a solution estimate of (1.1) based on
drawing a relatively small batch of samples. Streaming algorithms deviate from each other
in precisely how the sample is used in the update step. The proximal stochastic subgradient
method [17, 29, 47] is one popular streaming algorithm, although there are many others,
such as the stochastic proximal point and Gauss-Newton methods [16, 25, 70]. In contrast,
algorithms based on regularized ERM, draw a large sample S = {z1, z2, . . . , zm} at the onset,
and then output the solution of the deterministic problem

min
x∈Rd

ϕS(x) := fS(x) + r(x) where fS(x) :=
1

m

m∑
i=1

f(x, zi). (1.2)

Solution methodologies for (1.2) depend on the structure of the loss function. One generic
approach, often used in practice, is to apply a streaming algorithm directly to (1.2) by
interpreting fS(·) as an expectation over the discrete distribution over the samples {zi}ni=1

and performing multiple passes through the sampled data. Our current work focuses on the
ERM strategy, though it is strongly influenced by recent progress on streaming algorithms.

The success of the ERM approach rests on knowing that the minimizer of the surrogate
problem (1.2) is nearly optimal for the true learning task (1.1). Quantitative estimates of this
type are often based on a uniform convergence principle. For example, when the functions
f(·, z) are L-Lipschitz continuous for a.e. z ∼ P , then with probability 1 − γ, the estimate
holds [60, Theorem 5]:

sup
x: ‖x‖≤R

|f(x)− fS(x)| ≤ Õ

(√
L2R2d

m
· log

(
d

γ

))
. (1.3)

An important use of the bound in (1.3) is to provide a threshold beyond which algorithms
for the surrogate problem (1.2) should terminate, since further accuracy on the ERM problem
does not improve the accuracy on the true learning task. It is natural to ask if under
stronger assumptions, learning is possible with sample complexity that is independent of
the ambient dimension d. In the landmark paper [60], the authors showed that the answer
is indeed yes when the functions f(·, z) are convex and one incorporates further strongly
convex regularization. Namely, under an appropriate choice of the parameter λ > 0, the
solution of the quadratically regularized problem

x̂S := argmin
x∈Rd

{
ϕS(x) + λ‖x‖2

}
, (1.4)

satisfies

ϕ(x̂S)− inf ϕ ≤ O

(√
L2R2

γm

)
(1.5)

with probability 1 − γ, where R is the diameter of the domain of r. In contrast to previ-
ous work, the proof of this estimate is not based on uniform convergence. Indeed, uniform
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convergence in function values may fail in infinite dimensions even for convex learning prob-
lems. Instead, the property underlying the dimension independent bound (1.5) is that the
solution x̂S of the quadratically regularized ERM (1.4) is stable in the sense of Bousquet and
Elisseff [12]. That is, the solution x̂S does not change much under an arbitrary perturbation
of a single sample zi. Stability of quadratically regularized ERM will also play a central role
in our work for reasons that will become clear shortly.

The aforementioned bounds on the accuracy of regularized ERM are only meaningful
if one can globally solve the deterministic problems (1.2) or (1.4). Convexity certainly
facilitates global optimization techniques. Many problems of contemporary interest, however,
are nonconvex, thereby making ERM-based learning rules intractable. When the functions
f(·, z) are not convex but smooth, the most one can hope for is to find points that are
critical for the problem (1.2). Consequently, it may be more informative to estimate the
deviation in the gradients, supx:‖x‖≤R ‖∇F (x) − ∇FS(x)‖, along with deviations in higher-
order derivatives when they exist. Such uniform bounds have recently appeared in [27,44].

When the loss f(·, z) is neither smooth nor convex, the situation becomes less clear.
Indeed, one should reassess what “uniform convergence of gradients” should mean in light
of obtaining termination criteria for algorithms on the regularized ERM problem. As the
starting point, one may replace the gradient by a generalized subdifferential ∂ϕ(x) in the
sense of nonsmooth and variational analysis [45,57]. Then the minimal norms, dist(0, ∂ϕ(x))
and dist(0, ∂ϕS(x)), could serve as stationarity measures akin to the norm of the gradient
in smooth minimization. One may then posit that the stationarity measures, dist(0, ∂ϕ(x))
and dist(0, ∂ϕS(x)), are uniformly close with high probability when the sample size is large.
Pointwise convergence is indeed known to hold (e.g. [64, Theorem 7.54]). On the other
hand, to our best knowledge, all results on uniform convergence of the stationarity measure
are asymptotic and require extra assumptions, such as polyhedrality for example [52]. The
main obstacle is that the function x 7→ dist(0, ∂ϕ(x)) is highly discontinuous. We refer the
reader to [64, pp. 380] for a discussion. Indeed, the need to look beyond pointwise uniform
convergence is well-documented in optimization and variational analysis [2, 4]. One remedy
is to instead focus on graphical convergence concepts. Namely, one could posit that the
Hausdorff distance between the subdifferential graphs, gph ∂ϕ and gph ∂ϕS, tends to zero.
Here, we take a closely related approach, but aiming for finite-sample bounds.

In this work, we aim to provide tight threshold estimates beyond which algorithms on
(1.2) should terminate. In contrast to previous literature, however, we will allow the loss
function to be both nonconvex and nonsmooth. The only serious assumption we make is
that f(·, z) is a ρ-weakly convex function for a.e. z ∼ P , by which we mean that the
assignment x 7→ f(x, z) + ρ

2
‖x‖2 is convex. The class of weakly convex functions is broad

and its importance in optimization is well documented [1,48,49,56,58].1 It trivially includes
all convex functions and all C1-smooth functions with Lipschitz gradient. More broadly, it
includes all compositions f(x, z) = h(c(x, z), z), where h(·, z) is convex and Lipschitz, and
c(·, z) is C1-smooth with Lipschitz Jacobian. Robust principal component analysis, phase
retrieval, blind deconvolution, sparse dictionary learning, and minimization of risk measures
naturally lead to stochastic weakly convex minimization problems. We refer the interested

1Weakly convex functions also go by other names such as lower-C2, uniformly prox-regularity, t2-
paraconvex, and semiconvex.
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reader to [16, Section 2.1] and [22] for detailed examples.
The approach we take is based on a smoothing technique, well-familiar to optimization

specialists. For any function g, define the Moreau envelope and the proximal map:

gt(x) := min
y

{
g(y) +

1

2t
‖y − x‖2

}
, proxtg(x) := argmin

y

{
g(y) +

1

2t
‖y − x‖2

}
.

It is well-known from [46], where both constructions were introduced, that if g is ρ-weakly
convex and t < 1

ρ
, then the envelope gt is C1-smooth with gradient

∇gt(x) = t−1(x− proxtg(x)).

Note that ∇gt(x) is in principle computable by solving a convex optimization problem in
the definition of the proximal point proxtg(x).

Our main result (Theorem 4.4) shows that with probability 1− γ, the estimate holds

sup
x: ‖x‖≤R

‖∇ϕ1/2ρ(x)−∇(ϕS)1/2ρ(x)‖ ≤ O

(√
L2d

m
log

(
Rρm

γ

))
. (1.6)

The guarantee (1.6) is appealing: even though the subgradients of ϕ and ϕS may be far apart
pointwise, the gradients of the smooth approximations ϕ1/2ρ and (ϕS)1/2ρ are uniformly
close at a controlled rate governed by the sample size. Moreover, (1.6) directly implies
estimates on the Hausdorff distance between subdifferential graphs, gph ∂ϕ and gph ∂ϕS,
as we alluded to above. Indeed, the subdifferential graph is related to the graph of the
proximal map by a linear isomorphism. The guarantee (1.6) is also perfectly in line with the
recent progress on streaming algorithms [16, 18, 20, 76]. These works showed that a variety
of popular streaming algorithms (e.g. stochastic subgradient, Gauss-Newton, and proximal
point) drive the gradient of the Moreau envelope to zero at a controlled rate. Consequently,
the estimate (1.6) provides a tight threshold beyond which such streaming algorithms on
the regularized ERM problem (1.2) should terminate. The proof of (1.6) uses only the
most elementary techniques: stability of quadratically regularized ERM [60], McDiarmid’s
inequality [41], and a covering argument.

It is intriguing to ask when the dimension dependence in the bound (1.6) can be avoided.
For example, for certain types of losses (e.g. modeling a linear predictor) there are well-
known dimension independent bounds on uniform convergence in function values. Can we
therefore obtain dimension independent bounds in similar circumstances, but on the devi-
ations ‖∇ϕ1/2ρ − ∇(ϕS)1/2ρ‖? The main tool we use to address this question is entirely
deterministic. We will show that if ϕ and ϕS are uniformly δ close, then the gradients
∇ϕ1/2ρ and ∇(ϕS)1/2ρ are uniformly O(

√
δ) close, as well as their subdifferential graphs in

the Hausdorff distance. We illustrate the use of such bounds with two examples.
As the first example, consider the loss f modeling a generalized linear model (GLM):

f(x, z) = `(〈x, φ(z)〉, z).

Here φ is some feature map and `(·, z) is a loss function. It is well-known that if `(·, z)
is Lipschitz, then the empirical function values fS(x) converge uniformly to the population
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values f(x) at a dimension-independent rate that scales as m−1/2 in the sample size. We
thus deduce that the gradient ∇(ϕS)1/2ρ converges uniformly to ∇ϕ1/2ρ at the rate m−1/4.
We leave it as an intriguing open question whether this rate can be improved to m−1/2. The
second example analyzes the landscape of a robust nonlinear regression problem, wherein we
observe a series of nonlinear measurements σ(〈x̄, z〉) of input data x̄, possibly with adversarial
corruption. Using the aforementioned techniques, we will show that under mild distributional
assumptions on z, every stationary point of the associated nonsmooth nonconvex empirical
risk is within a small ball around x̄.

Though, in the discussion above, we focused on the norm that is induced by an inner
product, the techniques we present apply much more broadly to Bregman divergences. In
particular, any Bregman divergence generates an associated smoothing of the empirical and
population risks, making our techniques applicable under high order growth of the loss
function and under non-euclidean geometries. The outline of the paper is as follows. In
Section 2, we introduce our notation as well as several key concepts including Bregman
divergences and subdifferentials. In Section 3, we describe the problem setting. In Section 4,
we describe a general procedure, based on algorithmic stability, for obtaining dimension
dependent rates on the error between the gradients of the Moreau envelopes of the population
and subsampled objectives. In Section 5, we illustrate the techniques of the previous section
by obtaining dimension independent rates for generalized linear models and analyzing the
landscape of a robust nonlinear regression problem.

