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Abstract

Stochastic optimization problems often involve data distributions that change in reaction to
the decision variables. This is the case for example when members of the population respond to
a deployed classifier by manipulating their features so as to improve the likelihood of being pos-
itively labeled. Recent works on performative prediction have identified an intriguing solution
concept for such problems: find the decision that is optimal with respect to the static distri-
bution that the decision induces. Continuing this line of work, we show that typical stochastic
algorithms—originally designed for static problems—can be applied directly for finding such
equilibria with little loss in efficiency. The reason is simple to explain: the main consequence of
the distributional shift is that it corrupts the algorithms with a bias that decays linearly with
the distance to the solution. Using this perspective, we obtain sharp convergence guarantees
for popular algorithms, such as stochastic gradient, clipped gradient, proximal point, and dual
averaging methods, along with their accelerated and proximal variants. In realistic applications,
deployment of a decision rule is often much more expensive than sampling. We show how to
modify the aforementioned algorithms so as to maintain their sample efficiency while performing
only logarithmically many deployments.

Keywords: stochastic optimization, distributional shift, Wasserstein distance, performative
prediction, stochastic gradient, proximal point method.

1 Introduction

Stochastic optimization plays a central role in statistical sciences and large-scale data-driven com-
puting. The goal of stochastic optimization in these settings is to learn a decision rule (e.g. classifier)
from a limited data sample that generalizes well to the entire population. In simplest circumstances,
this task amounts to the optimization problem

St(P) : min
x

E
z∼P

`(x, z) + r(x). (1.1)

Here, z encodes the population data, which is assumed to follow some fixed probability distribution
P that is accessible only through sampling. The functions ` and r play qualitatively different roles.
Typically, `(x, z) evaluates the loss of the decision rule parametrized by x on a data point z. In
contrast, the function r : Rd → R ∪ {∞} models constraints or promotes some low-dimensional
structure in x, such as sparsity or low-rank. We refer to the problem (1.1) as St(P) to emphasize
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Algorithms Iterate update with zt ∼ D(xt)

Proximal point xt+1 = arg min
x

`(x, zt) + r(x) +
1

2ηt
‖x− xt‖2

Prox-gradient xt+1 = proxηtr
(
xt − ηt∇`(xt, zt)

)
Accel. prox-grad.

{
xt = proxηtr

(
yt−1 − ηt∇`(yt−1, z

′
t)
)

yt = xt + βt(xt − xt−1)

}
with z′t ∼ D(yt−1)

Clipped gradient xt+1 = arg min
x

(
`(xt, zt) + 〈∇`(xt, zt), x− xt〉

)+
+ r(x) +

1

2ηt
‖x− xt‖2

Dual averaging xt+1 = arg min
x

〈1

t

t∑
i=1

∇`(xt, zt), x
〉

+ r(x) +
1

2ηt
‖x− x0‖2

Table 1: Stochastic algorithms with state-dependent distributions.

its dependence on the distribution P, while “St” abbreviates “static”—a term whose significance
will become clear shortly.

Stochastic approximation algorithms are often the methods of choice for St(P). In every it-
eration t = 1, 2, . . ., such methods draw a fresh sample zt ∈ P and update the iterate xt using
the randomly selected function `(·, zt). Among such algorithms, the stochastic proximal gradient
method is the most popular; in each iteration, the method simply takes a step from xt in the
direction opposite to the gradient ∇`(xt, zt), followed by a proximal operation of r. Other common
stochastic algorithms include proximal point, clipped gradient, and dual averaging methods, along
with their inertial variants.

Convergence guarantees of stochastic optimization algorithms crucially rely on the sampling
distribution P being fixed throughout the run of an algorithm. This assumption, however, is
violated in applications where the distribution evolves along the iterations. There are two main
sources of such distributional shifts. The first is temporal, where the distribution varies slowly
in time due to reasons that are independent of the iterates xt. This setting has been extensively
studied in the machine learning literature; see e.g.[5, 6, 11, 12, 21, 30]. The second common
source is due to a feedback mechanism, wherein the distribution generating the data in iteration
t may depend on, or react to, the current “state” xt. For example, deployment of a classifier by
a learning system, when made public, often causes the population to adapt their attributes in
order to increase the likelihood of being positively labeled—a process called “gaming”. Even when
the population is agnostic to the classifier, the decisions made by the learning system (e.g. loan
approval) may inadvertently alter the profile of the population (e.g. credit score). The goal of the
learning system therefore is to find a classifier that generalizes well under the response distribution.
Recent research in strategic classification [7, 13, 15, 24] and performative prediction [35, 41] has
highlighted the prevalence of this phenomenon.

1.1 Problem setting

The focus of this work is stochastic optimization under decision-dependent distributions. Our
approach to such problems builds on the framework of “performative prediction” proposed in
[35, 41]. Namely, we consider optimization problems of the form

min
x

E
z∼D(x)

`(x, z) + r(x), (1.2)
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where D(x) is a distribution indexed by the decision variable x ∈ Rd. In contrast to St(P) in (1.1),
the data distribution is now decision-dependent. Thus, the quality of a decision rule x is judged
by its performance according to the induced distribution D(x). A direct solution of (1.2) is out of
reach in general, even for convex loss functions. Nonetheless, an appealing and widely used heuristic
for such problems is to apply standard stochastic optimization algorithms to the static problem
St(D(xt)) for one or more iterations, then update the distribution D(xt+1) based on the generated
iterates, and repeat. Motivated by the recent works [35, 41], we ask the following question:

What can one expect from standard stochastic algorithms (Table 1) when the sampling
distribution D(xt) used in iteration t depends on the iterate xt?

The answer we present relies on a certain distinguished point x̄, highlighted in [35, 41]. A point
x̄ is at equilibrium for the family of distributions D(x) if x̄ solves the static problem St(P) with
P = D(x̄). Thus x̄ is at equilibrium if it solves the static problem that the distribution D(x̄)
induces. Equilibrium points are sure to exist under mild continuity and convexity assumptions
[41]. Our main contribution can be summarized as follows:

Under mild conditions, stochastic optimization algorithms that sample according to
a state-dependent distribution D(xt) can be viewed as inexact analogues of the same
algorithms applied to the static problem St(D(x̄)). The inexactness manifests in a
bias/error that decays linearly as one approaches x̄.

Thus, stochastic optimization algorithms under decision-dependent distributions automatically
search for the equilibrium point x̄ by implicitly solving the problem St(D(x̄)). The strength of
the distribution’s dependence on the state—measured by the Lipschitz constant of the map D(·)—
directly impacts the decay rate in the bias/error. We show therefore that if the state dependence
is sufficiently weak, standard stochastic algorithms (Table 1) exhibit the same efficiency estimates
as if they were directly applied to the static problem St(D(x̄))—an a priori impossible task, since
the distribution D(x̄) is unknown and inaccessible.

1.2 Illustrative application: strategic classification

An important application arena for the developed techniques is the framework of strategic classifica-
tion [24, 36]. This problem class can model a variety of settings with state-dependent distributions,
such as fraud detection, traffic prediction, spam filtering, and service recommendations. See [50]
and [41, Appendix B] for detailed applications.

Strategic classification is a two player game between an “institution” that deploys a classifier and
a population of “agents” who can adapt their features in response in order to increase their likelihood
of being positively classified. The game proceeds as an iterative process where the institution
and the population take turns to adjust the classifier and features respectively. Specifically, let
z = (a, b) denote the features-label pairs of the population that follow a base distribution z ∼ P.
The institution begins the game by deploying a classifier hx, parametrized by x ∈ Rd, and learned
from data sampled from P. Each agent responds to the classifier hx by greedily modifying their
features a to increase their chance of being favorably labeled:

∆(hx, a) := arg max
a′

{
u(hx, a

′)− c(a, a′)
}
. (1.3)

Here u(·, ·) is some utility function and c(·, ·) is the cost of altering the features. Thus the samples
available to the institution (∆(hx, a), b) in the next stage of the game follow a distribution that
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depends on x, and which we denote by (∆, b) ∼ D(x). The goal of the institution is to find the
decision variable x that minimizes the classification error with respect to the response distribution:

Pr
(∆,b)∼D(x)

[hx(∆) 6= b] = E
(∆,b)∼D(x)

[1(hx(∆) 6= b].

In practice, one often replaces the 0/1 loss 1(·) with a convex surrogate `(x, z), such as the logistic
loss, to facilitate large-scale optimization. Thus the problem of strategic classification is an instance
of (1.2) under a specific family of distributions D(x).

In practice, the agents are unlikely to actually play the best-response solutions when modifying
their features or that the utility and cost functions are common to all agents. Moreover, in some
cases, the dependence of the distribution on the state can be passive; for example, when a bank
uses a classifier to approve loan applications, the credit scores of the population are automatically
impacted for downstream tasks, even in absence of feature manipulation. In line with the recent
works [35, 41], we do not restrict to the model of strategic classification, and instead only require
the distribution map D(·) to have a relatively small Lipschitz constant.

1.3 Related work

Our work is closely related to a number of research themes in optimization, statistics, and machine
learning. We now highlight these relationships.

Performative prediction and distributional shift. The two seminal papers on performative pre-
diction [35, 41] motivate and guide much of our work. In particular, the problem setting and
assumptions we use (Section 3) are identical to that of [35, 41]. “Performative prediction” is an
evocative name for the problem class in machine learning settings since it nicely contrasts the prob-
lem class with supervised learning. To stay consistent with the stochastic optimization literature,
however, we do not use this terminology here and instead refer to the qualifier “decision-dependent
distributions” when needed.

The earlier paper [41] introduces the notion of an equilibrium point (therein called “performa-
tively stable”) and identified regimes in which retraining and gradient descent algorithms converge
linearly. The follow up paper [35], in turn, analyzes two variants of the projected stochastic gra-
dient method (called greedy and lazy). Our current work complements [35, 41], aiming to provide
a systematic and transparent treatment. The convergence guarantees we develop apply for a wide
class of stochastic algorithms, including stochastic gradient, clipped gradient, proximal point, and
dual averaging methods, along with their accelerated and proximal variants. Comments and com-
parisons with [35, 41] appear throughout the text. Aside from performative prediction, there is a
long history of problems with distributional shift in machine learning, whether due to time drift
(e.g. [5, 6, 11, 12, 21, 30]) or deployment of classifiers (e.g. [7, 13, 15, 24]. We believe that the
techniques developed here may be useful in these contexts as well.

Convex stochastic optimization. Many of the techniques used here are rooted in convex op-
timization; recent monographs on the subject include [9, 14, 40]. The arguments we present are
most closely related to the literature on (accelerated) stochastic gradient methods [22, 31], dual
averaging [39, 48], and model-based minimization [3, 16].

Online convex optimization. Online convex optimization is a more general framework than
stochastic convex optimization in the sense that the loss function at each iteration need not follow
any probability distribution and can even be adversarial. On the other hand, online convex opti-
mization requires stronger assumptions such as bounded domain and gradients; see, e.g., [25, 45, 49].
Under these conditions, any online convex optimization algorithm can be applied to static stochas-
tic optimization problems. Similarly, we show by a simple reduction that any online algorithm can
be applied to stochastic optimization problems with state-dependent distributions.
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Error and bias in gradient oracles. Biased stochastic gradients play a central role in this work.
There is a vast literature on errors/bias in gradient computations. For example, [17, 20, 46] analyze
first-order methods under inexact oracles and discuss convergence rates. The bias that appears in
the current work is fundamentally different, however, in that it decays linearly with the distance to
the solution. The closest error model we are aware of is based on relative errors in the gradient (e.g.
[10, Section 1.2.1] and [2]). The bias we encounter is more restrictive still and therefore facilitates
stronger guarantees.

Stochastic programming. Stochastic optimization problems with decision-dependent uncertain-
ties have appeared in the classical stochastic programming literature, such as [1, 19, 27, 43, 47]. We
refer the reader to the recent paper [26], which discusses taxonomy and various models of decision
dependent uncertainties. An important theme of these works is to utilize structural assumptions
on how the decision variables impact the distributions. Consequently, these works sharply deviate
from the framework explored in [35, 41] and from our paper.