Related literature

This paper builds on the vast literature on sample average approximations found in the
stochastic programming and statistical learning literature. The results in these communi-
ties are similar in many respects, but differ in their focus on convergence criteria. In the
stochastic programming literature, much attention has been given to the convergence of
(approximate) minimizers and optimal values both in the distributional and almost sure
limiting sense [28, 33, 34, 50, 53, 54, 61–63]. In contrast, the statistical learning community
puts a greater emphasis on excess risk bounds that hold with high probability, often with
minimal or no dependence on dimension [13,30,32,37,42,43,51,60,66,67,71,77].

Several previous works have studied (sub)gradient based convergence, as we do here. For
example, [74] proves nonasymptotic, dimension dependent high probability bounds on the
distance between the empirical and population subdifferential under the Hausdorff metric.
The main assumption in this work, however, essentially requires smoothness of the population
objective. The work [75] takes a different approach, directly smoothing the empirical losses
f(x, z). They show that the limit of the gradients of a certain smoothing of the empirical
risk converges to an element of the population subdifferential. No finite-sample bounds are
developed in [75]. The most general asymptotic convergence result that we are aware of is
presented in [65]. There, the authors show that with probability one, the limit of a certain
enlarged subdifferential of the empirical lose converges to an enlarged subdifferential of the
population risk under the Hausdorff metric.

The two works most closely related to this paper are more recent. The paper [44] proves
high probability uniform convergence of gradients for smooth objectives under the assump-
tion that the gradient ∇f(x, z) is sub-Gaussian with respect to the population data. The
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bounds presented in [44] are all dimension dependent and rely on covering arguments. The
more recent paper [27], on the other hand, provides dimension independent high probability
uniform rates of convergence of gradients for smooth Lipschitz generalized linear models.
The main technical tool developed [27] is a “chain rule” for Radamacher complexity. We
note that, in contrast to the m−1/4 rates developed in this paper, [27] obtains rates of the
form m−1/2 for smooth generalized linear models.

2 Preliminaries

Throughout, we follow standard notation from convex analysis, as set out for example by
Rockafellar [55]. The symbol Rd will denote a d-dimensional Euclidean space with inner
product 〈·, ·〉 and the induced norm ‖x‖2 =

√
〈x, x〉. Given any other norm ‖ · ‖, the symbol

‖ · ‖∗ will denote the dual norm. For any set Q ⊂ Rd, we let intQ and clQ stand for the
interior and closure of Q, respectively. The symbol riQ will refer to the interior of Q relative
to its affine hull. The closed unit ball and the unit simplex in Rd will be denoted by B and
∆, respectively. The effective domain of any function f : Rd → R∪{∞}, denoted by dom f ,
consists of all points where f is finite. The indicator function of any set Q ⊂ Rd, denoted
ιQ, is defined to be zero on Q and +∞ on it.

2.1 Bregman divergence

In this work, we will use techniques based on the Bregman divergence, as is now standard
in optimization and machine learning literature. For more details on the topic, we refer
the reader to the expository articles [14, 31, 69]. To this end, henceforth, we fix a Legendre
function Φ: Rd → R ∪ {∞}, meaning:

1. (Convexity) Φ is proper, closed, and strictly convex.

2. (Essential smoothness) The domain of Φ has nonempty interior, Φ is differentiable on
int(dom Φ) and for any sequence {xk} ⊂ int(dom Φ) converging to a boundary point
of dom Φ, it must be the case that ‖∇Φ(xk)‖2 →∞.

Typical examples of Legendre functions are the squared Euclidean norm Φ(x) = 1
2
‖x‖2

2,

convex polynomials Φ(x) = ‖x‖2 + ‖x‖r2, the Shannon entropy Φ(x) =
∑d

i=1 xi log(xi) with

dom Φ = Rd
+, and the Burge function Φ(x) = −

∑d
i=1 log(xi) with dom Φ = Rd

++. For more
examples, see the articles [5, 9, 26,68] or the recent survey [69].

The function Φ induces the Bregman divergence defined by

DΦ(y, x) := Φ(y)− Φ(x)− 〈∇Φ(x), y − x〉,

for all x ∈ int(dom Φ), y ∈ dom Φ. In the classical setting Φ(·) = 1
2
‖ · ‖2

2, the divergence
reduces to the square deviation DΦ(y, x) = 1

2
‖y−x‖2

2. Notice that since Φ is strictly convex,
equality DΦ(y, x) = 0 holds for some x, y ∈ int(dom Φ) if and only if y = x. Therefore,
the quantity DΦ(y, x) measures the proximity between the two points x, y. The divergence
typically is asymmetric in x and y, and therefore we define the symmetrization

Dsym
Φ (x, y) := DΦ(x, y) +DΦ(y, x).
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A function g is called compatible with Φ if the inclusion ri (dom g) ⊂ int(dom Φ) holds.
Compatibility will be useful for guaranteeing that “proximal points” of g induced by Φ lie in
int(dom Φ); see the forthcoming Theorem 3.1. Our focus will be primarily on those functions
that can be convexified by adding a sufficiently large multiple of Φ. Formally, we will say
that a function g : Rd → R ∪ {∞} is ρ-weakly convex relative to Φ, for some ρ ∈ R, if the
perturbed function x 7→ g(x) + ρΦ(x) is convex. Similarly g is α-strongly convex relative to
Φ if the function x 7→ g(x)−αΦ(x) is convex. The notions of relative weak/strong convexity
are closely related to the generalized descent lemma introduced in [8] and the recent work on
relative smoothness in [38,39]. We postpone discussing examples of weakly convex functions
to section 3.

2.2 Subdifferentials

First-order optimality conditions for nonsmooth and nonconvex problems are often most
succinctly stated using subdifferentials. The subdifferential of a function g at a point x ∈
dom g is denoted by ∂g(x) and consists of all vectors v ∈ Rd satisfying

g(y) ≥ g(x) + 〈v, y − x〉+ o(‖y − x‖) as y → x.

When g is differentiable at x, the subdifferential reduces to the singleton ∂g(x) = {∇g(x)},
while for convex functions it reduces to the subdifferential in the sense of convex analysis.

We will call a point x critical for g if the inclusion 0 ∈ ∂g(x) holds. When g is ρ-
weakly convex, the subdifferential automatically satisfies the seemingly stronger property [18,
Lemma 2.2]:

g(y) ≥ g(x) + 〈v, y − x〉 − ρDΦ(y, x). (2.1)

for any x ∈ int(dom Φ), y ∈ dom Φ, and any v ∈ ∂g(x). It is often convenient to interpret
the assignment x 7→ ∂g(x) as a set-valued map, and as such, it has a graph defined by

gph ∂g(x) := {(x, v) ∈ Rd × Rd : v ∈ ∂g(x)}.

3 Problem setting

Fix a probability space (Ω,F , P ). In this paper, we focus on the optimization problem

min
x∈Rd

ϕ(x) = f(x) + r(x) where f(x) = Ez∼P [f(x, z)] , (3.1)

under the following assumptions on the functional components:

(A1) (Bregman Divergence) The Legendre function Φ: Rd → R∪{∞} satisfies the com-
patibility condition, ri (dom r) ⊂ int(dom Φ). Moreover Φ is α-strongly convex with
respect to some norm ‖ · ‖ on the set dom r ∩ int(dom Φ), meaning:

α

2
‖y − x‖2 ≤ DΦ(x, y) for all x, y ∈ dom r ∩ int(dom Φ).

(A2) (Weak Convexity) The functions f(·, z) + r(·) are ρ-weakly convex relative to Φ, for
a.e. z ∈ Ω, and are bounded from below.
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(A3) (Lipschitzian Property) There exists a square integrable function L : Ω→ R+ such
that for all x, y ∈ int(dom Φ) ∩ dom r and z ∈ Ω, we have

|f(x, z)− f(y, z)| ≤ L(z)
√
Dsym

Φ (x, y),√
E [L(z)2] ≤ σ.

The stochastic optimization problem (3.1) is the standard task of minimizing the reg-
ularized population risk. The function f(x, z) is called the loss while r : Rd → R ∪ {∞}
is a structure promoting regularizer. Alternatively r can encode feasibility constraints as
an indicator function. Assumptions (A1) and (A2) are self-explanatory. Assumption (A3)
asserts control on the variation in the loss f(·, z). In the simplest setting when Φ = 1

2
‖ · ‖2

2,
Assumption (A3) simply amounts to Lipschitz continuity of the loss f(·, z) on dom r with a
square integrable Lipschitz constant L(z). The use of the Bregman divergence allows much
more flexibility, as highlighted in the recent works [8, 18, 38, 39]. On one hand, it allows
one to consider losses that are Lipschitz in a non-Euclidean norm, as long as Φ is strongly
convex in that norm—a standard technique in machine learning and optimization. On the
other hand, the Bregman divergence could also accommodate losses that that grow faster
than linear. For example, suppose that the Lipschitz constant of the loss on bounded sets is
polynomially controlled:

f(x, z)− f(y, z)

‖x− y‖2

≤ L(z)

√
p(‖x‖2) + p(‖y‖2)

2
for all distinct x, y ∈ Rd, z ∈ Ω,

where p(u) =
∑r

i=0 aiu
i is some degree r univariate polynomial with nonnegative coefficients

and L(·) is square integrable. Then the result [18, Proposition 3.2] shows that (A3) holds
for the Legendre function

Φ(x) :=
r∑
i=0

ai

(
3i+ 7

i+ 2

)
‖x‖i+2

2 . (3.2)

We could in principle state and prove all the results of the paper in the Euclidean setting
Φ = 1

2
‖ · ‖2

2. On the other, the use of the Bregman divergence adds no complications
whatsoever, and therefore we work in this greater generality. The reader should keep in
mind, however, that all the results are of interest even in the Euclidean setting.

3.1 Convex compositions

The most important example of the problem class (3.1) corresponds to the setting when r(·)
is convex and the loss has the form:

f(x, z) = h(c(x, z), z),

where h(·, z) is convex and c(·, z) is C1-smooth. To see this, let us first consider the setting
Φ = 1

2
‖·‖2

2. Then provided that h(·, z) is `-Lipschitz and the Jacobian ∇c(·, z) is β-Lipschitz,
a quick argument [23, Lemma 4.2] shows that the loss f(·, z) is `β-weakly convex relative to
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Φ; therefore (A2) holds with ρ = `β. Moreover, if there exists a square integrable function
M(·) satisfying ‖∇c(x, z)‖op ≤ M(z) for all x ∈ dom r and z ∈ Ω, then (A3) holds with
L(z) = `M(z).

The assumption that h(·, z) is Lipschitz continuous is mild and is often true in appli-
cations. On the other hand, Lipschitz continuity and boundedness of ∇c(·, z) are strong
assumptions. They can be relaxed by switching to a different Bregman divergence. Indeed,
suppose that h(·, z) is convex and `-Lipschitz as before, while c(·, z) now satisfies the two
growth properties:

‖∇c(x, z)−∇c(y, z)‖op

‖x− y‖2

≤ p(‖x‖2) + p(‖y‖2) ∀x 6= y,∀z ∈ Ω

‖∇c(x, z)‖op ≤ L1(z) ·
√
q(‖x‖2) ∀x,∀z ∈ Ω,

for some polynomials p(u) =
∑r

i= aiu
i and q(u) =

∑r
i= biu

i, with ai, bi ≥ 0, and some square
integrable function L1(·). Define the Legendre function

Φ(x) =
r∑
i=0

bi + ai(3i+ 7)

i+ 2
‖x‖i+2

2 .

Then the result [18, Propositions 3.4, 3.5] shows that assumption (A2) and (A3) hold with
ρ = ` and L(z) =

√
2`L1(z).

The class of composite problems is broad and has attracted some attention lately [16,18–
21, 23–25, 36, 76] as an appealing setting for nonsmooth and nonconvex optimization. The
following table summarizes a few interesting problems of this type; details can all be found
in the aforementioned works.

Problem Loss function Regularizer

Phase retrieval f(x, (a, b)) = |〈a, x〉2 − b| r(x) = 0, ‖x‖1

Blind deconvolution f((x, y), (u, v, b)) = |〈u, x〉〈v, y〉 − b| —
Covariance estimation f(x, (U, b)) = |‖Ux‖2 − b| —
Censored block model f(x, (ij, b)) = |xixj − b| —
Conditional Value-at-Risk f((x, γ), z) = (`(x, z)− γ)+ r(x, γ) = (1− α)γ
Trimmed estimation f((x,w), i) = wifi(x) r(x,w) = ι[0,1]n∩k∆(w)
Robust PCA f((U, V ), (ij, b)) = |〈ui, vj〉 − b| —
Sparse dictionary learning f((D, x), z) = ‖z −Dx‖2 r(D, x) = ιB(D) + λ‖x‖1

Table 1: Common stochastic weakly convex optimization problems.

3.2 The stationarity measure and implicit smoothing

Since the problem (3.1) is nonconvex and nonsmooth, typical algorithms can only be guaran-
teed to find critical points of the problem, meaning those satisfying 0 ∈ ∂ϕ(x). Therefore, one
of our main goals is to estimate the Hausdorff distance between the subdifferential graphs,
gph ∂ϕ and gph ∂ϕS. We employ an indirect strategy based on a smoothing technique.
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Setting the formalism, for any function g : Rd → R∪ {∞}, we define the Φ-envelope and
the Φ-proximal map:

gΦ
λ (x) := inf

y

{
g(y) +

1

λ
DΦ(y, x)

}
, proxΦ

λg(x) := argmin
y

{
g(y) +

1

λ
DΦ(y, x)

}
,

respectively. Note that in the Euclidean setting Φ = 1
2
‖ · ‖2

2, these two constructions reduce
to the widely used Moreau envelope and the proximity map introduced in [46]. In this case,
we will omit the subscript Φ from gΦ

λ and proxΦ
λg. Note that in the Euclidean setting, the

graphs of the proximal map and the subdifferential are closely related:

y = proxλg(x) ⇐⇒ (y, λ−1(x− y)) ∈ gph ∂g.

Consequently the graph of the proximal map proxλg is linearly isomorphic to the graph of
the subdifferential ∂g by the linear map (x, y) 7→ (y, λ−1(y − x)). It is this observation that
will allow us to pass from uniform estimates on the deviations ‖proxϕ/λ(x) − proxϕS/λ(x)‖
to estimates on the Hausdorff distance between subdifferential graphs, gph ∂ϕ and gph ∂ϕS.

It will be important to know when the set proxΦ
λg(x) is a singleton lying in int(dom Φ).

The following theorem follows quickly from [10], with a self-contained argument given in [18,
Theorem 4.1]. The Euclidean version of the result was already proved in [46]. We will often
appeal to this theorem without explicitly referencing it to shorten the exposition.

Theorem 3.1 (Smoothness of the Φ-envelope). Consider a closed and lower-bounded func-
tion g : Rd → R ∪ {∞} that is ρ-weakly convex and compatible with some Legendre function
Φ: Rd → {∞}. Then the following are true for any positive λ < ρ−1 and any x ∈ int(dom Φ).

• The proximal point proxΦ
λg(x) is uniquely defined and lies in dom g ∩ int(dom Φ).

• If Φ is twice differentiable on the interior of its domain, then the envelope gΦ
λ is dif-

ferentiable at x with gradient given by

∇gΦ
λ (x) :=

1

λ
∇2Φ(x)

(
x− proxΦ

λg(x)
)
. (3.3)

The main application of Theorem 3.1 is to the functions ϕ and ϕS under the assumptions
(A1)-(A3). Looking at the expression (3.3), it is clear that the deviation between x and
proxΦ

λg(x) provides an estimate on the size of the gradient ∇gΦ
λ (x). To make this observation

precise, for any point x ∈ int(dom Φ), define the primal-dual pair of local norms:

‖y‖x :=
∥∥∇2Φ(x)y

∥∥
∗ , ‖v‖∗x =

∥∥∇2Φ(x)−1v
∥∥ .

Thus for any positive λ < ρ−1 and x ∈ int(dom Φ), using (3.3), we obtain the estimate√
DΦ

(
proxΦ

λg(x), x
)
≥ λ

√
α

2
· ‖∇gΦ

λ (x)‖∗x.

Consequently, following the recent literature on the subject, we will treat the quantity

DΦ(proxΦ
λg(x), x), (3.4)

as a measure of approximate stationarity of g at x. In particular, when specializing to the
target setting g = ϕ, it is this quantity (3.4) that streaming algorithms drive to zero at a
controlled rate, as shown in [16,18,76].
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4 Dimension Dependent Rates

In this section, we prove the uniform convergence bound (1.6), appropriately generalized
using the Bregman divergence. The proof outline is as follows. First, in Theorem 4.1 we will
estimate the expected error between the true proximal point and it’s sampled version,

ES‖proxϕ/λ(y)− proxϕS/λ(y)‖,

where y is fixed. The same theorem also shows proxϕS/λ(y) is stable in the sense that
proxϕS/λ(y) does not vary much when one sample zi ∈ S is changed arbitrarily. In the Eu-
clidean setting, this is precisely the main result of [60] on stability of quadratically regularized
ERM in stochastic convex optimization. Using McDiarmid’s inequality [41] in Theorem 4.4,
we will then deduce that the quantity ‖proxϕ/λ(y)− proxϕS/λ(y)‖ concentrates for a fixed y.
A covering argument over y in an appropriate norm will then complete the proof.

We begin following the outlined strategy with the following theorem.

Theorem 4.1 (Stability of regularized ERM). Consider a set S = (z1, . . . , zm) and define
Si := (z1, . . . , zi−1, z

′
i, zi+1, . . . zm), where both the index i and the point z′i ∈ Ω are arbitrary.

Fix an arbitrary point y and set

A∗ := argmin
y∈Rd

{ϕ(y) + ρ̄DΦ(x, y)} and A(S) := argmin
y∈Rd

{ϕS(y) + ρ̄DΦ(x, y)} .

Then for any ρ̄ > ρ, the estimates hold:√
Dsym

Φ (A(S),A(Si)) ≤ L(zi) + L(z′i)

(ρ̄− ρ)m
(4.1)

ES [DΦ(A(S),A∗)] ≤ 2σ2

(ρ̄− ρ)2m
(4.2)

0 ≤ ES[ϕ1/ρ̄(y)− (ϕS)1/ρ̄(y)] ≤ 2σ2

(ρ̄− ρ)m
. (4.3)

Proof. We first verify (4.1). To this end, a quick computation yields for any points u and v
the equation:

fS(v)− fS(u) = fSi(v)− fSi(u) +
f(v, zi)− f(u, zi)

m
+
f(u, z′i)− f(v, z′i)

m
. (4.4)

Define now the regularized functions

ϕ̂(x) := ϕ(x) + ρ̄DΦ(x, y) and ϕ̂S(x) := ϕS(x) + ρ̄DΦ(x, y).

Then adding [r(v) + ρ̄DΦ(v, y)]− [r(u) + ρ̄DΦ(u, y)] to both sides of (4.4), we obtain

ϕ̂S(v)− ϕ̂S(u) = ϕ̂Si(v)− ϕ̂Si(u) +
f(v, zi)− f(u, zi)

m
+
f(u, z′i)− f(v, z′i)

m
.
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Henceforth, set v := A(Si) and u := A(S). Thus v is the minimizer of ϕ̂Si and u is the
minimizer of ϕ̂S. Taking into account that both ϕ̂S(·) and ϕ̂Si(·) are (ρ̄− ρ)-strongly convex
relative to Φ, we deduce

(ρ̄− ρ)DΦ(v, u) ≤ ϕ̂S(v)− ϕ̂S(u) ≤ f(v, zi)− f(u, zi)

m
+
f(u, z′i)− f(v, z′i)

m
− (ρ̄− ρ)DΦ(u, v).

Rearranging, we arrive at the estimate

Dsym
Φ (u, v) ≤ 1

ρ̄− ρ

[
f(v, zi)− f(u, zi)

m
+
f(u, z′i)− f(v, z′i)

m

]
≤ L(zi) + L(z′i)

(ρ̄− ρ)m

√
Dsym

Φ (u, v).

Dividing through by
√
Dsym

Φ (u, v), we obtain the claimed stability guarantee (4.1).
To establish (4.3), observe first

(ϕS)1/ρ̄(y) = ϕS(A(S)) + ρ̄DΦ(A(S), y) ≤ ϕS(x) + ρ̄DΦ(x, y) for all x.

Taking expectations, we conclude ES[(ϕS)1/ρ̄(y)] ≤ ϕ1/ρ̄(y), which is precisely the left-hand-
side of (4.3). Next, it is standard to verify the expression [59, Theorem 13.2]:

ES[f(A(S))] = ES[fS(A(S))] + ES[f(A(S))− fS(A(S))]

= ES[fS(A(S))] + E(S,z′)∼P,i∼U(m)[f(A(Si), zi)− f(A(S), zi)],
(4.5)

where U(m) denotes the discrete uniform distribution. Taking into account (4.1), we obtain

|ES[ϕ̂(A(S))− ϕ̂S(A(S))]| ≤ E
[
L(z)

√
Dsym

Φ (A(S),A(Si))

]
≤
√
Ez[L(z)2]

√
ES[Dsym

Φ (A(S),A(Si)] ≤ 2σ2

(ρ̄− ρ)m
. (4.6)

Using the expressions, ϕ̂(A(S)) ≥ ϕ1/ρ̄(y) and (ϕS)1/ρ̄(y) = ϕ̂S(A(S)), yields the right-hand-
side of (4.3).