1.4 Outline of the paper

The outline of the rest of the paper is as follows. Section 2 presents two fundamental lemmas that
characterize the sensitivity of the expected loss function and its gradient to arbitrary distributional
shift. Section 3 formalizes the assumptions that we will use throughout the paper, in particular
emphasizing Lipschitz continuity of the distributions relative to variations in the decision variables.
Section 4 outlines the main results and previews technical contributions—formally developed in
Sections 5-9,

The main technical content appears in Sections 5-9. Section 5 analyzes several conceptual al-
gorithms (that require evaluation of the full expectation during each iteration) through two key
properties: calmness with respect to distributional shift and contraction under a fixed distribu-
tion. Section 6 reduces stochastic optimization problems under state-dependent distributions to the
framework of online convex optimization and derives convergence rates for the projected stochastic
gradient and the regularized dual averaging methods. Section 7 presents convergence analysis for
the stochastic proximal gradient method and an accelerated variant under state-dependent distribu-
tions. Section 8 presents convergence analysis of stochastic model-based algorithms, including the
proximal point and clipped gradient variants. In Section 9, we consider settings where deployment
of a decision rule is much more expensive than sampling. We show how to modify the aforemen-
tioned algorithms so as to maintain their sample efficiency while performing only logarithmically
many deployments.

Notation. Throughout, we consider a Euclidean space, denoted for simplicity as Rd. The symbol
〈·, ·〉 will denote the inner product in Rd, while ‖x‖ =

√
〈x, x〉 will denote the induced norm. The

proximal map of any function f : Rd → R ∪ {∞} is defined as

proxηf (x) = arg min
y

{
f(y) + 1

2η‖y − x‖
2
}
,

where η > 0 is an arbitrary constant.
We will be interested in random variables taking values in a metric space. Therefore, throughout

the paper, we fix a metric space Z with metric d(·, ·) and equip Z with the Borel σ-algebra.
The symbol P will denote the set of Radon probability measures on Z with a finite first moment
Ez∼P [d(z, z0)] < ∞ for some z0 ∈ Z. We measure the deviation between two measures µ, ν ∈ P
using the Wasserstein-1 distance:

W1(µ, ν) = sup
g∈Lip1

{
EX∼µ[g(X)]− EY∼ν [g(Y )]

}
,
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where Lip1 denotes the set of 1-Lipschitz continuous functions g : Z → R. The equivalence of this
definition with the description of W1(µ, ν) using couplings is the Kantorovich-Rubinstein duality
theorem [29].

Throughout the paper, we fix an arbitrary function r : Rd → R ∪ {∞} and a loss function
` : Rd × Z → R. The symbol ∇`(x, z) will always refer to the gradient of `(x, z) in the variable x.
Throughout the paper, we impose the following assumption.

Assumption 1 (Smoothness). The loss `(x, z) is C1-smooth in x for all z ∈ Z, and the map
z 7→ ∇`(x, z) is β-Lipschitz continuous for any x ∈ Rd.

An important consequence (following from the dominated convergence theorem) is that for any
measure µ ∈ P, the expected loss Ez∼µ `(x, z) is differentiable in x with gradient Ez∼µ[∇`(x, z)].

2 Sensitivity to distributional shift

Optimization algorithms that rely on state-dependent sampling, in essence, perform updates on
a sequence of static problems that slowly vary along the iterations. An appealing strategy for
analyzing such algorithms—and the one we follow here—leverages the stability of the problem
St(P) to perturbations in P. Formalizing this viewpoint, define the expected loss

fµ(x) := E
z∼µ

`(x, z),

for any measure µ ∈ P. The main question we aim to answer in this section is how variations in
µ ∈ P impact the function fµ and its gradient ∇fµ. The two Lemmas 2.1 and 2.2 provide the
answer that guides much of our development.

We begin with Lemma 2.1, which shows that the distance W1(µ, ν) between two measures
µ, ν ∈ P uniformly bounds the deviation ∇fµ(x) − ∇fν(x). This result is well-known and widely
used; we provide a short proof for completeness.

Lemma 2.1 (Gradient deviation). Under Assumption 1, all measures µ, ν ∈ P satisfy:

sup
x∈Rd

‖∇fµ(x)−∇fν(x)‖ ≤ β ·W1(µ, ν). (2.1)

Proof. Fix a unit vector v ∈ Rd and define the function g(z) := vT∇`(x, z). Clearly by Assump-
tion 1, g is β-Lipschitz continuous in z and therefore we deduce

vT (∇fµ(x)−∇fν(x)) = Ez∼µg(z)− Ez∼νg(z) ≤ β ·W1(µ, ν).

Taking the supremum over unit vectors v yields the result.

Similarly, it is tempting to use the distance W1(µ, ν) to linearly bound the functional error
|fµ(x)− fν(x)|; such an estimate, however, is far too crude for analyzing algorithms. Instead, the
key insight is that convergence analysis of algorithms does not rely on function values in absolute
terms, but rather on their differences. The following lemma provides a multiplicative bound on the
error in the function gaps ∆µ(x, y) := fµ(x)− fµ(y).

Lemma 2.2 (Function gap deviation). Under Assumption 1, all points x, y ∈ Rd and measures
µ, ν ∈ P satisfy:

∆µ(x, y)−∆ν(x, y) ≤ β · ‖y − x‖ ·W1(µ, ν). (2.2)

6



Proof. Fix two points x, y ∈ Rd. For any s ∈ [0, 1], set xs := x + s(y − x). The fundamental
theorem of calculus allows to write

fµ(y)− fµ(x) =

∫ 1

0
〈∇fµ(xs), y − x〉 ds and fν(y)− fν(x) =

∫ 1

0
〈∇fν(xs), y − x〉 ds.

Subtracting the two estimates yields

|[fµ(y)− fµ(x)]− [fν(y)− fν(x)]| =
∣∣∣∣∫ 1

0
〈∇fµ(xs)−∇fν(xs), y − x〉 ds

∣∣∣∣
≤ ‖y − x‖ ·

∫ 1

0
‖∇fµ(xs)−∇fν(xs)‖ ds (2.3)

≤ β · ‖y − x‖ ·W1(µ, ν), (2.4)

where (2.3) follows from Cauchy–Schwarz and (2.4) follows from Lemma 2.1.

Importantly, the right side of (2.2) is proportional to the product ‖y−x‖·W1(µ, ν). In particular,
if the distance W1(µ, ν) is on the order of ‖y − x‖—the setting we will pass to shortly—then the
right-side is proportional to the quadratic error ‖y − x‖2. Both Lemmas 2.1 and 2.2 will play a
central role in the later sections.

3 Assumptions under state-dependent sampling

We next record the assumptions that we will use to analyze stochastic optimization under state-
dependent distributions—the main content of the work. The imposed conditions are identical to
those used in the seminal work [41].

Consider a family of probability measures D(x) ∈ P indexed by x ∈ Rd. It is instructive
throughout the discussion to keep in mind the corresponding problem (1.2). The first assumption
asserts Lipschitz control on the assignment x 7→ D(x).

Assumption 2 (Lipschitz distributions). There exists γ > 0 satisfying

W1(D(x),D(y)) ≤ γ · ‖x− y‖ for all x, y ∈ Rd.

As an example, consider the framework of strategic classification in Section 1.2. If the agents
employ a linear utility function u(x, a) = 〈x, a〉 and a quadratic cost for modifying the features
c(a, a′) = 1

2γ ‖a− a
′‖2, then W1(D(x),D(y)) ≤ γ‖x− y‖; see [41, Appendix G].

The Lipschitz condition on the distribution map D(·), recorded in Assumption 2, quantifies how
far the map is away from being constant—the strength of the state-dependence. The guarantees of
Lemmas 2.1 and 2.2 become especially potent under Assumption 2. We record them in Corollary 3.1,
and will use it often. To simplify the exposition, we introduce the notation

fx(y) := E
z∼D(x)

`(y, z) and ∇fx(y) := E
z∼D(x)

∇`(y, z).

Note that in light of Section 2, we may equivalently write fx(y) = fD(x)(y). Observe also that
∇fx(x) is the gradient of the function y 7→ fx(y) evaluated at y = x.

Corollary 3.1 (Gradient and function gap deviations). Suppose Assumptions 1 and 2 hold. Then
for all points x, y, u, v ∈ Rd the estimates hold:

sup
w∈Rd

‖∇fx(w)−∇fy(w)‖ ≤ γβ · ‖x− y‖, (3.1)

| (fx(u)− fx(v))− (fy(u)− fy(v)) | ≤ γβ · ‖x− y‖ · ‖u− v‖. (3.2)

7



We will see that a variety of algorithms with state-dependent sampling are implicitly solving a
certain static problem that is at “equilibrium”. A formal description of this phenomenon relies on
the notion of an equilibrium point from [41].

Definition 3.2 (Equilibrium point). A point x̄ ∈ Rd is at equilibrium with respect to D(·) if x̄
solves the static problem St(D(x̄)), or equivalently

x̄ ∈ arg min
x

{
fx̄(x) + r(x)

}
.

Thus a point x̄ is at equilibrium with respect to D(·) if x̄ solves the static problem that it
entails. In the context of strategic classification, the decision variable x̄ is at equilibrium if the
institution has no incentive to deploy another classifier based purely on the population’s response
to x̄. Equilibrium points are distinct from minimizers of (1.2) in general, though the distance
between the two can be bounded under strong convexity assumptions [41, Theorem 4.3].

Observe that equilibrium points are precisely the fixed points of the repeated minimization
procedure

xt+1 = arg min
x

{
fxt(x) + r(x)

}
. (3.3)

This algorithm is largely conceptual since it requires access to the entire data set (to evaluate the
expectation) in every iteration. Nonetheless, such “retraining heuristics” are ubiquitous in practice
for recovering from distributional shifts, regardless of their origin. Repeated minimization will play
an important role in later sections.

Equilibrium points are sure to exist under fairly weak assumptions. The following two sufficient
conditions were proved in Theorem 3.5 and Proposition 4.1 of [41], respectively.

Proposition 3.3 (Existence of equilibrium points). The family of distributions D(·) is sure to
admit an equilibrium point under either of the two conditions:

(a) Assumptions 1 and 2 hold and the functions fx are α-strongly convex for all x ∈ Rd with
γβ
α < 1. Moreover, in this case, the equilibrium point is unique.

(b) The loss `(x, z) is jointly continuous in (x, z) and convex in x, the distribution map D(·) is
continuous, and the domain of r is compact.

In light of Proposition 3.3, we make the blanket assumption throughout:

The family of distributions D(·) admits an equilibrium point, denoted by x̄.

The final two ingredients are assumptions on strong convexity and smoothness: we will use three
variants of the former and two variants of the latter depending on context.

Assumption 3 (Strong convexity). The regularizer r is convex and there exists α > 0 satisfying
one of the following three properties:

(a) fx̄ is α-strongly convex,

(b) fx is α-strongly convex for all x ∈ Rd,

(c) the loss function `(·, z) is α-strongly convex for all z ∈ Z.

In this case, define the ratio ρ := γβ
α .
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Clearly, the implications (c)⇒ (b)⇒ (a) hold in Assumption 3. We will see that the constant
ρ = γβ

α sharply characterizes the regime of convergence of basic stochastic algorithms with state-
dependent sampling.

Assumption 4 (Smoothness). There exists L > 0 satisfying one of the following:

(a) ∇fx̄ is L-Lipschitz continuous,

(b) ∇fx is L-Lipschitz continuous for all x ∈ Rd.

If in addition either of Assumptions 3(a)-(c) hold, define the condition number κ := L
α .

3.1 The interesting parameter regime ρ < 1

The proof of Proposition 3.3(a), presented in [41, Theorem 3.5], is particularly instructive algo-
rithmically. Namely, observe that repeated minimization (3.3) is a fixed point iteration of the map
S(x) := arg miny{fx(y) + r(y)}. The authors of [41] show that S is Lipschitz continuous with
parameter ρ. Consequently, in the regime ρ < 1, the map S is a contraction and has a fixed point,
which by definition is at equilibrium relative to D(·). Conversely, they show in the same paper that
repeated minimization can easily diverge if ρ ≥ 1. In this sense, the parameter regime ρ < 1 is the
natural setting for analyzing algorithms under state-dependent distributions. In this work, we aim
to show that in the setting ρ < 1, typical stochastic algorithms (Table 1) implicitly solve the static
problem St(D(x̄)), where x̄ is an equilibrium point. We end the section with an illuminating in-
formal argument and numerical example supporting this claim for the stochastic gradient method.
The precise argument appears in Section 7.

Suppose that Assumptions 1, 2, 3(a), 4(a) hold. In each iteration, the stochastic gradient
method draws a sample zt ∼ D(xt) and uses ∇`(xt, zt) to advance. Clearly ∇`(xt, zt) is an unbiased
estimator of ∇fxt(xt) but is biased with respect to the true gradient ∇fx̄(xt). The estimate (3.1)
directly bounds the bias ‖∇fx(x) − ∇fx̄(x)‖, which combined with strong convexity, yields the
relative error guarantee:

‖∇fx(x)−∇fx̄(x)‖ ≤ ρ · ‖∇fx̄(x)‖. (3.4)

A simple consequence is that in the regime ρ < 1, the two vectors ∇fx(x) and ∇fx̄(x) are well-
aligned in the sense that they span an angle with cosine

√
1− ρ2; see Appendix E for a quick

justification. Therefore, in this parameter regime, numerical methods that use unbiased estimators
of ∇fx(x) are effectively solving the static problem St(D(x̄)) using biased gradients. A simple
numerical example will illustrate this viewpoint.

Example 3.1 (Illustration). We describe now a synthetic two-dimensional example of mean es-
timation of a moving Gaussian. Specifically, fix a parameter ρ ≥ 0 and consider the prob-
lem (1.2) with losses `(x, z) = 1

2‖x − z‖2, no regularizer r = 0, and the Gaussian distribution
D(x1, x2) = N(ρ(x2, x1), I). A quick computation yields the expression

∇fy(x) = x− E
z∼D(y)

(z) =

[
x1 − ρy2

x2 − ρy1

]
.

It is straightforward to see that the origin x̄ = {0} is the unique equilibrium point of D(·), provided
ρ2 6= 1. A quick computation shows the equalities α = β = 1 and γ = ρ. According to the estimate
(3.4), the vector fields x 7→ −∇fx̄(x) and x 7→ −∇fx(x) span an acute angle pointwise for any
ρ ∈ (0, 1). Figure 1 illustrates that this is indeed the case for ρ = {0.25, 0.5, 0, 99}. Moreover with
these parameters, the integral curves of the two vector fields converge to the origin. When ρ = 1.25,
the two vector fields span an obtuse angle at some points and integral curves of x 7→ −∇fx(x) may
even diverge.
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(a) ρ = 0.25 (b) ρ = 0.5

(c) ρ = 0.99 (d) ρ = 1.25

Figure 1: Alignments of vector fields x 7→ −∇fx(x) (gold) and x 7→ −∇fx̄(x) (blue). Each picture
corresponds to a different choice of ρ ∈ {0.25, 0.5, 0.99, 1.25}.

The intuition highlighted in Example 3.1 can be made precise in the setting r = 0. When
regularization is present, the estimate (3.4) is not useful because the right-hand side might be
uniformly bounded away from zero. Instead, our arguments in Section 7 will use (3.1) directly.

4 Outline of the main results

This section outlines the main results of this work. Throughout, the reader should keep in mind the
running theme of the paper: a variety of stochastic algorithms under state-dependent distributions
are implicitly solving the static problem St(D(x̄)), where x̄ is the equilibrium point. We impose
Assumptions 1, 2, 3(c), 4(b) throughout the section. Define the objective function of the static
problems St(D(x)) as

min
y

ϕx(y) := fx(y) + r(y).

To shorten the notation, we drop the subscript x̄ from ϕx̄ and set ϕ := ϕx̄. To better conceptualize
the theoretical guarantees, we augment the discussion with numerical illustrations on Example 3.1
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and on a strategic classification problem explored in [35, 41]. The implementation details for
strategic classification appear in Appendix F.

4.1 Calm and contractive algorithms (Section 5)

We begin the algorithmic development by analyzing a number of conceptual algorithms under state-
dependent distributions, the most important being repeated minimization (3.3). More generally,
the classical proximal point and gradient methods extend to the state-dependent setting as follows:

(Proximal point) xt+1 = arg min
x

{
fxt(x) + r(x) +

1

2η
‖x− xt‖2

}
,

(Proximal gradient) xt+1 = proxηr(xt − η∇fxt(xt)),

where η > 0 is a user-specified step size. Thus in each iteration t, the two algorithms simply take
a proximal point step and a proximal gradient step, respectively, on the static problem St(D(xt)).
The proximal point method in the extreme case η =∞ coincides with repeated minimization (3.3).
Setting notation, let us denote either of these updates as xt+1 = Sxt(xt); more generally, the symbol
Sy(x) will denote the update of a point x by an algorithm acting on the static problem St(D(y)).

The paper [41] showed that when r is the indicator function of a closed convex set and ρ < 1,
repeated minimization and the projected gradient method converge linearly to the equilibrium point
x̄. Section 5 provides an alternative and transparent explanation based on stability to distributional
shifts. Namely, linear convergence is a direct consequence of the two independent phenomena:

1. (Calmness to distribution) The updates Sy(x) are τ -calm relative to D(x̄), meaning there
exists τ > 0 satisfying sup

x
‖Sy(x)− Sx̄(x)‖ ≤ τ ·W1(D(y),D(x̄)) for all y ∈ Rd.

2. (Contraction at equilibrium) The updates Sx̄(·) are q-contractive on the static problem
St(D(x̄)), meaning ‖Sx̄(x)− Sx̄(y)‖ ≤ q · ‖x− y‖ for all x, y ∈ Rd.

The first property asserts control on how the update Sy(x) varies with respect to the distribution
D(y), while the contraction property asserts that the update is contractive when applied to the static
problem induced by D(x̄). It is elementary to see that these two conditions imply that the update
x 7→ Sx(x) contracts towards x̄ with ratio q + γτ . By computing the calmness and contraction
parameters for different algorithms (in terms of ρ > 0), we obtain the following theorem.

Theorem 4.1 (Informal). Repeated minimization and proximal point methods converge linearly to
x̄ in the regime ρ < 1, while the proximal gradient method converges linearly to x̄ in the regime
ρ < 1

2 . (A more careful argument in Section 7 shows that the proximal gradient method converges
linearly in the optimal regime ρ < 1.)

In theory, repeated minimization and the proximal-point method work within the same optimal
parameter regime ρ ∈ (0, 1). We have seen experimentally, however, that the proximal point
method can succeed in a much wider parameter regime whereas repeated minimization can exhibit
wild oscillatory behavior. As an example, Figure 2 depicts the performance of both algorithms with
different proximal parameters on a problem of strategic classification. It is an interesting question
to identify the theoretic justification for this behavior.

The three algorithms described so far (repeated minimization, prox-point, gradient descent) are
largely conceptual since they require access to the entire data set in every iteration. Implementable
algorithms under state-dependent distributions fall into two categories—those that update the
sampling distribution in every step and those that run multiple iterations of stochastic methods on

11



Figure 2: We implement repeated minimization and the proximal point method on a problem of
strategic classification detailed in Appendix F. The problem parameters are n = 200, α = 10/n,
γ = 5. “RM” refers to repeated minimization while the rest of the curves refer to the proximal-point
method with parameter η. Repeated minimization and the prox-point method with η = 10 exhibit
wild oscillatory behavior. The prox-point method with parameters η ∈ {1, 2, 2.5, 3.3, 5.0} succeeds
at finding the equilibrium point, with a rate that degrades with decreasing η > 0.

the current static problem before updating the sampling distribution. The former algorithms are
called “greedy” and the latter are called “lazy” in [35]. As remarked in [35], lazy algorithms can
be interpreted as performing inexact repeated minimization. Such algorithms can be advantageous
in applications where the action of updating the distribution is much costlier than sampling from
the currently available distribution. For example, this is the case in applications where it takes
significant amount of time for the population to adjust to a newly unveiled learning rule.

We analyze both types of algorithms in this work. Most of the paper, however, focuses on
greedy algorithms, while inexact repeated minimization is deferred to Section 9. Though the two
types of methods generate entirely different trajectories, the convergence arguments we present are
slight modifications of each other—thereby underscoring the utility of the developed techniques.

4.2 Reduction to online convex optimization (Section 6)

We begin by showing that virtually any algorithm developed for “online convex optimization” can
be used to find the equilibrium point x̄ in the stochastic setting under state-dependent distributions.
The framework of online convex optimization can be interpreted as a repeated game (e.g., [25, 45,
49]). At each round t, the player chooses a point xt ∈ dom r, then a convex cost function `t is
revealed and the player incurs the cost `t(xt). The goal of the player is to minimize the regret

Rt :=

t∑
i=1

(
`i(xi) + r(xi)

)
−min

x

t∑
i=1

(
`i(x) + r(x)

)
,

which is simply the difference between the total regularized cost incurred up to round t and the
minimum regularized cost in hindsight. Typical algorithms for online convex optimization are the
proximal gradient [18], dual averaging [48], and variants of FTRL (Follow-The-Regularized-Leader)
methods [34]. Under various Lipschitz and strong convexity assumptions, the regret Rt scales as
O(log t). We establish the following reduction by leveraging the gap deviation inequality (3.2).

Theorem 4.2 (Informal). Suppose that we are in the regime ρ < 1
2 . Then any online algorithm with

regret Rt = O(log t) can be used under state-dependent distributions by declaring `i(xi) = `(xi, zi)
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with zi ∼ D(xi) in each iteration. Then the average iterate x̂t := 1
t

∑t
i=1 xi satisfies

E[ϕ(x̂t)− ϕ(x̄)] ≤ O
(

log t

(1− 2ρ) t

)
, for all t ≥ 0.

In particular, known regret bounds for the proximal gradient, regularized dual averaging, and
FTRL algorithms directly yield a converge rate O(log(t)/(1−2ρ)t) under state-dependent sampling.
Though the theorem is attractive in its generality, it is far from satisfactory. Indeed, the framework
of online convex optimization is far more general than stochastic optimization, since the loss function
`t at each iteration may not follow any probability distribution and can even be adversarial. As a
consequence, online convex optimization requires stringent assumptions in order to have meaningful
regret analysis, most notably that the encountered gradients of the loss functions and the domain
dom r be bounded. Moreover smoothness of the loss function does not play a significant role.

We will see that much finer convergence guarantees hold for stochastic optimization under state-
dependent distributions. In particular, bounds on the gradient of the loss will be replaced by the
finite variance assumption.

Assumption 5 (Finite variance). There is a constant σ > 0 satisfying

Ez∼D(x)‖∇`(x, z)−∇fx(x)‖2 ≤ σ2 ∀x ∈ dom r.

4.3 Stochastic gradient methods (Section 7)

The simplest and most widely used stochastic algorithm is the stochastic gradient method. We
begin by investigating its extension under decision-dependent distributions:

SG :

{
Sample zt ∼ D(xt) and set gt = ∇`(xt, zt),
Set xt+1 = proxηtr(xt − ηtgt).

}
(4.1)

Rather than reducing the method SG to online convex optimization, as mentioned previously,
we will analyze it directly. Observe that contrary to the static setting, the vector gt is a biased
estimator for the true gradient ∇fx̄(xt), where the bias is proportional to ‖xt − x̄‖; recall the
gradient deviation inequality (3.1). We will prove the following.

Lemma 4.3 (Key recursion). Suppose that the step-size sequence satisfies ηt <
1

2L . Then the
iterates {xt} generated by the SG Algorithm in (4.1) satisfy

2ηtE[ϕ(xt+1)− ϕ(x̄)] ≤
(
1− α(1− 2ρ)ηt + 2γ2β2η2

t

)
E‖xt − x̄‖2 − E‖xt+1 − x̄‖2 + 2η2

t σ
2.

Observe that the contraction factor multiplying E‖xt− x̄‖2 for small η scales as 1−α(1− 2ρ)η.
It follows that in the regime ρ < 1

2 , one can drive the gap E[ϕ(xt+1)−ϕ(x̄)] to zero at a controlled
rate, with an appropriate choice of ηt. Moreover, a quick argument shows that the parameter
regime of convergence becomes larger if we focus on the rate at which the distance ‖xt+1 − x̄‖2
decays. Indeed, lower-bounding the left side in Lemma 4.3 using strong convexity and rearranging
yields the one-step progress guarantee

E‖xt+1 − x̄‖2 ≤
(
1− α(1− ρ)ηt + 1

2η
2
t γ

2β2
)
E‖xt − x̄‖2 + η2

t σ
2.

For small ηt, the contraction factor multiplying ‖xt− x̄‖2 roughly scales as 1−α(1−ρ)η. Therefore
in the regime ρ < 1, one can drive the square distance E[‖xt+1 − x̄‖2] to zero at a controlled rate,
with an appropriate choice of ηt.