Finally noting that ϕ̂ is (ρ̄− ρ)-strongly convex relative to Φ, we deduce

(ρ̄− ρ)DΦ(A(S),A∗) ≤ ϕ̂(A(S))−min ϕ̂.

Taking expectation, and using the inequalities ES[ϕ̂S(A(S))] ≤ min ϕ̂ and (4.6), we arrive at

(ρ̄− ρ)ES[DΦ(A(S),A∗)] ≤ ES[ϕ̂(A(S))−min ϕ̂] ≤ ES[ϕ̂(A(S))− ϕ̂S(A(S))] ≤ 2σ2

(ρ̄− ρ)m
.

Thus we have established (4.2), and the proof is complete.

Next, we pass to high probability bounds on the deviation ‖proxϕ/λ(y) − proxϕS/λ(y)‖
by means of McDiarmid’s inequality [41]. The basic result reads a follows. Suppose that a
function g satisfies the bounded difference property:

|g(z1, . . . , zi−1, zi, zi+1, . . . , zm)− g(z1, . . . , zi−1, z
′
i, zi+1, . . . , zm)| ≤ ci,
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for all i, z1, . . . , zi−1, zi, zi+1, . . . , zm, z
′
i, where ci are some constants. Then for any indepen-

dent random variables X1, . . . , Xm, the random variable Y = g(X1, . . . , Xm) is unlikely to
exceed its mean by much:

P(Y − EY ≥ t) ≤ exp

(
−2t2

‖c‖2
2

)
.

A direct application of this inequality to ‖proxϕ/λ(y)−proxϕS/λ(y)‖ using (4.1) would require
the Lipschitz constant L(·) to be globally bounded. This could be a strong assumption, as
it essentially requires the population data to be bounded. We will circumvent this difficulty
by extending the McDiarmid’s inequality to the setting where the constants ci are replaced
by some functions ωi(·, ·) of the data, zi and z′i. Let εi be a Rademacher random variable,
meaning a random random variable taking value ±1 with equal probability. Then as long
as the symmetric random variables εiωi(Zi, Z

′
i) have sufficiently light tails, a McDiarmid

type bound will hold. In particular, we will be able to derive high probability upper bounds
on the deviations ‖proxϕ/λ(y)− proxϕS/λ(y)‖ only assuming that the random variable εL is
sub-Gaussian. The proof follows known techniques for establishing McDiarmid’s inequality,
and in particular is essentially the same as that in [35, Theorem 1], though there the theorem
was stated when ωi is a metric and εiω(zi, zi) is sub-Gaussian.

Henceforth, given a random variable X, we will let ψ(λ) := log(EeλX) denote the loga-
rithm of the moment generating function. The symbol ψ? : R→ R ∪ {∞} will stand for the
Fenchel conjugate of ψ, defined by ψ?(t) = supλ{tλ− ψ(λ)}.

Theorem 4.2 (McDiarmid extended). Let z1, . . . , zm be independent random variables with
ranges zi ∈ Zi. Suppose that there exist functions ωi : Zi×Zi → R+ such that the inequality

|g(z1, . . . , zi−1, zi, zi+1, . . .)− g(z1, . . . , zi−1, z
′
i, zi+1, . . .)| ≤ ω(zi, z

′
i),

holds for all zj ∈ Zj, zi, z′i ∈ Zi, and all i, j ∈ {1, . . . ,m}. Then the estimate holds:

ψg(z)−E[g(z)](λ) ≤
m∑
i=1

ψεiωi(λ) ∀λ, (4.7)

where ωi denotes the random variable ωi(zi, z
′
i) and εi are i.i.d Rademacher random variables.

In particular if ωi = ωj for all indices i and j, then we have

P(g(z)− E[g(z)] ≥ t) ≤ exp

(
−mψ?εω

(
t

m

))
∀t ≥ 0. (4.8)

Proof. Define the Doob martingale sequence:

Y0 := E[g(z)] and Yi := E[g(z) | z1, . . . zi] for i = 1, . . . ,m,

and consider the martingale differences

Vi := Yi − Yi−1 for i = 1, . . . ,m.
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We aim to bound the moment generating function of Ym = g(z). To this end, observe

E[eλYi ] = E
[
eλYi−1E[eλ(Yi−Yi−1) | z1, . . . , zi−1]

]
. (4.9)

Thus, the crux of the proof is to bound the conditional expectation E[eλVi | z1, . . . , zi−1].
Form a vector z′ from z by replacing zi by an identical distributed copy z′i. Clearly then

E[g(z′) | z1, . . . , zi] = E[g(z) | z1, . . . , zi−1] = Yi−1.

Therefore we may write Vi = Yi − Yi−1 = E[g(z′)− g(z) | z1, . . . , zi]. Hence, we deduce

E
[
eλVi | z1, . . . , zi−1

]
= E

[
eλE[g(z)−g(z′)|z1...,zi] | z1, . . . , zi−1

]
≤ E

[
eλ(g(z)−g(z′)) | z1, . . . , zi−1

]
= E

[
1

2
eλ(g(z)−g(z′)) +

1

2
eλ(g(z′)−g(z)) | z1, . . . , zi−1

]
= E [cosh(λ(g(z)− g(z′))) | z1, . . . , zi−1]

= E [cosh(λ|g(z)− g(z′)|) | z1, . . . , zi−1]

≤ E [cosh(λ(ωi(zi, z
′
i))) | z1, . . . , zi−1]

= E
[

1

2
eλ(ωi(zi,z

′
i)) +

1

2
e−λ(ωi(zi,z

′
i))

]
= E

[
eλεiωi(zi,z

′
i)
]

= eψεiωi (λ),

where the line follows by Jensen’s inequality and the tower rule. Appealing to (4.9), and
using induction, we therefore conclude

E[eλYm ] ≤ eψεmωm (λ)E[eλYm−1 ] ≤ . . . ≤ eλE[g(z)]+
∑m
i=1 ψεiωi (λ).

Thus (4.7) is proved. The estimate (4.8) then follows by the standard Cramér-Chernoff
bounding method. Namely, ωi = ωj for all indices i and j. Then for every t ≥ 0, Chernoff’s
inequality [11, Page 21] together with (4.7) implies

P(g(z)− E[g(z)] ≥ t) ≤ e−(mψεω)?(t). (4.10)

Noting the equality (mψεω)?(t) = mψ?εω( t
m

) completes the proof.

The final ingredient is to perform a covering argument over the points y. To this end, we
will need the following theorem that guarantees Lipschitz continuity of the proximal map in
a metric dΦ(x, y) := ‖∇Φ(x)−∇Φ(y)‖∗.

Lemma 4.3 (Lipschitz continuity). Consider a closed and lower-bounded function g : Rd →
R∪{∞} that is ρ-weakly convex and compatible with some Legendre function Φ: Rd → {∞}.
Assume in addition that Φ is α-strongly convex on dom g ∩ int(dom Φ). Then for any ρ̄ > ρ
and x, y ∈ int(dom Φ), we have

‖proxg/ρ̄(x)− proxg/ρ̄(y)‖ ≤ ρ̄

α(ρ̄− ρ)
‖∇Φ(x)−∇Φ(y)‖∗.

14



Proof. For any x, y, set x̂ = proxg/ρ̄(x) and ŷ = proxg/ρ̄(y). Taking into account that g+ ρ̄Φ
is (ρ̄− ρ) strongly convex relative to Φ, we deduce

(ρ̄− ρ)DΦ(ŷ, x̂) ≤ (g(ŷ) + ρ̄DΦ(ŷ, x))− (g(x̂) + ρ̄DΦ(x̂, x))

(ρ̄− ρ)DΦ(x̂, ŷ) ≤ (g(x̂) + ρ̄DΦ(x̂, y))− (g(ŷ) + ρ̄DΦ(ŷ, y)) .

Adding these estimates together, we obtain

α(ρ̄− ρ)‖x̂− ŷ‖2 ≤ (ρ̄− ρ)(DΦ(ŷ, x̂) +DΦ(x̂, ŷ)

≤ ρ̄ (DΦ(ŷ, x)−DΦ(x̂, x) +DΦ(x̂, y)−DΦ(ŷ, y))

= ρ̄〈∇Φ(x)−∇Φ(y), x̂− ŷ〉
≤ ρ̄‖∇Φ(x)−∇Φ(y)‖∗‖x̂− ŷ‖.

The result follows by dividing both sides by ‖x̂− ŷ‖.

We now have all the ingredients to prove the main result of this section. To this end,
for any set C ⊆ int(dom Φ), we will let N (C,Φ, δ) denote the covering number of C in the
metric (x, y) 7→ ‖∇Φ(x)−∇Φ(y)‖∗.

Theorem 4.4 (Concentration of the stationarity measure). Let C ⊆ int(dom Φ) be any set.
Then with probability

1−N (C,Φ, δ) exp

(
−m · ψ∗εL

(
s√
m

))
,

we have

sup
y∈C
‖proxΦ

ϕS/ρ̄
(y)− proxΦ

ϕ/ρ̄(y)‖ ≤
√

4(σ+s)2

α(ρ̄−ρ)2m
+ 2ρ̄δ

α(ρ̄−ρ)
.

If Φ is in addition twice differentiable on int(dom Φ), then with the same probability, the
estimate holds:

sup
y∈C
‖∇(ϕS)Φ

1/2ρ(y)−∇ϕΦ
1/2ρ(y)‖∗x ≤

√
16(σ+s)2

αm
+ 8ρδ

α
.

Proof. Following the notation of Theorem 4.1, set

A(y, S) := proxϕS/ρ̄(y) and A∗(y) := proxϕ/ρ̄(y).

Define the function
g(y, S) := ‖A(y, S)−A∗(y)‖.

We will first apply Theorem 4.2 to the function g(y, ·) : Ωm → R, with y fixed. To verify the
bounded difference property, we compute

|g(y, S)− g(y, Si)| =
∣∣‖A(y, S)−A∗(y)‖ − ‖A(y, Si)−A∗(y)‖

∣∣ ,
≤ ‖A(y, S)−A(y, Si)‖, (4.11)

≤ L(zi) + L(z′i)√
α(ρ̄− ρ)m

, (4.12)
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where (4.11) uses the reverse triangle inequality, while (4.12) follows from the estimate (4.1)

and strong convexity of Φ. Setting ω(zi, z
′
i) =

L(zi)+L(z′i)√
α(ρ̄−ρ)m

, we deduce

ψεω(λ) = ψεL

(
2λ√

α(ρ̄− ρ)m

)
and ψ?εω(t) = ψ?εL

(√
α(ρ̄− ρ)mt/2

)
.

Note moreover from (4.2) the bound Eg(y, S) = E‖A(y, S) − A∗(y)‖ ≤
√

4σ2

α(ρ̄−ρ)2m
. Thus,

applying Theorem 4.2, we conclude

P
(
g(y, S) ≥

√
4σ2

α(ρ̄−ρ)2m
+ t

)
≤ exp

(
−mψ?εL

(√
α(ρ̄− ρ)t/2

))
.

Next we show using Lemma 4.3 that g(·, S) is 2ρ̄
α(ρ̄−ρ)

-Lipschitz with respect to the metric

dΦ(x, y). Indeed, observe

|g(y, S)− g(y′, S)| ≤
∣∣∣‖A(y, S)−A∗(y)‖ − ‖A(y′, S)−A∗(y′)‖

∣∣∣
≤ ‖A(y, S)−A(y′, S)‖+ ‖A∗(y)−A∗(y′)‖ ≤ 2ρ̄

α(ρ̄−ρ)
dΦ(y, y′),

where we used the triangle inequality and Lipschitz continuity of the proximal operator
(Lemma 4.3). Let {yi} be a δ-net of C in the metric dΦ. Thus for every y in a δ-ball of yi, we
have g(y, S) ≤ g(yi, S) + 2ρ̄δ

α(ρ̄−ρ)
. Taking a union bound over the cover, we therefore deduce

P
(
g(y, S) ≤

√
4σ2

α(ρ̄−ρ)2m
+ 2ρ̄δ

α(ρ̄−ρ)
+ t

)
≥ 1−N (C,Φ, δ) exp

(
−mψ∗εL

(√
α(ρ̄− ρ)t/2

))
.

Setting t = 2s√
αm(ρ̄−ρ)

completes the proof.

Let us instantiate the Theorem 4.4 in the Euclidean setting Φ = 1
2
‖ · ‖2

2 with C be being

the unit ball of radius B. To this end, we will use the estimate, N (C,Φ, δ) ≤
(
1 + 2B

δ

)d
;

see e.g. [73, Corollary 4.2.13]. We will also require the use of the sub-Gaussian norm of any
random variable X, which is defined to be ‖X‖sg := inf{t > 0 : E exp(X2/t2) ≤ 2}, along
with the sub-exponential norm ‖X‖se := inf{t > 0 : E exp(|X|/t) ≤ 2}.

Sub-Gaussian Lipschitz constant. Suppose that L − EL is a sub-Gaussian random
variable with parameter ν = ‖L − E[L]‖sg. Using the triangle inequality, we therefore
deduce

‖εL‖sg = ‖L‖sg ≤ ‖L− E[L]‖sg + ‖E[L]‖sg ≤ ν +
σ√
ln 2

.

Appealing to [73, Equation 2.16], we conclude ψεL(λ) ≤ c
2

(ν + σ)2 λ2 for all λ ∈ R, where c

is a numerical constant. Taking conjugates yields the relation ψ?εL(t) ≥ t2

c(ν+σ)2
. Appealing

to Theorem 4.4, while setting s =

√
c(ν + σ)2 ln

(
N (C,Φ,δ)

γ

)
and δ = 1

ρ

√
d
m

, we deduce that

with probability 1− γ, the estimate holds:

sup
y∈C
‖∇(ϕS)1/2ρ(y)−∇ϕ1/2ρ(y)‖ .

√
σ2 + d

m
+

(ν + σ)2d

m
ln
(
R
γ

)
,

where we set R := 1 + 2ρB
√

m
d

.
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Globally bounded Lipschitz constant As the next example, suppose that there exists
a constant L satisfying L(z) ≤ L for a.e. z ∈ Ω. Then clearly we have σ ≤ L and ν :=
‖L− E[L]‖sg . L. Consequently, we deduce that with 1− γ, the estimate holds:

sup
y∈C
‖∇(ϕS)1/2ρ(y)−∇ϕ1/2ρ(y)‖ .

√
L2 + d

m
+
L2d

m
ln
(
R
γ

)
.

where we set R := 1 + 2ρB
√

m
d

.

Sub-exponential Lipschitz constant As the final example, we suppose that L − E[L]
is sub-exponential and set ν = ‖L − E[L]‖se. A completely analogous argument as in the
sub-Gaussian case implies ‖εL‖se ≤ ν+ σ

ln(2)
. Appealing to [73, Proposition 2.7.1], we deduce

ψεL(λ) ≤ c2(ν + σ)2λ2 for all |λ| ≤ 1
c(ν+σ)

. To simplify notation set η := c(ν + σ). Taking
conjugates, we therefore deduce

ψ?εL(t) ≥

{
t2

4η2
if |t| ≤ 2η

|t|
η
− 1 otherwise

.

Consequently, we deduce the usual Bernstein-type bound ψ?εL(t) ≥ min{ t2

4η2
, t

2η
}. Setting

s = 2η ·max

{√
ln
(
N (C,Φ,δ)

γ

)
, 1√

m
ln
(
N (C,Φ,δ)

γ

)}
and δ = 1

ρ

√
d
m

in Theorem 4.4, we deduce

that with probability 1− γ, we have

sup
y∈C
‖∇(ϕS)1/2ρ(y)−∇ϕ1/2ρ(y)‖ .

√
σ2 + d

m
+ (ν + σ)2 max

{
d

m
log
(
R
γ

)
,
d2

m2
log2

(
R
γ

)}
,

where we set R := 1 + 2ρB
√

m
d

.

We end the section by showing how Theorem 4.4 directly implies analogous bounds on a
localized Hausdorff distance between the subdifferential graphs, gph ∂ϕ and gph ∂ϕS.

Theorem 4.5 (Concentration of subdifferential graphs). Let C ⊆ Rd be any set and let
r > 0 and ρ̄ > ρ be arbitrary. Then with probability

1−N (C + rρ̄B,Φ, δ) exp

(
−m · ψ∗εL

(
s√
m

))
,

the estimates hold

(C × rB) ∩ gph ∂ϕS ⊂ gph ∂ϕ+

(√
4(σ+s)2

α(ρ̄−ρ)2m
+ 2ρ̄δ

α(ρ̄−ρ)

)
(B× ρ̄B) , (4.13)

(C × rB) ∩ gph ∂ϕ ⊂ gph ∂ϕS +

(√
4(σ+s)2

α(ρ̄−ρ)2m
+ 2ρ̄δ

α(ρ̄−ρ)

)
(B× ρ̄B) . (4.14)
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Proof. Fix a pair of points x, y ∈ Rd and observe the equivalence

y = proxϕS/ρ̄(x) ⇐⇒ ρ̄−1(x− y) ∈ ∂ϕS(y).

Let y ∈ C and v ∈ rB ∩ ∂ϕS(y) be arbitrary. Define the point x := y + ρ̄v. Clearly then we
may write y = proxϕS/ρ̄(x) and the inclusion x ∈ C+ rρ̄B holds. Appealing to Theorem 4.4,
we therefore deduce that with probability

1−N (C + rρ̄B,Φ, δ) exp

(
−m · ψ∗εL

(
s√
m

))
,

simultaneously for all y ∈ C and v ∈ rB ∩ ∂ϕS(y) and δ > 0, we have

‖y − proxϕ/ρ̄(x)‖ ≤
√

4(σ+s)2

α(ρ̄−ρ)2m
+ 2ρ̄δ

α(ρ̄−ρ)
.

Set y′ := proxϕ/ρ̄(x) and v′ := ρ̄−1(x− y′) ∈ ∂ϕ(z), and observe

1

ρ̄
‖v − v′‖ = ‖y − y′‖ ≤

√
4(σ+s)2

α(ρ̄−ρ)2m
+ 2ρ̄δ

α(ρ̄−ρ)
.

Thus we showed

(y, v) ∈ (y′, v′) +

(√
4(σ+s)2

α(ρ̄−ρ)2m
+ 2ρ̄δ

α(ρ̄−ρ)

)
(B× ρ̄B).

The inclusion (4.13) follows immediately, while (4.14) follows by a symmetric argument.

5 Dimension Independent Rates

In this section, we introduce a technique for obtaining bounds on the graphical distance
between subdifferentials from estimates on the closeness of function values. The main re-
sult we use is a quantitative version of the Attouch convergence theorem from variational
analysis [2, 3]. A variant of this theorem was recently used by the authors to analyze the
landscape of the phase retrieval problem [21, Theorem 6.1]. For the sake of completeness,
we present a short argument, which significantly simplifies the original exposition in [21].

The approach of this section has benefits and drawbacks. The main benefit is that
because we obtain subdifferential distance bounds via closeness of values, whenever function
values uniformly converge at a dimension independent rate, so do the subdifferentials. This
type of result is in stark contrast to the results in Section 4, which scale with the dimension.
The main drawback is that for losses that uniformly converge at a rate of δ, we can only
deduce subdifferential bounds on the order of O(

√
δ), yielding what appear to be suboptimal

rates. Nevertheless, the very existence of dimension independent bounds is notable. We will
illustrate the use of the techniques on two examples: learning with generalized linear models
(Section 5.1) and robust nonlinear regression (Section 5.2).
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Theorem 5.1 (Closeness of subdifferential graphs). Consider two closed and lower-bounded
functions g, h : Rd → R ∪ {∞}, having identical domain D, and which are ρ-weakly convex
and compatible with a Legendre function Φ: Rd → R ∪ {∞}. Suppose moreover that Φ is
α-strongly convex relative to some norm ‖ · ‖ on D ∩ int(dom Φ) and for some real l, u ∈ R,
the inequalities hold:

l ≤ h(x)− g(x) ≤ u, ∀x ∈ D ∩ int(dom Φ). (5.1)

Then for any ρ̄ > ρ and any point x ∈ int(dom Φ), the estimate holds:

Dsym
Φ

(
proxΦ

g/ρ̄(x), proxΦ
h/ρ̄(x)

)
≤ u− l
ρ̄− ρ

, (5.2)

and therefore, provided that Φ is twice differentiable on int(dom Φ), we have

‖∇gΦ
1/ρ̄(x)−∇hΦ

1/ρ̄(x)‖∗x ≤ ρ̄

√
u− l

α(ρ̄− ρ)
. (5.3)

Moreover, in the Euclidean setting Φ = 1
2
‖ · ‖2

2, we obtain the estimate:

dist1/ρ̄ (gph ∂g, gph ∂h) ≤

√
u− l
ρ̄− ρ

, (5.4)

where the Hausdorff distance dist1/ρ̄(·, ·) is induced by the norm (x, v) 7→ max
{
‖x‖2,

1
ρ̄
‖v‖2

}
.