With Lemma 4.3 at hand, obtaining formal guarantees with various choices of parameters ηt is
standard. The following theorem presents one such guarantee.
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Theorem 4.4 (Informal). In the regime ρ < 1, the proximal stochastic gradient method with
appropriate parameters ηt will generate a point x satisfying E‖x− x̄‖2 ≤ ε using

O

(((
ρ

1− ρ

)2

+
κ

1− ρ

)
· log

(
‖x0 − x̄‖2

ε

)
+

σ2

(1− ρ)2α2ε

)
samples.

Moreover, in the regime ρ < 1
2 , the method will generate a point x satisfying E[ϕ(x) − ϕ(x̄)] ≤ ε

using

O

(((
ρ

1− 2ρ

)2

+
κ

1− 2ρ

)
· log

(
ϕ(x0)− ϕ(x̄)

ε

)
+

σ2

(1− 2ρ)αε

)
samples.

In the static setting γ = 0 (and hence ρ = 0), Theorem 4.4 recovers the classical guarantees
for the proximal stochastic gradient method [22, 23]. A closely related result for the projected
stochastic gradient method was proved in [35]. Their guarantee is weaker in that it (i) assumes
that r is the indicator function of a closed convex set and (ii) it provides estimates only on the
distance of the last iterate to x̄.

(a) Functional value along the average. (b) Square distance to equilibrium

Figure 3: Returning to Example 3.1, we implement a stochastic gradient method with a constant
parameter η = 0.01 averaged over 20 runs for various parameters ρ. Figure 3a shows the function
gap ϕ(x̂t)−ϕ(x̄) along the “average iterate” on the equilibrium problem. As the theoretical results
(Theorem 7.3) suggest, the gap tends linearly to a noise level controlled by η, with a linear rate that
degrades as ρ tends to 1/2. Figure 3b depicts the square distance of the current iterate ‖xt − x̄‖2,
which also tends linearly to a noise level that now depends both on η and on ρ. Indeed, Figure 3b
is fully justified by the results of [35], and we include it here only as an illustration..

Accelerated gradient methods, famously introduced by Nesterov [38] and extended to the prox-
imal setting by Beck and Teboulle [8], play a central role in convex optimization. Such methods are
best in class for smooth convex optimization. Ghadimi and Lan [23, 33] proposed an accelerated
method for the stochastic setting, which is best in class for smooth convex stochastic problems.
Continuing the theme of the paper, we ask whether acceleration is possible with state-dependent
distributions. We show an affirmative answer in the slightly suboptimal regime ρ . κ−1/4.

Rather than analyzing the original method of Ghadimi and Lan [23], we focus on the more
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recent variant of Kulunchakov and Mairal [31]. With decision-dependent distributions, it reads as:

ASG :


Sample zt ∼ D(yt−1) and set gt = ∇`(yt−1, zt),

Set xt = proxηtr(yt−1 − ηgt),

Set yt = xt +
1−
√
ηα(1−2ρ)

1+
√
ηα(1−2ρ)

(xt − xt−1).

 . (4.2)

In the deterministic and unregularized (r ≡ 0) setting, the method reduces to the classical procedure
in [37], derived through estimate sequences. The following theorem summarizes the convergence
guarantees of the ASG algorithm under state dependent sampling.

Theorem 4.5 (Informal). In the regime ρ . κ−1/4, the stochastic ASG method (4.2) with appro-
priate parameter choices will generate a point x satisfying E[ϕ(x)− ϕ(x̄)] ≤ ε using

O
(√

κ · log

(
ϕ(x0)− ϕ(x̄)

ε

)
+
σ2

αε

)
samples.

Notice that the regime when the accelerated method is guaranteed to work ρ . κ−1/4 is “sub-
optimal” by the small factor κ−1/4. On the other hand, it is surprising that there is any regime
ρ > 0 where the accelerated method works at all, since it is well known that accelerated methods
suffer from error accumulation [17]. The reason there is no contradiction here is that the gradient
bias that we encounter tends to zero linearly as one approaches the solution (2.1). It would be
interesting to know whether the extra factor κ−1/4 is really necessary or is an artifact of the proof.

The acceleration phenomenon is most prominent in the nearly noiseless setting σ ≈ 0. As an
illustration, Figure 4 compares the performance of the vanilla gradient method and the accelerated
gradient method in the batch setting (σ = 0) on a problem of strategic classification. Experimen-
tally, we see that acceleration leads to an impressive speedup even in very ill-conditioned settings,
thereby suggesting that the parameter regime ρ . κ−1/4 in Theorem 4.5 may be loose.

Proof technique: gradient deviation as a measure of bias. The results in this section follow
from the following transparent geometric reasoning. Recall that the gradient deviation inequality
(3.1) shows that contrary to the static setting, the vector ∇`(x, z) with z ∼ D(x) is a biased
estimator of the gradient ∇fx̄(x), with bias scaling as ‖x− x̄‖. Nonetheless, a quick computation
shows that the mean of the estimator ∇fx(x) = Ez∼D(x)[∇`(x, z)] furnishes a strong convexity
inequality between x and x̄ given by

fx̄(x̄) ≥ fx̄(x) + 〈∇fx(x), x̄− x〉+
α(1− 2ρ)

2
‖x− x̄‖2.

This inequality suffices to establish convergence guarantees for the proximal stochastic gradient
method; the reason is simply that strong convexity is used in the classical argument only to compare
the function values along the iterates with the minimal value. Perhaps more surprisingly, the
accelerated variant of the method can also be understood from this viewpoint. Section 7 analyzes
the proximal stochastic gradient method and its accelerated variant under a biased stochastic oracle
model. This oracle model is broader than the setting of state-dependent sampling and may be of
independent interest.

4.4 Model-based minimization: stochastic proximal point and clipped gradient
methods (Section 8)

Though the stochastic gradient method is popular in practice, it has well-documented deficiencies.
Notably, the method is highly sensitive to algorithmic parameters, with small misspecifications often
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(a) γ = 0. (b) γ = 5.

(c) γ = 100. (d) γ = 250.

Figure 4: We implement the accelerated gradient descent on strategic classification (Appendix F)
with parameters α = 10/n and n = 2000. In each iteration, the method uses the full gradient

∇fyt(yt). In the implementation, we set yt = xt+
1−
√
α/L

1+
√
α/L

(xt−xt−1), thereby heuristically ignoring

scaling by 1−2ρ. Acceleration leads to an impressive speedup even in very ill-conditioned settings,
thereby suggesting that the parameter regime ρ . κ−1/4 in Theorem 4.5 is loose for this example.

drastically degrading performance. Recent works [3, 44] have suggested that algorithms based on
tighter models than linear may lead to more robust algorithms. Following [3, 16], we consider a class
of stochastic algorithms that proceed as follows. In each iteration t, the methods draw a sample
zt ∈ D(xt) and approximate the loss function `(·, zt) by a simpler model `xt(·, zt) formed at the
basepoint xt. The next iterate xt+1 is then the minimizer of the function `xt(·, zt)+r+ 1

2ηt
‖ ·−xt‖2.

Thus, the model-based algorithm repeats the steps
Sample zt ∼ D(xt)

Set xt+1 = arg min
y

{
`xt(y, zt) + r(y) +

1

2ηt
‖y − xt‖2

}  (MBA)

For example, the stochastic proximal gradient method (4.1) uses the linear model `x(y, z) = `(x, z)+
〈∇`(x, z), y−x〉, while the stochastic proximal point method uses the loss function itself `x(y, z) =
`(y, z). Often, the proximal point subproblem can be solved in closed form since it depends only
on a single data point. Yet another interesting algorithm is the clipped gradient method, which
uses the truncated models `x(y, z) = max{`(x, z) + 〈∇`(x, z), y− x〉, 0} under the assumption that
the losses are nonnegative. See Fig. 5 for an illustration. Tighter models often lead to better
performing algorithms.

Section 8 presents convergence guarantees for the entire class of model-based algorithms. It will
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1 1 1

Figure 5: Illustration of the three models for the function `(y) = ln(1 + ey); black curve depicts the
graph of `, the red curves depict the models `1(y) = `(y) (proximal point), `1(y) = `(1)+`′(1)(y−1)
(gradient), `1(y) = max{`(1) + `′(1)(y − 1), 0} (clipped gradient).

be important for the clipped stochastic gradient method to assume that r is µ-strongly convex for
some µ ≥ 0. The efficiency guarantees specialized for the stochastic proximal gradient, proximal
point, and clipped gradient methods read as follows.

Theorem 4.6 (Informal). Define α̃ := α + µ for stochastic proximal gradient and proximal point
methods and set α̃ := µ for the clipped gradient method; in addition, set ρ̃ = γβ

α̃ . In the regime
ρ̃ < 1, the three methods with appropriate parameters ηt will find x satisfying E‖x− x̄‖2 ≤ ε using

O
(

L+ α̃

α̃(1− ρ̃)
· log

(
‖x0 − x̄‖2

ε

)
+

σ2

α̃2(1− ρ̃)2ε

)
samples.

Moreover, in the regime ρ̃ < 1
2 , the methods will generate x satisfying E[ϕ(x)− ϕ(x̄)] ≤ ε using

O
(

L+ α̃

α̃(1− 2ρ̃)
· log

(
ϕ(x0)− ϕ(x̄)

ε

)
+

σ2

α̃(1− 2ρ̃)ε

)
samples.

As an illustration, Figure 6 illustrates the performance of the stochastic gradient, clipped gra-
dient, and proximal point methods on a problem of strategic classification. We use a sublinearly
decaying stepsize-sequence ηt = 2

α(t+1) . The three methods perform similarly asymptotically. In
the initial stage, however, the subgradient method generates iterates that are highly suboptimal
due to a large initial step-size. Consequently, the clipped gradient and proximal-point methods may
be preferable. The drastically different performance in the early stages between the subgradient
method and the clipped gradient/proximal point methods in the static setting was investigated in
[3]. Similar guarantees likely extend to the setting of decision-dependent distributions, though we
do not pursue this line of work here.

Proof technique: function gap deviation (3.2) & Lyapunov analysis. The proofs of the
outlined results rely on the interplay between the function gap inequality (3.2) and typical Lyapunov
arguments used in stochastic optimization. Namely, classical convergence arguments for stochastic
methods on a static problem minx ψ(x) rely on one-step improvement bounds of the form:

ηtEt[ψ(xt+1)− ψ(x)] ≤ 1− c1ηt
2

‖xt − x‖2 −
1 + c2ηt

2
‖xt+1 − x‖2 + c3η

2
t ∀x. (4.3)

Here, c1, c2, c3 ∈ R are some constants and ηt > 0 is a user-specified sequence. As long as the
sum c1 + c2 is positive, one may drive the gap E[ψ(xt+1) − ψ(x)] below any fixed tolerance by
choosing ηt > 0 appropriately. The condition c1 + c2 > 0 typically holds under strong convexity

17



(a) γ = 0.1. (b) γ = 0.25.

Figure 6: Stochastic gradient (SG), clipped gradient (CSG), proximal point (SPP) methods on
strategic classification (Appendix F) with parameters α = 100/n, n = 2000, and ηt = 2

α(t+1) .

assumptions. Standard efficiency estimates follow by setting x to be the minimizer of ψ; for our
purposes, however, it is important that x can be arbitrary.

Returning to stochastic optimization with state-dependent distributions, recall that the losses
themselves are assumed to be smooth and strongly convex. Therefore, stochastic methods on the
static problem minϕx (for any x) likely enjoys the estimate (4.3) with c1 + c2 > 0. Imagine
now that given a current iterate xt we take a single step of such an algorithm on the problem
St(D(xt)). Setting x = x̄ (with ψ ≡ ϕxt) and applying the function gap inequality implies the
one-step improvement:

ηtEt[ϕ(xt+1)− ϕ(x̄)] ≤ 1− (c1 − γβ)ηt
2

‖xt − x̄‖2 −
1 + (c2 − γβ)ηt

2
‖xt+1 − x̄‖2 + c3η

2
t .