Proof. Fix a point x ∈ int(dom Φ) and define xg := proxΦ
g/ρ̄(x) and xh := proxΦ

h/ρ̄(x). We
successively deduce

g(xg) + ρ̄DΦ(xg, x) ≤ (g(xh) + ρ̄DΦ(xh, x))− (ρ̄− ρ)DΦ(xh, xg) (5.5)

≤ h(xh) + ρ̄DΦ(xh, x)− (ρ̄− ρ)DΦ(xh, xg)− l (5.6)

≤ h(xg) + ρ̄DΦ(xg, x)− (ρ̄− ρ)Dsym
Φ (xh, xg)− l (5.7)

≤ g(xg) + ρ̄DΦ(xg, x)− (ρ̄− ρ)Dsym
Φ (xh, xg) + (u− l), (5.8)

where (5.5) and (5.7) follow from strong convexity of g(·) + ρ̄DΦ(·, x) and h(·) + ρ̄DΦ(·, x),
respectively, while (5.6) and (5.8) follow from the assumption (5.1). Rearranging immediately
yields (5.2). The inequality (5.3) follows directly from (5.2) and Theorem 3.1.

Consider now the Euclidean setting Φ = 1
2
‖ · ‖2

2 and fix an arbitrary pair (x, v) ∈ gph ∂g.
A quick computation shows then x = proxg/ρ̄(x+ 1

ρ̄
v). Define now x′ := proxh/ρ̄(x+ 1

ρ̄
v) and

v′ = ρ̄(x − x′ + 1
ρ̄
v), and note the inclusion v′ ∈ ∂h(x′). Appealing to (5.2), we therefore

deduce ‖x′ − x‖2 ≤
√

u−l
ρ̄−ρ and ‖v′ − v‖2 = ρ̄‖x − x′‖2 ≤ ρ̄

√
u−)
ρ̄−ρ . We have thus shown

dist1/ρ̄((x, v), gph ∂h) ≤
√

u−l
ρ̄−ρ . A symmetric argument reversing the roles of f and g com-

pletes the proof of (5.4).
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Note that simple examples of uniformly close functions, such as h(x) = δ sin(δ−1/2x) and
g(x) = 0, show that Theorem 5.1 is tight.

In a typical application of Theorem 5.1 to subgradient estimation, one might set h to
be the population risk and g to be the empirical risk or vice versa. The attractive feature
of this approach is that it completely decouples probabilistic arguments (for proving func-
tional convergence) from variational analytic arguments (for proving graphical convergence
of subdifferentials). The following two sections illustrate the use of Theorem 5.1 on two ex-
amples: learning with generalized linear models (Section 5.1) and robust nonlinear regression
(Section 5.2).

5.1 Illustration I: Dimension Independent Rates for Generalized
Linear Models

In this section, we develop dimension-independent convergence guarantees for a wide class
of generalized linear models. We consider a loss functions f : Rd × Ω → Ω over a bounded
set X , where f(x, z) has the parametric form

f(x, z) = `(〈x, φ1(z)〉, . . . , 〈x, φK(z)〉, z),

Here ` : RK × Ω→ R is a loss function and φ1, . . . , φK are feature maps. For simplicity, the
results of this section are only derived in the `2 norm, though some of the results hold in
greater generality. We make the following assumptions:

(C1) (Norms) We equip Rd and RK with the `2 norms ‖ · ‖2.

(C2) (Region of Convergence) We assume that X ⊆ Rd is a closed set containing a point
x0 ∈ X . We assume that supx∈X ‖x− x0‖2 ≤ B for a constant B > 0.

(C3) (Feature Mapping) The feature maps φk : Ω→ Rd are measurable for k = 1, . . . , K.

(C4) (Loss Function and Regularizer) ` : RK × Ω → R is a measurable function. We
assume that for each z ∈ Ω, the function `(·, z) is L(z)-Lipschitz over the set

{(〈x, φ1(z)〉, . . . , 〈x, φK(z)〉) | x ∈ X}

for a measurable map L : Ω → R+. The function r : Rd → R ∪ {∞} is lower semi-
continuous.

Then we have the following theorem, whose proof is Presented in Appendix A

Theorem 5.2 (Dimension Independent Functional Concentration). Let z1, . . . , zn, z, z
′ be

an i.i.d sample from P and define the random variable

Y =

|f(x0, z)− f(x0, z
′)|+BL(z)

√√√√ K∑
k=1

‖φk(z)‖2 +BL(z′)

√√√√ K∑
k=1

‖φk(z′)‖2

 .
Then under assumptions (C1)-(C4), with probability

1− 2 exp (−mψ?εY (t)) ,
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we have following bound:

sup
x∈X

∣∣∣∣∣ 1

m

m∑
i=1

f(x, zi)− E [f(x, z)]

∣∣∣∣∣ ≤ 2

√
2B2K max

k=1,...,K
Ez
[
L(z)2‖φk(z)‖2

2

]
m

+ t.

Thus far we have not assumed any weak convexity of the function f(·, z). In order to
prove concentration of the subdifferential graphs, we now explicitly make this assumption:

(C5) (Weak Convexity With High Probability) There exists a constant ρ > 0 and
a probability pm ∈ [0, 1] such that with probability 1 − pm over the sample S =
{z1, . . . , zm}, the functions

ϕ(x) := E [f(x, z)] + r(x) + ιX (x) and ϕS(x) := fS(x) + r(x) + ιX (x).

are ρ-weakly convex relative to Φ(x) = 1
2
‖x‖2

2.

Given these assumptions, we may deduce subdifferential convergence with Theorem 5.1—the
main result of this section.

Corollary 5.3 (Dimension Independent Rates for GLMs). Assume the setting of Theo-
rem 5.2 and Assumptions (C1)-(C5). Let z1, . . . , zm, z, z

′ be an i.i.d. sample from P and
define the random variable

Y = 2L(z)B

√√√√ K∑
k=1

‖φk(z)‖2
2.

Then with probability
1− 2 exp (−mψ?εY (t))− pm,

we have the following bound:

sup
x∈X
‖∇ϕ1/2ρ −∇(ϕS)1/2ρ(x)‖ ≤

√
ρ̄

ρ̄− ρ
·

√√√√√32B2K max
k=1,...,K

Ez
[
L(z)2‖φk(z)‖2

2

]
m

+ 2t,

dist1/ρ̄(gph ∂ϕ, gph ∂ϕS) ≤ 1√
ρ̄− ρ

·

√√√√√32B2K max
k=1,...,K

Ez
[
L(z)2‖φk(z)‖2

2

]
m

+ 2t,

where the Hausdorff distance dist1/ρ̄(·, ·) is induced by the norm (x, v) 7→ max
{
‖x‖2,

1
ρ̄
‖v‖2

}
.

Proof. We will apply Theorem 5.2 after shift. Namely set

l̄(s, z) = l(s, z)− l(〈x0, φ1(z)〉, . . . , 〈x0, φK(z)〉)

and define the loss f̄(x, z) = l̄(〈x, φ1(z)〉, . . . , 〈x, φK(z)〉, z). Define now the functions ϕ̄(x) =
ϕ(x)−E [f(x0, z)] and ϕ̄S = ϕS(x)− 1

m

∑
z∈S f(x0, z). Applying Theorem 5.2 to f̄(x, z), we

deduce that with probability 1− 2 exp (−mψ?εY (t)) , we have

sup
x∈X
|ϕ̄S(x)− ϕ̄(x)| ≤ 2

√
2B2K max

k=1,...,K
E
[
L(z)2‖φk(z)‖2

2

]
m

+ t.
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Thus, due to assumption (C5), we may apply Theorem 5.1 to the functions ϕ̄(x) and ϕ̄S,
noticing that ∂ϕ̄(x) = ∂ϕ(x) and ∂ϕ̄S(x) = ∂ϕS(x), as desired.

If the random variable 2L(z)B
√∑K

k=1 ‖φk(z)‖2
2 is subgaussian, we immediately obtain

a dimension independent m−1/4 rate of convergence. This is in stark contrast to all other
results obtained in this paper.

5.2 Illustration II: Landscape of Robust Nonlinear Regression

In this section, we investigate a robust nonlinear regression problem in Rd, using the tech-
niques we have developed. Setting the stage, consider a function σ : Rd × Ω → R that is
differentiable in its first component and let x̄ be the ground truth. Our observation model is

b(z, δ, ξ) = σ (〈x̄, z〉, z) + δξ,

where z, δ and ξ are random variables. One should think of z as the population data, δ as
encoding presence or absence of an outlier, and ξ as the size of the outlying measurement.
Seeking to recover x̄, we consider the formulation

min
x∈X

f(x, z) := Ez,δ,ξ[|σ (〈x, z〉, z)− b(z, δ, ξ)|]

where the set X will soon be determined. We make the following assumptions on the problem
data.

(D1) (Sufficient Support) There exist constants c, C > 0, such for all x ∈ Rd, we have

C2‖x‖2
2 ≥ E

[
|〈x, z〉|2

]
, E [|〈x, z〉|] ≥ c‖x‖2 and P (〈x, z〉 6= 0) = 1.

(D2) (Corruption Frequency) δ is a {0, 1}-valued random variable. We define

pfail := P (δ = 1),

which is independent from z and ξ.

(D3) (Finite Moment) ξ is a random variable with finite first moment.

(D4) (Lipschitz, Smooth, and Monotonic Link) There exist constants a > 1 and
cσ, Cσ > 0 satisfying cσ ≤ σ′(u, z) ≤ Cσ for all u ∈ {〈x, z〉 | ‖x‖2 ≤ a‖x̄‖2} and
z ∈ Ω. In addition, for every z ∈ Ω the function σ′(·, z) is L-Lipschitz continuous.

(D5) (Concentration) Let pm ∈ [0, 1] and τm > 0 be sequences satisfying

PS

∥∥∥∥∥ 1

m

m∑
z∈S

zzT

∥∥∥∥∥
op

≤ τm

 ≥ 1− pm.

where S = {z1, . . . , zm} is an i.i.d. sample from P .
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The noise model considered above allows for adversarial corruption, meaning that ξ may
take the form ξ = σ(〈x0, z〉, z) − σ(〈x̄, z〉, z) for an arbitrary point x0. This allows us to
“plant” a completely different signal in the measurements. The rest of the assumptions
serve to make x̄ identifiable from the measurements σ(〈x̄, z〉, z), as we will soon show.

The goal of this section is to prove the following theorem, which shows that the empirical
risk is well-behaved. In particular, the empirical risk is weakly convex and its stationary
points cluster around x̄. Henceforth we only consider the Euclidean setting Φ(x) = 1

2
‖x‖2

2.

Theorem 5.4 (Stationary Points of the Empirical Risk). Define X = a‖x̄‖2B. For any
sample S ⊆ Ω of size m, set

ϕ(x) := f(x) + ιX (x) and ϕS(x) := fS(x) + ιX (x).

Then ϕ is 2LC2-weakly convex and with probability 1 − pm the function ϕS is 2Lτm-weakly
convex. Set ρ := max{2LC2, 2Lτm} Suppose now ppfail <

cσc
2CσC

and set

ρ = max{2LC2, 2Lτm} and D = cσc− 2pfailCσC.