Therefore in the regime c1 + c2 − 2γβ > 0, we can drive the gap Et[ϕ(xt+1) − ϕ(x̄)] to zero with
an appropriate choice of ηt > 0. Moreover, if ϕ is α̃-strongly convex (for some α̃ > 0), then we
may lower bound the left side by (ηtα̃/2)E‖xt+1 − x̄‖2. Elementary algebraic manipulations then
show that the parameter regime of convergence in E‖xt+1− x̄‖2 improves to c1 + c2 + α̃− 2γβ > 0.
In summary, the function gap inequality (3.2) allows to translate one-step improvements on static
problems minϕxt into one-step improvements on the target problem minϕ. We will show that
model based algorithms on well-conditioned static problems satisfy a one-step improvement bound
of the form (4.3) with c1 + c2 > 0, and then apply the outlined argument using (3.2).

4.5 Inexact repeated minimization (Section 9)

All the aforementioned stochastic algorithms draw a single sample in between every change in dis-
tribution. In practice, however, modifying the sampling distribution may be much more expensive
than drawing a sample from the current distribution D(xt). Following [41], we call the process of
modifying the distribution deployment. It is an interesting question if it is possible to maintain the
sample efficiencies of the aforementioned algorithms for (implicitly) solving St(D(x̄)) while decreas-
ing the number of deployments. An answer to this question for the projected stochastic gradient
method appears in [41, Theorem 3.3]. Namely, consider running inexact repeated minimization for
iterations t = 0, 1, . . . with a projected stochastic gradient method applied for Jt iterations on each

18



subproblem. The authors show that setting Jt = O(t1.1p) ensures that iterates xt converge to x̄
at the rate O(t−p). Here p > 0 is a tuning parameter that controls the tradeoff between sampling
and deployment. We prove a closely related result for all the algorithms analyzed in the previous
sections; concisely, we show that the number of deployments can be reduced to be logarithmic in
problem parameters without sacrificing sample efficiency.

We begin with the following theorem, which provides guarantees on the efficiency of repeated
minimization with model-based algorithms used as inexact subsolvers.

Theorem 4.7 (Informal). Define α̃ = α + µ for stochastic proximal gradient and proximal point
methods and set α̃ = µ for the clipped gradient method; in addition, set ρ̃ = γβ

α̃ . In the regime
ρ̃ < 1, the three methods may be used as inexact solvers within repeated minimization. The resulting
methods will generate a point x satisfying E[ϕ(x)− ϕ(x̄)] ≤ ε using

O
(

1

1− ρ̃
·
(

log

(
ϕ(x0)− ϕ(x̄)

ε

)
+ log

(
σ2

1− ρ̃
· 1

Lε

)))
deployments,

and

O
(

log((1− ρ̃)−1)

1− ρ̃
·
(

L

α̃(1− ρ̃)
log

(
ϕ(x0)− ϕ(x̄)

ε

)
+

σ2

α̃(1− ρ̃)2ε

))
samples.

Observe that the sample complexity in Theorems 4.6 and 4.7 are essentially the same. The key
difference is that the number of deployments in the latter is only logarithmic in the problem param-
eters. As a simple illustration, Figure 7 depicts the performance of inexact repeated minimization
on Example 3.1 with the stochastic gradient method for approximately solving the inner problems.
We cap the number of deployments at 20 and adjust the number of inner iterations according to
the schedule in Corollary 9.3. Experimentally, we see that online algorithms and algorithms based
on inexact repeated minimization perform similarly in the regime ρ ∈ (0, 1/2). The latter algo-
rithms perform better in the very ill-conditioned regime ρ ∈ (1/2, 1) if one carefully tunes both the
step-sizes used and the number of iterations per epoch.

(a) Functional value. (b) Square distance to equilibrium.

Figure 7: Inexact repeated minimization on Example 3.1.

The following theorem provides guarantees on the efficiency of repeated minimization with an
accelerated stochastic gradient method used as an inexact solver.
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Theorem 4.8 (Informal). In the regime ρ < 1
2 , the accelerated stochastic proximal gradient method

may be used as an inexact solver within repeated minimization. The resulting method will generate
a point x satisfying E[ϕ(x)− ϕ(x̄)] ≤ ε using

O

((
1− 1

2(1−ρ)

)−1
(

log

(
ϕ(x0)− ϕ(x̄)

ε

)
+ log

(
σ2

(1− ρ
1−ρ)ε

√
αL

)))
deployments,

and

O

((
1− 1

2(1−ρ)

)−1
·

(
√
κ · log

(
ϕ(x0)− ϕ(x̄)

ε

)
+

σ2

(1− ρ
1−ρ)αε

))
samples.

Comparing Theorems 4.5 and 4.8, we see that the latter takes hold in the nearly optimal
parameter regime ρ < 1

2 without the extra factor of κ−1/4. In addition, the number of deployments
is only logarithmic in the problem parameters. The proof strategy for Theorems 4.7 and 4.8 again
relies heavily on using the function gap inequality (3.2) to perturb Lyapunov type arguments.

Sections 5-9 formally justify the results outlined in this section.

5 Calm and contractive methods

In this section, we analyze two conceptual algorithms with state-dependent distributions:

(Proximal point) xt+1 = arg min
x

{
fxt(x) + r(x) +

1

2η
‖x− xt‖2

}
,

(Proximal gradient) xt+1 = proxηr(xt − η∇fxt(xt)).

Thus in each iteration t, the two methods simply take a proximal point and proximal gradient
steps, respectively, on the static problem St(D(xt)). The proximal point method in the extreme
case η = ∞ is called repeated minimization in [41]. The paper [41] showed that when r is the
indicator function of a closed convex set and ρ < 1, repeated minimization and the proximal
gradient method converge linearly to x̄. In this section, we provide a different and complimentary
viewpoint based on stability to distributional shifts.

5.1 An interlude: calmness of algorithms for St(ν)

We begin with an interlude quantifying the stability of algorithmic updates on the parametric
family of problems St(ν) with ν ∈ P. To this end, let Sν(x) denote an update of a point x by an
algorithm on the static problem St(ν). Recall the notation fν(x) = Ez∼ν `(x, z) from Section 2.
Table 2 lists three basic examples that are worth keeping in mind: full minimization, proximal-
point, and proximal gradient updates. A desirable property of an algorithm is that for any fixed x,
the update map Sν(x) is Lipschitz continuous with respect to variations in ν.

The following definition summarizes this stability property, relative to perturbations of a fixed
distribution µ, which will later correspond to the equilibrium distribution D(x̄).

Definition 5.1 (Calmness). Fix a distribution µ ∈ P. We say that a map Sν(x) is τ -calm relative
to µ if the estimate holds:

‖Sν(x)− Sµ(x)‖ ≤ τ ·W1(ν, µ), ∀ν ∈ P.
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Updates Sν(x) = arg min
y

{. . .}
Calmness

τ > 0

Contraction

q ∈ [0, 1)

Minimization fν(y) + r(y) β/α 0

Prox-point fν(y) + r(y) + 1
2η‖y − x‖

2 ηβ
1+ηα

1
1+ηα

Prox-gradient 〈∇fν(x), y〉+ r(y) + 1
2η‖y − x‖

2 ηβ
√

1− αη (η ≤ 1/L)

Table 2: Calm and contractive updates under Assumption 1, 6: first column lists the names of
the algorithms, second column specifies the updates, third column lists the calmness constants, the
fourth columns lists the contraction factor of the map x 7→ Sµ(x).

Without further assumptions, standard algorithms can easily fail to be calm even if the loss
function is convex.1 As a remedy, we impose strong convexity assumptions on the problem data.

Assumption 6 (Strong convexity). Suppose that r is closed and convex and that fµ is α-strongly
convex for some distribution µ ∈ P and some constant α > 0.

Theorem 5.2 verifies that under Assumptions 1 and 6, the three basic updates in Table 2 are
indeed calm relative to µ. The fourth column in Table 2 also lists the well known contraction
factors of the updates x 7→ Sµ(x).

Theorem 5.2 (Calmness of the updates). Suppose that Assumptions 1 and 6 hold. Then the
updates of the repeated minimization, proximal point, and proximal gradient methods are τ -stable
for the constants τ > 0 appearing in Table 2.

Proof. Our goal is to establish an upper bound supx ‖Sν(x) − Sµ(x)‖ ≤ τW1(µ, ν) for the three
algorithms. Consequently, let us fix a point x throughout the proof and define the updates corre-
sponding to repeated minimization, proximal point, and proximal gradient updates, respectively:

S1
ν(x) = arg min

y

{
fν(y) + r(y)

}
,

S2
ν(x) = arg min

y

{
fν(y) + r(y) + 1

2η‖y − x‖
2
}
,

S3
ν(x) = proxηr

(
x− η∇fν(x)

)
.

We first verify the calmness constant for repeated minimization, i = 1. To this end, define the
function ϕν(y) := fν(y)+r(y) and its minimizer yν := arg minϕν . First-order optimality conditions
guarantee the inclusions 0 ∈ ∂ϕµ(yµ) and 0 ∈ ∂ϕν(yν) = ∇fν(yν) + ∂r(yν). In other words, there
exist ξ ∈ ∂r(yν) such that ∇fν(yν) + ξ = 0.

On the other hand, strong convexity of ϕµ guarantees α‖y− y′‖ ≤ ‖w−w′‖ for all w ∈ ∂ϕµ(y)
and w′ ∈ ∂ϕµ(y′). We set

y = yµ, w = 0 ∈ ∂ϕµ(yµ), y′ = yν , w′ = ∇fµ(yν) + ξ ∈ ∂ϕµ(yν).

1Consider the univariate function l(x, z) = 1
4
x4 + zx and define µ and νk to be point masses at zero and 1

k
,

respectively. Set xµ = arg min fµ and xνk = arg min fνk . A quick computation shows |xµ − xνk |/W1(µ, νk) = k2/3 →
∞ as k →∞.
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Since ∇fν(yν) + ξ = 0, we have w′ = ∇fµ(yν)−∇fν(yν) and thus can deduce

α‖yµ − yν‖ ≤ ‖∇fµ(yν)−∇fν(yν)‖ ≤ β ·W1(µ, ν),

where the last inequality follows from Lemma 2.1. Noticing that Sν(x) = yν and Sµ(x) = yµ, we
thus arrive at the claimed estimate τ = β/α for the case i = 1.

Calmness of the proximal point (i = 2) and proximal gradient (i = 3) updates follow by applying
what we have already proved (case i = 1) but with the different loss functions

ϕ2
ν(y) = fν(y) + r(y) +

1

2η
‖y − x‖2,

ϕ3
ν(y) = 〈∇fν(x), y〉+ r(y) +

1

2η
‖y − x‖2,

and recognizing Siν(x) as the minimizers Siν(x) = arg miny ϕ
i
ν(y).

5.2 Linear convergence of conceptual algorithms

We next pass to the setting where the distribution governing the data is state-dependent. To this
end, suppose that Assumptions 1, 2, 3(a), 4(a) hold. We will show that linear convergence of
repeated minimization, proximal point, and proximal gradient methods is a direct consequence of
the two independent phenomenon:

1. (Calm) The updates are τ -calm (Theorem 5.2).

2. (Contractive) The algorithms are q-contractive on the static problem St(D(x̄)). That is,
‖Sx̄(x)− Sx̄(y)‖ ≤ q‖x− y‖ for all x, y ∈ dom r.

It is elementary to see that an algorithm satisfying these two properties is automatically (q+τγ)-
contractive under state dependent sampling. This is the content of the following lemma.

Lemma 5.3 (Calm and contractive). Fix a map Sν(x) that is τ -calm and such that the map
x 7→ SD(x̄)(x) is q-contractive with x̄ as its fixed point. Then the estimate holds:

‖SD(x)(x)− x̄‖ ≤ (q + τγ)‖x− x̄‖ ∀x ∈ Rd.

Proof. Abusing notation slightly and setting Sx(y) := SD(x)(y), we compute

‖Sx(x)− x̄‖ = ‖Sx(x)− Sx̄(x̄)‖ ≤ ‖Sx(x)− Sx̄(x)‖+ ‖Sx̄(x)− Sx̄(x̄)‖ (5.1)

≤ τ ·W1(D(x),D(x̄)) + q‖x− x̄‖ (5.2)

≤ (q + τγ)‖x− x̄‖. (5.3)

Here (5.1) uses the triangle inequality, (5.2) follows from calmness and contractiveness, while (5.3)
follows from Assumption 2. The proof is complete.

Combining Lemma 5.3 with the constants τ and q specified in Table 2 immediately yields linear
convergence guarantees for the three conceptual algorithms.