Then whenever t and m satisfy

t ≤ 1

256ρ
D2 and m ≥ 221ρ2C2

σa
2‖x̄‖2

2E [‖z‖2
2]

D4
,

we have, with probability

1− 2 exp

(
−mψ?ε‖z‖2

(
t

2a‖x̄‖2Cσ

))
− pm,

that any pair (x, v) ∈ gphϕS satisfies at least one of the following:

1. (Near global optimality)

‖x− x̄‖2 ≤
16

D
·

(√
8a2‖x̄‖2C2

σE [‖z‖2
2]

m
+ t

)
.

2. (Large Subgradient)

‖v‖2 ≥
1

2
D.

Let us briefly examine Assumptions (D1)-(D5) and the conclusion of the theorem in the
case of a Gaussian population z ∼ N(0, Id×d). Assumption (D1) holds true with C = 1 and
c =

√
2/π. Assumption (D2)-(D4) are independent of the distribution of z. Assumption

(D5) holds true with

τm = 4 +
d

m
+ 4

√
d

m
and pm = 2 exp(−m/2),

by Corollary [72, Corollary 5.35]. Thus, assumption (D1)-(D5) are satisfied. Now we examine
the various quantities included in the theorem.
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The expected squared norm of a gaussian is E [‖z‖2
2] = d. One can also show, using

standard probabilistic techniques, that the moment generating function satisfies the bound

ψε‖z‖2(t) ≤
dκt2

2
,

for a numerical constant κ > 0. Thus, we find that ψ?ε‖z‖2(t) ≥
t2

2dκ
. Therefore, by equating

δ

2
= exp

(
−mt2

2dκ(2a‖x̄‖2Cσ)2

)
and solving for t, we find that with probability 1−δ−pm, every pair (x, v) ∈ gphϕS satisfies

‖x− x̄‖2 = O

(√
a2‖x̄‖2

2C
2
σd

m
log

(
1

δ

))
or ‖v‖2 ≥

1

2

(
cσ

√
2

π
− 2pfailCσ

)
.

Interestingly, although Theorem 5.1 in general provides rates of convergence that scale as
m−1/4 as shown in Corollary 5.3, we obtain standard statistical rates of convergence for
‖x̄− x‖2. This would not be possible with a direct application of Theorem 4.4, as we would
obtain rates that scale as

√
d2/m. Finally, we note that for this bound to be useful, we must

have corruption frequency pfail strictly less than cσ
Cσ

√
1

2π
.

We now present the proof of Theorem 5.4.

Proof of Theorem 5.4. Although ϕ is nonsmooth and nonconvex, it is fairly well-behaved.
We first show that ϕ and ϕS are both weakly convex.

Claim 1 (Weak Convexity). The functions f and ϕ are 2LC2-weakly convex. Moreover with
probability 1− pm the functions fS and ϕS are 2Lτm-weakly convex.

Proof of Claim 1. For any fixed x, z, ξ, δ, by the mean value theorem, there exists η in the
interval [〈x, z〉, 〈y, z〉], so that for all y ∈ Rd, we have

|σ(〈y, z〉, z)− σ(〈x̄, z〉, z) + ξ · δ|
= |σ(〈x, z〉, z) + σ′(η, z)〈y − x, z〉 − σ(〈x̄, z〉, z) + ξ · δ|
≥ |σ(〈x, z〉, z) + σ′(〈x, z〉, z)〈y − x, z〉 − σ(〈x̄, z〉, z) + ξ · δ|
− |σ′(η, z)− σ′(〈x, z〉, z)||〈y − x, z〉|
≥ |σ(〈x, z〉, z) + σ′(〈x, z〉, z)〈y − x, z〉 − σ(〈x̄, z〉, z) + ξ · δ| − L|〈y − x, z〉|2.

(5.9)

Therefore, taking expectations we deduce

f(y) ≥ E [|σ(〈x, z〉, z) + σ′(〈x, z〉, z)〈y − x, z〉 − σ(〈x̄, z〉, z) + ξ · δ|]− LE
[
|〈y − x, z〉|2

]
≥ E [|σ(〈x, z〉, z) + σ′(〈x, z〉, z)〈y − x, z〉 − σ(〈x̄, z〉, z) + ξ · δ|]− LC2‖y − x‖2

2.

Notice that the right rand-side is a 2LC2-weakly convex function in y. We have thus deduced
that for every x, there is a 2LC2-weakly convex function that globally lower bounds f(·) while
agreeing with it at x. Therefore f is 2LC2-weakly convex, as claimed.
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Next, using (5.9) yields the inequality:

fS(y) ≥ 1

m

∑
z∈S

|σ(〈x, z〉, z) + σ′(〈x, z〉, z)〈y − x, z〉 − σ(〈x̄, z〉, z) + ξ · δ| − L

m

∑
z∈S

|〈y − x, z〉|2.

Finally, notice with probability τm > 0 we get the upper bound:

L

m

∑
z∈S

|〈y − x, z〉|2 ≤ L

∥∥∥∥∥ 1

m

∑
z∈S

zzT

∥∥∥∥∥
op

· ‖y − x‖2
2 ≤ τm · L‖y − x‖2

2.

By the same reasoning as for the population objective, we deduce that fS is 2Lτm weakly
convex with probability pm, as claimed.

Having established weak convexity, we now lower bound the subgradients of f and show
that for all x 6= x̄, the subgradients of f always point toward x̄. In particular, the point x̄ is
the unique stationary point of f .

Claim 2 (Stationarity conditions for f). For every x 6= x̄ and v ∈ ∂f(x), we have

(cσc− 2pfailCσC) · ‖x− x̄‖2 ≤ 〈v, x− x̄〉,

and consequently
‖v‖2 ≥ cσc− 2pfailCσC.

Proof of Claim 2. For every x ∈ Rd, define the measurable mapping ζ0(x, ·) : Ω→ Rd by

ζ0(x, z) := σ′(〈x, z〉, z)sign (σ(〈x, z〉, z)− σ(〈x̄, z〉, z)) · z.

Now, observe that

E [〈ζ0(x, z), x− x̄〉] = E [σ′(〈x, z〉, z)sign(σ(〈x, z〉, z)− σ(〈x̄, z〉, z))〈z, x− x̄〉)]
= E [σ′(〈x, z〉, z)|〈z, x− x̄〉|]
≥ cσE [|〈z, x− x̄〉|]
≥ cσc · ‖x− x̄‖2,

where the second equality follows from monotonicity of σ(·, z).
As each term |σ(〈x, z〉, z) − σ(〈x̄, z〉, z) + δ · ξ| is subdifferentially regular (each term is

Lipschitz and weakly convex by Claim 1), it follows that

∂f(x) = {E [ζ(x, (z, ξ, δ))] | ζ(x, (z, ξ, δ)) ∈ ∂x(|σ(〈·, z〉, z)− σ(〈x̄, z〉, z) + δ · ξ|)(x) a.e.} ,

where the set definition ranges over all possible ζ(x, ·) : Ω→ Rd that are also measurable [15,
Theorem 2.7.2]. Next, we claim that for any such measurable mapping, we have

E [ζ(x, (z, ξ, δ))− ζ0(x, z)) | δ = 0] = 0. (5.10)

To see this, observe that E|σ(〈·, z〉, z) − σ(〈x̄, z〉, z)| is differentiable at any x 6= x̄, since
P(〈y, z〉 = 0) = 1. It follows that the subdifferential of this function consists only of the
expectation of the measurable selection ζ0. The claimed equality (5.10) follows.
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Thus, by the linearity of expectation as well as the inclusion ζ(x, (z, ξ, δ)), ζ0(x, z) ∈
σ′(〈x, z〉, z)[−1, 1]z, we have

〈E [ζ(x, (z, ξ, δ))− ζ0(x, z)] , x− x̄〉 = (1− pfail)〈E [ζ(x, (z, ξ, δ))− ζ0(x, z)) | δ = 0] , x− x̄〉
+ pfail〈E [ζ(x, (z, ξ, δ))− ζ0(x, z) | δ = 1] , x− x̄〉

= pfail〈E [ζ(x, (z, ξ, δ))− ζ0(x, z) | δ = 1] , x− x̄〉
≥ −pfailE [2σ′(〈x, z〉, z)|〈z, x− x̄〉|]
≥ −2pfailCσC · ‖x− x̄‖2.

Therefore, we arrive at the bound:

〈E [ζ(x, (z, ξ, δ))] , x− x̄〉 = 〈E [ζ0(x, z)] , x− x̄〉+ 〈E [ζ(x, (z, ξ, δ))− ζ0(x, z)] , x− x̄〉
≥ cσc‖x− x̄‖2 − 2pfailCσC · ‖x− x̄‖2

= (cσc− 2pfailCσC) · ‖x− x̄‖2.

As every element of the subdifferential ∂F (x) is of the form E [ζ(x, (z, ξ, δ))], the proof is
complete.

While the only stationary point of f is x̄, it is as yet unclear where the (random) stationary
points of fS lie, since we can only guarantees that that the functional deviation |F − FS| is
small on bounded sets. Thus, we first show that constraining f to a ball containing x̄ does
not create any extraneous stationary points at the boundary of the ball.

Claim 3 (Constrained Stationary Conditions of F ). Let a > 1 be a fixed constant. Let
x ∈ a‖x̄‖2B be such that x 6= x̄. Then for every v ∈ ∂f(x) +Na‖x̄‖2B(x), we have

(cσc− 2pfailCσC) · ‖x− x̄‖2 ≤ 〈v, x− x̄〉

and consequently
‖v‖2 ≥ cσc− 2pfailCσC.

Proof of Claim 3. By Claim 2, we must only consider the case when ‖x‖2 = a‖x̄‖2 since
otherwise Na‖x̄‖2B(x) = {0} and v ∈ ∂f(x). In this case, we have

v = vF + λx

where vF ∈ ∂f(x) and λ > 0. Therefore, we find that

〈v, x− x̄〉 = 〈vF , x− x̄〉+ 〈λx, x− x̄〉
≥ 〈vF , x− x̄〉+ λ‖x‖2

2 − λ〈x, x̄〉
≥ 〈vF , x− x̄〉+ λa2‖x̄‖2

2 − λa‖x̄‖2
2 ≥ 〈vF , x− x̄〉.

Thus, applying Claim 2 completes the proof.

Finally, we may now examine the stationary points of fS constrained to a ball. We show
that every nearly stationary point of fS + δX must be within a small ball around x̄. To that
end, we define

η =

√
32a2‖x̄‖2

2C
2
σE [‖z‖2

2]

m
+ 2t.
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Notice that for all z ∈ Ω, the function σ(·, z) is L(z) = Cσ Lipschitz. In addition, every point
in X = a‖x̄‖2B is bounded in norm by a‖x̄‖2. Therefore, by Corollary 5.3 with x0 = 0, we
have that with probability

1− 2 exp

(
−mψ?ε‖z‖2

(
t

2a‖x̄‖2Cσ

))
− pm,

the bound holds:

dist1/ρ̄ (gph ∂ϕ, gph ∂ϕS) ≤
√

η

ρ̄− ρ
,

where we set ρ := max{2LC2, 2Lτm} and ρ̄ > ρ is arbitrary.