Corollary 5.4 (Repeated minimization, proximal point, and proximal gradient methods). Suppose
that Assumptions 1, 2, 3(a), 4(a) hold. Then for any point x, the following estimates hold:

‖x+ − x̄‖
‖x− x̄‖

≤


γβ
α if x+ = arg miny

{
fx(y) + r(y)

}
,

1+γηβ
1+ηα if x+ = arg miny

{
fx(y) + r(y) + 1

2η‖y − x‖
2
}
,

√
1− ηα+ γηβ if x+ = proxηr(x− η∇fx(x)) and η ≤ 1

L .
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Thus iterated minimization and the prox-point methods converge linearly to x̄ in the regime ρ < 1,
while the prox-gradient method converges linearly to x̄ in the regime ρ < 1

2 .

Corollary 5.4 shows that iterated minimization and proximal point methods converge linearly
in the parameter regime ρ < 1. Moreover, as shown in [41], repeated minimization can easily
diverge outside this parameter regime. The regime of convergence ρ < 1

2 for the proximal gradient
method therefore appears slightly suboptimal. This regime can be trivially enlarged when no
regularization is present, i.e., when r = 0. Indeed, with the choice η = 2

α+L , the gradient method

is L−α
L+α contractive on the static problem St(D(x̄)) (e.g. [14, Theorem 3.12]). Lemma 5.3 therefore

guarantees that the update x+ satisfies

‖x+ − x̄‖
‖x− x̄‖

≤ L− α
L+ α

+
2γβ

L+ α
.

Clearly, the right side is smaller than one if and only if ρ < 1. A similar guarantee based on a
different argument appears in [35, Proposition 2.5].

In general regularized settings, the regime of convergence of the proximal gradient method can
be enlarged to ρ < 1 through a different argument. See the forthcoming guarantees for the proximal
stochastic gradient method (Theorem 7.3 with σ2 = 0).

6 Reduction to online convex optimization

This section shows that virtually any algorithm designed for online convex optimization can be
applied under state-dependent sampling. We begin with a short summary of online convex opti-
mization, and refer the reader to the surveys [25, 45] for further details.

6.1 Review of online convex optimization

The framework of online convex optimization can be interpreted as a repeated game. At each
iteration t, the player chooses a point xt from a convex set K ⊂ Rd, then a convex cost function
`t : K → R is revealed and the player incurs the cost `t(xt). The goal of the player is to minimize
the regret, defined as the difference between the total cost

∑t
i=1 `i(xi) incurred up to round t and

the minimum cost of any fixed decision from hindsight, minx∈K
∑t

i=1 `i(x). Here we consider a
regularized version of online convex optimization and define the regret up to round t as

Rt :=

t∑
i=1

(
`i(xi) + r(xi)

)
−min

x

t∑
i=1

(
`i(x) + r(x)

)
,

where r is a convex function that represents the indicator function of the set K or a more general
regularization. In this setting, we can use the online proximal gradient method,

xt+1 = proxηtr(xt − ηt∇`t(xt)), (6.1)

as proposed in [18]. Other suitable algorithms include the regularized dual average method [48]
and variants of FTRL (Follow-The-Regularized-Leader) method [34].

The framework of online convex optimization is more general than stochastic optimization, since
the loss function `t at each iteration may not follow any probability distribution and can even be
adversarial. On the other hand, it requires more strict assumptions in order to have meaningful
regret analysis. In particular, the set K needs be bounded, say with diameter D, and the gradient

23



of the cost functions are also bounded by a constant G, i.e., ‖∇`t(x)‖ ≤ G for all x ∈ K and all t.
Under these assumptions, the methods mentioned above have bounded regret against any reference
point x ∈ dom r:

Rt(x) :=
t∑
i=1

((
`i(xi) + r(xi)

)
−
(
`i(x) + r(x)

))
≤ Ut, (6.2)

where Ut = O(GD
√
t) for convex losses with ηt = D/(G

√
t) and Ut = O((G2/α) ln(t)) for α-

strongly convex losses with ηt = 1/(αt). See [18], [48] and [34] for the details.

6.2 Reduction

We claim that one can directly apply online optimization algorithms in the setting of state-
dependent sampling, and derive their convergence rate from the regret bounds (6.2). As usual,
we let x̄ be an equilibrium point with respect to D(·), set ϕx(y) = Ez∼D(x)[`(y, z)] + r(y), and use
the shorthand ϕ = ϕx̄.

Theorem 6.1 (Reduction). Suppose that Assumptions 1, 2, 3(a) hold. Consider an online algo-
rithm that in each iteration t ≥ 1 encounters the loss function `t(xt) = `(xt, zt) where zt ∼ D(xt).
Suppose that the uniform regret bound (6.2) holds for each t ≥ 1. Then the average iterate
x̂t := 1

t

∑t
i=1 xi satisfies

E[ϕ(x̂t)]− ϕ(x̄) ≤ Ut
(1− 2ρ) t

∀t ≥ 1.

Proof. Taking the expectation in (6.2) and setting x = x̄ yields

E [Rt(x̄)] =

t∑
i=1

E
[
ϕxi(xi)− ϕxi(x̄)

]
≤ Ut.

The function gap inequality (3.2) in turn implies

ϕ(xi)− ϕx̄(x̄) ≤ ϕxi(xi)− ϕxi(x̄) + γβ · ‖xi − x̄‖2.

Strong convexity implies ‖xi − x̄‖2 ≤ 2
α(ϕ(xi)− ϕ(x̄)) and hence

(1− 2ρ)
(
ϕ(xi)− ϕ(x̄)

)
≤ ϕxi(xi)− ϕxi(x̄).

Therefore, in the setting ρ < 1/2, we have

E
[ t∑
i=1

(
ϕ(xi)− ϕ(x̄)

)]
≤ 1

1− 2ρ
E[Rt(x̄)] ≤ 1

1− 2ρ
Ut.

Dividing both sides by t and using convexity of ϕ completes the proof.

Known regret bounds for the proximal gradient [18], regularized dual averaging [48], and FTRL
[34] algorithms directly yield a converge rate O(log(t)/(1 − 2ρ)t) under state-dependent sampling
and under the assumptions used in the aforementioned papers.

Though Theorem 6.1 is attractive in its generality, it is far from satisfactory. Indeed, the
framework of online convex optimization is far more general than stochastic optimization, since
the loss function `t at each iteration may not follow any probability distribution and can even be
adversarial. As a consequence, online convex optimization requires stringent assumptions in order
to have meaningful regret analysis, most notably boundedness of the encountered gradients of the
loss functions. Moreover smoothness of the loss function does not play a significant role. We will
see in the next section that much finer convergence guarantees hold for stochastic optimization
under state-dependent distributions.
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7 Stochastic gradient methods

In this section, we directly analyze the (accelerated) stochastic proximal gradient method, without
relying on regret bounds. The only consequence of state-dependent distribution that will be relevant
is that the stochastic estimator of the gradient is biased and the bias is bounded as in (3.1). As a
result, we work with a broader model with a biased stochastic gradient oracle, formalized next in
Assumption 7.

Assumption 7 (Biased stochastic gradient oracle). Consider the optimization problem

min
x

ϕ(x) := f(x) + r(x),

and denote its minimizer by x̄. We suppose that there exist constants L,B, α > 0 satisfying the
following.

(a) The function f : Rd → R is α-strongly convex and differentiable with L-Lipschitz gradient.

(b) The function r : Rd → R ∪ {∞} is closed and convex.

(c) For every point x, we may draw a realization of a random vector g(x) ∈ Rd satisfying the
bias/variance bounds:

‖E[g(x)]−∇f(x)‖ ≤ B‖x− x̄‖ and E‖g(x)− E[g(x)]‖2 ≤ σ2.

Throughout, we define the condition number κ := L
α and set ρ := B

α .

It is clear that Assumptions 1, 2, 3(a) and 4(a) under the setting of state-dependent distributions
imply Assumption 7 with g(x) := ∇`(x, z) where z ∼ D(x), and B := γβ. Consequently, all
convergence guarantees presented in this section can be interpreted under the setting of state-
dependent distributions by simply setting B = γβ.

The main consequence of the particular form of the bias in Assumption 7 (c) is summarized in
the following lemma. In essence, the lemma states that a strong convexity type inequality holds
between x and x̄, with ∇f(x) replaced by E[g(x)].

Lemma 7.1 (Approximate subgradient inequality). Under Assumption 7, it holds that

f(x̄) ≥ f(x) + 〈E[g(x)], x̄− x〉+
α(1− 2ρ)

2
‖x− x̄‖2 ∀x ∈ Rd.

Proof. Strong convexity of f guarantees

f(x̄) ≥ f(x) + 〈∇f(x), x̄− x〉+
α

2
‖x− x̄‖2

= f(x) + 〈E[g(x)], x̄− x〉+
α

2
‖x− x̄‖2 + 〈∇f(x)− E[g(x)], x̄− x〉.

The Cauchy-Schwarz inequality in turn yields the estimate

〈∇f(x)− E[g(x)], x̄− x〉 ≥ −‖E[g(x)]−∇f(x)‖ · ‖x̄− x‖ ≥ −B‖x− x̄‖2.

Combining the two inequalities above yields the desired result.
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7.1 Stochastic proximal gradient method

We are now ready to analyze the stochastic proximal gradient method, summarized in Algorithm 1,
under Assumption 7.

Algorithm 1: Stochastic gradient method

Input: initial x0 and sequence {ηt}Tt=0 ⊂ (0,∞).
Step t = 0, 1, . . . , T :

Sample gt = g(xt)

Set xt+1 = proxηtr(xt − ηtgt)

Throughout, we let Et[·] be the conditional expectation given the iterates x0, . . . , xt. The
following lemma provides a key recursion quantifying the one-step progress of the algorithm. The
argument closely parallels the proof in the unbiased setting [22].

Lemma 7.2 (Key recursion). Suppose that Assumption 7 holds and the step-size sequence satisfies
ηt <

1
L . Then the iterates {xt} generated by Algorithm 1 satisfy

2ηtEt[ϕ(xt+1)− ϕ(x̄)] ≤
(

1− αηt(1− 2ρ) +
η2
tB

2

1− ηtL

)
‖xt − x̄‖2 − Et‖xt+1 − x̄‖2 +

η2
t σ

2

1− ηtL
.

Proof. Since by Assumption 7 the gradient ∇f is L-Lipschitz, we have

ϕ(xt+1) = f(xt+1) + r(xt+1)

≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+ r(xt+1) +
L

2
‖xt+1 − xt‖2

= f(xt) + 〈gt, xt+1 − xt〉+ r(xt+1) +
L

2
‖xt+1 − xt‖2 − 〈gt −∇f(xt), xt+1 − xt〉.

Let δt > 0 be an arbitrary positive sequence. We use Young’s inequality to bound the last inner-
product term in the above inequality, which results in

ϕ(xt+1) ≤ f(xt) + 〈gt, xt+1 − xt〉+ r(xt+1) +
L

2
‖xt+1 − xt‖2

+
δt
2
‖gt −∇f(xt)‖2 +

1

2δt
‖xt+1 − xt‖2

= f(xt) + 〈gt, xt+1 − xt〉+ r(xt+1) +
1

2ηt
‖xt+1 − xt‖2

+
δt
2
‖gt −∇f(xt)‖2 +

δ−1
t − η

−1
t + L

2
‖xt+1 − xt‖2

≤ f(xt) + 〈gt, x̄− xt〉+ r(x̄) +
1

2ηt
‖x̄− xt‖2 −

1

2ηt
‖xt+1 − x̄‖2

+
δt
2
‖gt −∇f(xt)‖2 +

δ−1
t − η

−1
t + L

2
‖xt+1 − xt‖2, (7.1)

where the last inequality (7.1) follows from the fact that xt+1 is by construction the minimizer of
the η−1

t -strongly convex function f(xt) + 〈gt, · − xt〉+ r + 1
2ηt
‖ · −xt‖2.
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Next set δt := ηt
1−ηtL to make the last term of (7.1) zero. Taking conditional expectations and

using Lemma 7.1, we deduce

Et[ϕ(xt+1)] ≤ ϕ(x̄)− α(1− 2ρ)

2
‖xt − x̄‖2

+
1

2ηt
‖x̄− xt‖2 −

1

2ηt
Et‖x̄− xt+1‖2 +

δt
2
Et‖gt −∇f(xt)‖2. (7.2)

Next, we upper bound the last term in (7.2) as follows:

Et‖gt −∇f(xt)‖2 = E‖gt − E[gt]‖2 + ‖E[gt]−∇f(xt)‖2 ≤ σ2 +B2‖xt − x̄‖2.

Combining this estimate with (7.2) and grouping like terms completes the proof.

With Lemma 7.2 at hand, obtaining convergence guarantees under various choices of the control
sequence ηt > 0 is completely standard. We highlight one such result based on using a constant
sequence.

Theorem 7.3 (Constant step size). Suppose Assumption 7 holds. Let xt be the iterates generated
by Algorithm 1 with a fixed parameter η > 0. Then the following are true.

1. Suppose we are in the regime ρ < 1 and set α̂ := α−B. Then with the parameter η ≤ 1
B2/α̂+L

,

the estimate holds:

E‖xt − x̄‖2 ≤
(

1− 2ηα̂

3

)t
E‖x0 − x̄‖2 +

2σ2η

α̂
. (7.3)

2. Suppose we are in the regime ρ < 1
2 and set α̂ := α − 2B. Then with the parameter η ≤

1
2(B2/α̂+L)

, the estimate holds:

E[ϕ (x̂t)− ϕ(x̄)] ≤ 2

(
1− ηα̂

2

)t
(ϕ(x0)− ϕ(x̄)) + σ2η. (7.4)

where the average iterate is defined recursively by x̂t = (1− α̂η
2 )x̂t−1 + α̂η

2 xt.

Proof. Observe first that the assumption η ≤ 1
2L implies η2σ2

1−ηL ≤ 2η2σ2. Therefore Lemma 7.2
yields the one step improvement:

2ηE[ϕ(xt+1)− ϕ(x̄)] ≤
(

1− αη(1− 2ρ) +
η2B2

1− ηL

)
E‖xt − x̄‖2 − E‖xt+1 − x̄‖2 + 2η2σ2. (7.5)

Proof of claim 1: Lower bounding the left side of (7.5) using strong convexity, ϕ(xt+1) − ϕ(x̄) ≥
α
2 ‖xt+1 − x̄‖2, and rearranging yields the guarantee:

E‖xt+1 − x̄‖2 ≤

1−
2αη(1− ρ)− η2B2

1−ηL
1 + ηtα

E‖xt − x̄‖2 +
2η2σ2

1 + ηα
.

The assumption η < 1
B2/α̂+L

directly implies η2B2

1−ηL ≤ αη(1− ρ), and therefore we deduce

E‖xt+1 − x̄‖2 ≤
(

1− αη(1− ρ)

1 + ηα

)
E‖xt − x̄‖2 +

2η2σ2

1 + ηα
.
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Unrolling the recursion and using the estimate ηα ≤ 1
2 completes the proof of (7.3).

Proof of Claim 2: The assumption η < 1
2(B2/α̂+L)

by construction guarantees η2B2

1−ηL ≤
α̂η
2 . Therefore,

the inequality (7.5) implies

2ηEt[ϕ(xt+1)− ϕ(x̄)] ≤
(

1− α̂η

2

)
‖x̄− xt‖2 − Et‖x̄− xt+1‖2 + 2η2σ2.

Applying Corollary A.3 for the recursion completes the proof of (7.4).

Let us now translate Theorem 7.3 into an efficiency guarantee for finding an approximate
minimizer of ϕ. There are two standard restarting techniques that achieve this goal. The first
is based on restarting the constant step algorithm with exponentially increasing mini-batches of
gradients 1

m

∑m
i=1 g

i
t in order to decrease the variance. The second approach restarts the constant

step algorithm with geometrically decreasing parameters η. Both techniques are standard and are
detailed in Appendix B. The following corollary focuses on the latter strategy for simplicity, though
both strategies enjoy the same sample complexity guarantees.

Corollary 7.4 (Efficiency of Algorithm 1 with geometrically decaying schedule of η).
Suppose Assumption 7 holds. Then the following statements hold.

1. (Distance) Suppose ρ < 1 and that we have available an estimate ∆ ≥ ‖x0 − x̄‖2. Define
the modified convexity parameter α̂ = α − B. Then Algorithm 1 may be augmented with the
geometric decay schedule in Algorithm 8 (Appendix B) under the identification

c =
2α̂

3
, C = 1, h(x) = ‖x− x̄‖2, δ0 =

1

B2/α̂+ L
, D =

2σ2

α̂
.

The resulting procedure will generate a point x satisfying E[‖x− x̄‖2] ≤ ε using

O
((

B2

α̂2
+
L

α̂

)
log

(
∆

ε

)
+

σ2

α̂2ε

)
samples.

2. (Function value) Suppose ρ < 1
2 and that we have available an estimate ∆ ≥ ϕ(x0)−ϕ(x̄).

Define the modified convexity parameter α̂ = α − 2B. Then Algorithm 1 may be augmented
with the geometric decay schedule in Algorithm 8 (Appendix B) under the identification

c =
α̂

2
, C = 2, h(x) = ϕ(x)− ϕ(x̄), δ0 =

1

2(B2/α̂+ L)
, D = σ2.

The resulting procedure will generate a point x satisfying E[ϕ(x)− ϕ(x̄)] ≤ ε using

O
((

B2

α̂2
+
L

α̂

)
log

(
∆

ε

)
+
σ2

α̂ε

)
samples.

7.2 Accelerated Stochastic proximal gradient method

We next discuss the accelerated stochastic proximal gradient method in the oracle model (Assump-
tion 7). To state the algorithm, we require a few auxiliary quantities. Setting the stage, define
α̂ = α − 2B and choose an arbitrary γ0 ≥ α̂ and stepsize parameters ηt > 0. Define the two
auxiliary sequences

δt =
√
ηtγt for all t ≥ 0.

γt = (1− δt)γt−1 + δtα̂ for all t ≥ 1.
(7.6)
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Algorithm 2 summarizes the accelerated stochastic gradient method, proposed in [31].

Algorithm 2: Accelerated stochastic gradient method

Input: Initial x0 ∈ Rd, γ0 > 0, sequence {ηt}t≥0 ∈ [0,∞), count T ∈ N.
Step t = 0, 1, . . . , T : Set

xt = yt−1 − ηtgt,

yt = xt + βt(xt − xt−1) where βt =
δt(1− δt)ηt+1

ηtδt+1 + ηt+1δ2
t

.

Our main result of analyzing Algorithm 2 is the following theorem. Notice that here the sequence
βt is not related to β in Assumption 1.

Theorem 7.5 (Constant step accelerated method). Suppose that we are in the regime ρ ≤ 1/2

1+
√

32+64
√

3κ
.

Set γ0 = α̂ and ηt = 1
4L for all t ≥ 0. Then the iterates generated by Algorithm 2 satisfy

E [ϕ(xt)− ϕ(x̄)] ≤ 2

(
1−

√
α̂

4L

)t
(ϕ(x0)− ϕ(x̄)) +

9σ2

16
√
Lα̂

.

Theorem 7.5 immediately yields an accelerated rate of convergence in the setting ρ = B
α ≤

1/2

1+
√

32+64
√

3κ
. Indeed, Lemma B.1 trivially implies that combining Algorithm 2 with a minibatch

restart strategy (Algorithm 7) yields a procedure that will find a point x satisfying E[ϕ(x)−minϕ] ≤
ε using

O
(√

κ · log

(
∆

ε

)
+
σ2

αε

)
stochastic gradient samples, where ∆ ≥ ϕ(x0)− ϕ(x̄) is user specified.

The proof of Theorem 7.5 is quite long and technical, relying on the machinery of stochastic
estimate sequences [31]. Therefore, we have placed it in Appendix C. The high level idea of the
argument is as follows. Existing arguments (in the unbiased setting) based on estimate sequences
dt(x) = d∗t + γt

2 ‖x− vt‖
2 rely on lower bounding the error E[d∗t −ϕ(xt)]; see e.g. [31, 37]. The usual

path is through a sequence of clever algebraic manipulations. During these manipulations, there is
a term ‖yt − vt‖2 that appears, which is lower-bounded by zero and ignored. In contrast, we show
that this term balances the incurred bias of the stochastic gradients.

8 Model-based algorithms

This section presents convergence guarantees for a wide class of algorithms of a “proximal point
type”, introduced in the two recent papers [3, 16] in the static setting.

8.1 Model-based algorithms for a static problem

We begin by reviewing model-based algorithms for static problems and refine the available con-
vergence guarantees. Namely, the convergence guarantees developed in the papers [3, 16] require
the second moment of subgradients to be bounded. We will show that when the loss function is
smooth, we may instead assume a bound on the variance.
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Setting the stage, consider the static optimization problem

min
x

F (x) = f(x) + r(x) with f(x) = E
z∼P

`(x, z),

where P is some probability measure, the loss `(x, z) is differentiable in x, and r : Rd → R∪{∞} is a

closed function. In each iteration t, the algorithms we consider draw an i.i.d set of m samples St
i.i.d∼

P and approximate the loss function `(·, zt) by a simpler model `xt(·, St) formed at the basepoint xt.
The next iterate xt+1 is then declared to be the minimizer of the function `xt(·, St)+r+ 1

2ηt
‖·−xt‖2.

The formal procedure is stated in Algorithm 3.

Algorithm 3: Model-based algorithm for static problems

Input: initial x0 and sequence {ηt}Tt=0 ⊂ (0,∞).
Step t = 0, 1, . . . , T :

Sample St
i.i.d∼ P

Set xt+1 = arg min
y

{
`xt(y, St) + r(y) +

1

2ηt
‖y − xt‖2

}

Clearly, convergence guarantees of Algorithm 4 must depend both on the regularity of the
models `x(y, S) individually and on how well the models approximate f . The following assumption
formalizes these two properties. It will be useful to keep track of two parameters α1, α2 ≥ 0, which
measure “strong convexity” type properties, along with a variance bound σ0 > 0.

Assumption 8 (Models for static problems). There exist constants α1, α2, σ0 ≥ 0 such that the

following properties hold for all x, y ∈ Rd and for almost all samples S
i.i.d∼ P:

(a) (Convexity) The model `x(·, S) is convex and the sum `x(·, S) + r is α1-strongly convex.

(b) (Bias/variance) The model `x(·, S) is differentiable at x and satisfies

E
S

[∇`x(x, S)] = ∇f(x) and E
S
‖∇`x(x, S)−∇f(x)‖2 ≤ σ2

0.

(c) (Accuracy) The estimate holds:

E
S

[`x(x, S)− `x(y, S)] ≥ f(x)− f(y) +
α2

2
‖x− y‖2.

The convexity assumption (a) is self-explanatory. The Bias/variance property (b) asserts that
∇`x(x, S) is an unbiased estimator of ∇f(x) and has finite variance σ2

0. The accuracy assumption
(c) simply states that the gap `x(x, S)− `x(y, S) is lower bounded in expectation by the true gap
f(x)− f(y). Note that assumption (c) is trivially implied by the two intuitive conditions:

E
S

[`x(x, S)] = f(x) and E
S

[`x(y, S)] +
α2

2
‖x− y‖2 ≤ f(y),

holding for all x, y ∈ Rd. The first simply says that the model `x(·, S) evaluated at the basepoint
x coincides with f(x) in expectation, while the second asserts that the model `x(·, S) lower bounds
f in expectation.

An important consequence of Assumption 8 is that F is strongly convex with parameter α1+α2.
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Method Model `x(y, z) (α1, α2, σ0)

Prox-point `(y, z) (α+ µ, 0, σ)
Gradient `(x, z) + 〈∇`(x, z), y − x〉 (µ, α, σ)
Clipped-grad max{`(x, z) + 〈∇`(x, z), y − x〉, 0} (µ, 0, σ)

Table 3: Stochastic proximal point, gradient, and clipped gradient methods.

Lemma 8.1. The function F is (α1 + α2)-strongly convex.

Proof. We will show that F satisfies a strong form of a subgradient inequality. To this end, fix

a sample set S
i.i.d∼ P, and a point x ∈ Rd along with a subgradient v ∈ ∂F (x). Notice that the

inclusion v −∇f(x) ∈ ∂r(x) holds. Therefore, the vector v −∇f(x) +∇`x(x, S) is a subgradient
of `x(·, S) + r at x. We compute

F (y)− F (x) ≥ E
S

[`x(y, S) + r(y)− `x(x, S)− r(x)] +
α2

2
‖y − x̄‖2 (8.1)

≥ E
S

[〈v −∇f(x) +∇`x(x, S), y − x〉] +
α1 + α2

2
‖y − x‖2 (8.2)

= 〈v, y − x〉+
α1 + α2

2
‖y − x‖2, (8.3)

where (8.1), (8.2), and (8.3) follow from conditions (c), (a), and (b) of Assumption 8, respectively.
It follows immediately that ∂F is (α1 + α2)-strongly monotone. Therefore [42, Theorem 12.17]
directly implies that F is (α1 + α2)-strongly convex, as claimed.