In particular, for any γ > 0, setting ρ̄ = γ2

η
+ ρ, we deduce that for any pair (x, v) ∈

gph ∂ϕS there exists a point x̂ ∈ X and a subgradient v̂ ∈ ∂ϕ(x̂) satisfying

‖x− x̂‖2 ≤ η/γ and ‖v − v̂‖2 ≤ ρ̄ · η/γ = γ + ρη/γ.

Let us choose γ > 0 so that

γ + ρη/γ ≤ 1

2
D,

which may be accomplished by finding a root of the polynomial

γ2 − 1

2
Dγ + ρη = 0.

Thus by the quadratic formula, we have

γ =

1
2
D +

√
1
4
D2 − 8ρη

2
.

Notice that by our assumptions on t and m, we have 8ρη ≤ 1
8
D2, and therefore we deduce

D
4
≤ γ. Thus by Claim 3, if x̂ 6= x̄, there exists v̂ ∈ ∂ϕ(x̂) = ∂f(x̂) +NX (x̂) such that

‖v‖2 ≥ ‖v̂‖2 − ‖v − v̂‖2 ≥ (cσc− 2pfailCσC)− 1

2
(cσc− 2pfailCσC) =

1

2
(cσc− 2pfailCσC).

Otherwise, x̂ = x̄ and ‖x− x̄‖2 ≤ 2η/γ ≤ 8η
D
, as desired.
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tic programming, volume 9 of MOS-SIAM Series on Optimization. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization So-
ciety, Philadelphia, PA, second edition, 2014. Modeling and theory.

[65] Alexander Shapiro and Huifu Xu. Uniform laws of large numbers for set-valued map-
pings and subdifferentials of random functions. Journal of Mathematical Analysis and
Applications, 325(2):1390 – 1399, 2007.

[66] Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low noise and
fast rates. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and
A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 2199–
2207. Curran Associates, Inc., 2010.

[67] Karthik Sridharan, Shai Shalev-shwartz, and Nathan Srebro. Fast rates for regularized
objectives. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in
Neural Information Processing Systems 21, pages 1545–1552. Curran Associates, Inc.,
2009.

[68] M. Teboulle. Entropic proximal mappings with applications to nonlinear programming.
Math. Oper. Res., 17(3):670–690, 1992.

[69] M. Teboulle. A simplified view of first order methods for optimization. Mathematical
Programming, May 2018.

[70] P. Toulis and E.M. Airoldi. Asymptotic and finite-sample properties of estimators based
on stochastic gradients. Ann. Statist., 45(4):1694–1727, 2017.

[71] Tim van Erven, Peter D. Grünwald, Nishant A. Mehta, Mark D. Reid, and Robert C.
Williamson. Fast rates in statistical and online learning. Journal of Machine Learning
Research, 16:1793–1861, 2015.

[72] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices.
arXiv preprint arXiv:1011.3027, 2010.

[73] Roman Vershynin. High-dimensional probability: An introduction with applications in
data science, volume 47. Cambridge University Press, 2018.

[74] Huifu Xu. Uniform exponential convergence of sample average random functions under
general sampling with applications in stochastic programming. Journal of Mathematical
Analysis and Applications, 368(2):692 – 710, 2010.

32



[75] Huifu Xu and Dali Zhang. Smooth sample average approximation of stationary points
in nonsmooth stochastic optimization and applications. Mathematical Programming,
119(2):371–401, Jul 2009.

[76] S. Zhang and N. He. On the convergence rate of stochastic mirror descent for nonsmooth
nonconvex optimization. arXiv:1806.04781, 2018.

[77] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Proceedings of the Twentieth International Conference on International Con-
ference on Machine Learning, ICML’03, pages 928–935. AAAI Press, 2003.

A Rademacher Complexity and Functional Bounds

In this section, we use the well-known technique for bounding the suprema of empirical
processes, based on Rademacher complexities (see e.g., [6, 7].We will use these bounds to
obtain concentration inequalities for multi-class generalized linear models. Although such
arguments have become standard in the literature, we present a proof that explicitly uses
Theorem 4.2 in order to obtain a slightly more general result for unbounded classes. None
of the results or techniques here are new; rather, the purpose of this section is to keep the
paper self-contained. We begin with the following standard definition.

Definition A.1. The Rademacher complexity of a set A ⊂ Rm is the quantity

R(A) =
1

m
Eε
[
sup
a∈A
〈ε, a〉

]
.

where the coordinates of ε ∈ Rm are i.i.d Rademacher random variables.

Given a collection of functions G from Ω to R and a set S = {z1, . . . , zm} ⊂ Ω, we define

G ◦ S := {(g(z1), . . . , g(zm)) : g ∈ G}.

The following theorem shows that the Rademacher complexity directly controls uniform
convergence of the sample average approximation.

Theorem A.2. Consider a countable class G of measurable functions from Ω to R and let
S = {z1, . . . , zm} be an i.i.d. sample from P . Define the random variable

Y = sup
g∈G
|g(z)− g(z′)|,

for independent copies z, z′ ∼ P and let ε be a Radamacher random variable. Then for all
t > 0, with probability

1− 2 exp (−mψ?εY (t)) ,

we have the following bound:

sup
g∈G

∣∣∣∣∣Ez [g(z)]− 1

m

m∑
i=1

g(zi)

∣∣∣∣∣ ≤ 2ESR(G ◦ S) + t.
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Proof. Define the two random variables X+ = supg∈G
{
Ez [g(z)]− 1

m

∑m
i=1 g(zi)

}
and X− =

supg∈G
{

1
m

∑m
i=1 g(zi)− Ez [g(z)]

}
. We first bound the expectations of X+ and X−. Ap-

pealing to [59, Lemma 26.2] we deduce E[X+] ≤ 2ESR(G ◦ S). Replacing G with −G and
using [59, Lemma 26.2], we also learn E[X−] ≤ 2ESR(−G ◦S) = 2ESR(G ◦S). Next, a quick
computation shows

|X+(z1, . . . , zm)−X+(z1, . . . , zi−1, z
′
i, zi+1, . . . , zm)| ≤ 1

m
sup
g∈G
|g(zi)− g(z′i)| =

1

m
Y,

as well as the analogous inequality for X−. Thus using Theorem 4.2, we conclude that with
probability 1− 2 exp(−mψ?m−1εY (t/m)), we have max{X+, X−} ≤ 2ESR(G ◦ S) + t. Noting
the equality ψ?m−1εY (t/m) = ψ?εY (t) completes the proof.

The following theorem provides an upper bound on the Rademacher complexity of linear
classes; see the original article [32] or the monograph [59, Lemma 26.10].

Lemma A.3 (Rademacher complexity of linear classes).
Consider the set A = {(〈w, z1〉, . . . , 〈w, zm〉) : ‖w‖2 ≤ 1}. Then the estimate holds:

R(A) ≤
√∑m

i=1 ‖zi‖2

m
.

The class of loss functions G considered below will be formed from compositions of func-
tions with linear classes. A useful result for unraveling such compositions is the following
vector-valued contraction inequality, recently proved by Maurer [40].

Theorem A.4 (Contraction Inequality [40, Theorem 3]). Let X denote a countable set. For
i = 1, . . . ,m, let Fi : S → R and Gi : S → RK be functions satisfying

Fi(s)− Fi(u) ≤ ‖Gi(s)−Gi(u)‖2 for all s, u ∈ S.

Define the two sets

F ◦ S = {(F1(s), . . . , Fm(s)) : s ∈ S} and G ◦ S = {
(
Gk
i (s)

)
i,k

: s ∈ S},

where Gk
i (s) denotes the k’th coordinate of Gi(s). Then the estimate holds:

R(F ◦ S) ≤
√

2K · R(G ◦ S).

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. We will apply Theorem A.2, to the function class

G = {z 7→ f(x, z) | x ∈ X}.

We note that, due to the separability of Rd and the continuity of the integrands, any supre-
mum over all x ∈ X may be replaced by a supremum over a countable dense subset of X ,
without affecting its value. We ignore this technicality throughout the proof.
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As the first step in applying Theorem A.2, we compute

sup
x∈X
|f(x, z)− f(x, z′)|

≤ |f(x0, z)− f(x0, z
′)|+ L(z) sup

x∈X

√√√√ K∑
k=1

〈x− x0, φk(z)〉2 + L(z′) sup
x∈X

√√√√ K∑
k=1

〈x− x0, φk(z′)〉2

≤ |f(x0, z)− f(x0, z
′)|+BL(z)

√√√√ K∑
k=1

‖φk(z)‖2 +BL(z′)

√√√√ K∑
k=1

‖φk(z′)‖2,

where the last inequality uses the bound ‖x − x0‖2 ≤ B twice. Notice the wight-hand-side
is precisely the random variable Y .

Next we upper bound the expected Rademacher complexity ESR(G ◦ S) by using Theo-
rem A.4. To this end, fix a sample set S = {z1, . . . , zm} and define

S = {(〈x, φk(zi)〉)i,k : x ∈ X}.

For every index i, set si := (si1, . . . , siK) and define the functions Fi(s) = `(si, zi) and
Gi(s) = L(zi)si. We successively compute

R(G ◦ S) =
1

m
sup
x∈X

m∑
i=1

σif(x, zi)

=
1

m
sup
x∈X

m∑
i=1

σil ((〈x, φ1(zi), . . . , 〈x, φK(zi)〉), zi)

=
1

m
sup
s∈S

m∑
i=1

σiFi(s) = R(F ◦ S) ≤
√

2K · R(G ◦ S),

(A.1)

where the last inequality follows from Theorem A.4.
Next, unraveling notation, observe G ◦ S = {(〈x, L(zi)φk(zi)〉)i,k : x ∈ X}. Moreover,

shifting and shrinking X , it follows directly from the definition of Rademacher complexity
that R(G ◦ S) = B · R(A′) where we set A′ = {(〈x, L(zi)φk(zi)〉)i,k : ‖x‖2 ≤ 1}. Thus

applying Lemma A.3, we deduce R(G ◦ S) ≤
√∑

i,k B
2L(zi)2‖φk(zi)‖2

mK
. Combining this estimate

with (A.1) and taking expectations yields

ESR(G ◦ S) ≤

√
2
∑

i,k B
2Ezi [L(zi)2‖φk(zi)‖2]

m
=

√
2B2K max

k=1,...,K
Ez[L(z)2‖φk(z)‖2]

m
.

Appealing to Theorem A.2 completes the proof.
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