8.1.1 Examples: proximal point, proximal gradient, and clipped gradient

Let us look at three examples of models satisfying Assumption 8 and the corresponding algorithms;
see the accompanying Figure 5 and Table 3. Specifically, for the three examples, we assume the
following two conditions on the loss and the regularizer:

1. (Variance) There exists σ > 0 satisfying

E
z∼P
‖∇`(x, z)−∇f(x)‖2 ≤ σ2 for all x ∈ Rd.

2. (Strong convexity) There exist α, µ ≥ 0 such that r is µ-strongly convex and for every
z ∈ Z, the loss `(·, z) is α-strongly convex.

Algorithm 3 clearly treats ` and r differently, and therefore α and µ play distinct roles. Notice
that one can always modify the constants α and µ while maintaining the sum α + µ, simply by
adding/subtracting a fixed quadratic λ

2‖ · ‖
2 from ` and r.

Example 8.1 (Stochastic proximal point). The simplest stochastic model of a loss is the loss itself:

`x(y, z) = `(y, z).

Algorithm 3 equipped with these models is the proximal point method. Assumption 8 trivially

holds with parameters (α1, α2, σ0) = (α + µ, 0, σ). More generally, given a sample set S
i.i.d∼ P,

we may use the average model `x(y, S) = 1
|S|
∑

z∈S `(y, z) whose gradient has the smaller variance

σ2
0 = σ2/|S|.
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Example 8.2 (Stochastic proximal gradient). Another class of models is induced by linearizations

`x(y, z) = `(x, z) + 〈∇`(x, z), y − x〉.

Algorithm 4 equipped with these models reduces to the stochastic proximal gradient method.
Assumption 8(a) clearly holds with α1 = µ. Assumption 8(b) holds trivially. Assumption 8(c)
with α2 = α follows from the expression Ez∼D(x) `x(x, z) = fx(x) and strong convexity of fx.

More generally, given a sample set S
i.i.d∼ P, we may declare `x(y, S) = 1

|S|
∑

z∈S `x(y, z) thereby

decreasing the variance σ2
0 = σ2/|S|.

Example 8.3 (Stochastic clipped proximal gradient). An interesting middle ground between prox-
imal point and gradient models was proposed in [3]. Namely, suppose that each loss `(·, z) is lower
bounded by some known constant, which we may without loss of generality assume is zero. This
assumption is completely innocuous in data scientific contexts. Then we may use the clipped linear
models

`x(y, z) = max{`(x, z) + 〈∇`(x, z), y − x〉, 0}.

Algorithm 3 equipped with these models is the proximal clipped stochastic gradient method. A
quick computation shows that Assumption 8 holds with (α1, α2, σ0) = (µ, 0, σ). Given a sample set

S
i.i.d∼ P, we can form the two models,

`x(x, S) =
1

|S|
∑
z∈S

`(x, z) and `x(y, z) = max

{
1

|S|
∑
z

`(x, z) + 〈∇`(x, z), y − x〉, 0
}
.

It is straightforward to verify that both models `x(·, S) are differentiable at x with gradient
∇`x(x, S) = 1

|S|
∑

z∈S ∇`(x, z). Thus the variance of the gradient improves to σ2
0 = σ2/|S|.

8.1.2 Convergence guarantees.

We are now ready to analyze Algorithm 3. The main idea of the convergence proof is to establish a
one-step improvement guarantee on the function F . Henceforth, we let Et[·] denote the expectation
conditioned on xt.

Lemma 8.2 (One step improvement). Suppose that Assumption 8 holds and that ∇f is L-Lipschitz
continuous. Fix a sequence ηt <

1
L for all t ≥ 0. Then the iterates generated by Algorithm 3 satisfy:

ηtEt[F (xt+1)− F (y)] ≤ 1− α2ηt
2

‖xt − y‖2 −
1 + α1ηt

2
Et‖xt+1 − y‖2 +

σ2
0η

2
t

2(1−ηtL) , (8.4)

for all indices t ≥ 0 and all y ∈ Rd.

Proof. Observe that the inequality we wish to prove is conditioned on xt. Therefore to simplify
notation, set x := xt, S := St, and x+ := xt+1. Since x+ is the minimizer of a (η−1

t + α1)-strongly
convex function `x(·, S) + r + 1

2ηt
‖ · −x‖2, we deduce

η−1
t +α1

2 ‖x+ − y‖2 ≤
(
`x(y, S) + r(y) + 1

2ηt
‖y − x‖2

)
−
(
`x(x+, S) + r(x+) + 1

2ηt
‖x+ − x‖2

)
.

(8.5)

We next lower bound `x(x+, S) using convexity: Assumption 8 guarantees

`x(x+, S) ≥ `x(x, S) + 〈∇`x(x, S), x+ − x〉.
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Combining this estimate with (8.5), multiplying through by 2ηt, and taking the expectation yields

(1 + α1ηt)ES‖x+ − y‖2 ≤ ‖x− y‖2 − 2ηtES [`x(x, S)− `x(y, S)]− ES‖x+ − x‖2

− 2ηtES [〈∇`x(x, S), x+ − x〉]− 2ηtES [r(x+)− r(y)]. (8.6)

Assumption 8(c) implies

ES [`x(x, S)− `x(y, S)] ≥ f(x)− f(y) +
α2

2
‖x− y‖2.

Combining this estimate with (8.6) yields

(1 + α1ηt)ES‖x+ − y‖2 ≤ (1− α2ηt)‖x− y‖2 − 2ηtES [f(x) + r(x+)− f(y)− r(y)]

− ES‖x+ − x‖2 − 2ηtES [〈∇`x(x, S), x+ − x〉]. (8.7)

Next, smoothness of f guarantees

f(x) ≥ f(x+)− 〈∇f(x), x+ − x〉 − L

2
‖x+ − x‖2. (8.8)

Taking expectations in (8.8) and combining the estimate with (8.7) yields

(1 + α1ηt)ES‖x+ − y‖2 ≤ (1− α2ηt)‖x− y‖2 − 2ηtES [F (x+)− F (y)]

+ 2ηtES [〈∇f(x)−∇`x(x, S), x+ − x〉]− (1− ηtL)ES‖x+ − x‖2.

Young’s inequality in turn guarantees

2ηt〈∇f(x)−∇`x(x, S), x+ − x〉 ≤ η2
t ‖∇f(x)−∇`x(x, S)‖2

1− ηtL
+ (1− ηtL)‖x+ − x‖2.

Combining the last two inequalities with the finite variance assumption 8(b) yields

(1 + α1ηt)ES‖x+ − y‖2 ≤ (1− α2ηt) ‖x− y‖2 − 2ηtES [F (x+)− F (y)] +
σ2

0η
2
t

1− ηtL
.

Rearranging yields (8.4) as claimed.

Using a constant parameter η > 0 yields the following guarantee.

Theorem 8.3 (Constant step). Suppose that Assumption 8 holds and that ∇f is L-Lipschitz
continuous. Fix a sequence η < min{ 1

2L ,
1
α1
, 1
α2
}. Then for all points y ∈ Rd, the estimate holds

E[F (x̂t)− F (y)] ≤ 2

(
1− (α1 + α2)η

2

)
(F (x0)− F (y)) + σ2

0η,

where we recursively define x̂t =
(

1− η(α1+α2)
1+c2η

)
x̂t−1 + η(α1+α2)

1+c2η
xt.

Proof. The assumption η < 1
2L guarantees

σ2
0η

2

2(1−ηL) ≤ σ
2
0η, and therefore Lemma 8.2 implies

ηEt[F (xt+1)− F (y)] ≤ 1− α2η

2
‖xt − y‖2 −

1 + ηα1

2
Et‖xt+1 − y‖2 + σ2

0η.

Lemma A.3 directly implies

E[F (x̂t)− F (y)] ≤
(

1− (α1 + α2)η

1 + α1η

)(
F (x0)− F (y) +

α1 + α2

2
‖x0 − y‖2

)
+ σ2

0η.

Taking into account α1η ≤ 1 and Lemma 8.1 completes the proof.
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Combining Algorithm 3 with the geometric decay schedule (Algorithm 8) yields an algorithm
with the following efficiency guarantee, which is immediate from Lemma B.2.

Corollary 8.4 (Efficiency). Suppose that Assumption 8 holds and that ∇f is L-Lipschitz continu-
ous. Fix an estimate ∆ ≥ F (x0)−minF . Then Algorithm 3 may be augmented with the geometric
decay schedule (Algorithm 8) under the identification

c =
α1 + α2

2
, C = 2, h(x) = F (x)−minF, δ0 = min

{
1

2L
,

1

α1
,

1

α2

}
, D = σ2

0.

The resulting procedure will generate a point x satisfying E[F (x)−minF ] ≤ ε after

O
(

L

α1 + α2
log

(
∆

ε

)
+

σ2
0

(α1 + α2)ε

)
iterations.

8.2 Model-based algorithms under state-dependent distributions

Model-based algorithms easily adapt to the setting with state-dependent distributions by allowing
the sampling distribution to vary along the iterations. The formal procedure is stated in Algo-
rithm 4.

Algorithm 4: Model-based algorithm under state-dependent sampling

Input: initial x0 and sequence {ηt}Tt=0 ⊂ (0,∞).
Step t = 0, 1, . . . , T :

Sample St
i.i.d∼ D(xt)

Set xt+1 = arg min
y

{
`xt(y, St) + r(y) +

1

2ηt
‖y − xt‖2

}

Naturally, we will impose Assumption 8 for all static problems (1.1) with P = D(x).

Assumption 9 (Stochastic models under state feedback). Suppose that Assumption 8 holds for
the static problem St(D(x)) for all x ∈ Rd.

For the rest of the section, we suppose that Assumptions 2, 4(b), and 9 hold. We are now
ready to analyze Algorithm 4. The main idea of the convergence proof is to combine the one-step
improvement guarantee (8.4) for the intermediate function ϕxt with the function gap inequality (3.2)
to obtain a one-step improvement on ϕ.

Corollary 8.5 (Key recursion). Suppose the inequality ηt <
1
L holds for all t ≥ 0. Then the iterates

generated by Algorithm 4 satisfy the estimate:

ηtEt[ϕ(xt+1)− ϕ(x̄)] ≤ 1−(α2−γβ)ηt
2 ‖xt − x̄‖2 − 1+(α1−γβ)ηt

2 ‖xt+1 − x̄‖2 +
σ2

0η
2
t

2(1−ηtL) . (8.9)

Proof. The function gap inequality (3.2) directly yields

ϕxt(xt+1)− ϕxt(x̄) ≥ ϕx̄(xt+1)− ϕx̄(x̄)− γβ‖xt+1 − x̄‖ · ‖xt − x̄‖

≥ ϕx̄(xt+1)− ϕx̄(x̄)− γβ

2
‖xt+1 − x̄‖2 −

γβ

2
‖xt − x̄‖2,

where the last inequality follows from Young’s inequality. Using this estimate to lower bound the
left side of (8.4) and rearranging completes the proof.
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The following theorem summarizes the convergence guarantees of the method with a constant
parameter η > 0.

Theorem 8.6 (Convergence guarantees). Let xt be the iterates generated by Algorithm 4 with a
fixed parameter η > 0. Then the following are true.

1. Suppose, we are in the regime γβ
α1+α2

< 1 and set α̂ := α1 +α2−γβ. Then with the parameter

η ≤ min{ 1
2L ,

1
α1
, 1
α2
}, the estimate holds:

E‖xt − x̄‖2 ≤
(

1− α̂η

2

)t
‖x0 − x̄‖2 +

σ2
0η

2α̂
. (8.10)

2. Suppose we are in the regime γβ
α1+α2

< 1
2 and set α̂ := α1 +α2−2γβ. Then with the parameter

η ≤ min{ 1
2L ,

1
(α1−γβ)+ ,

1
(α2−γβ)+ }, the estimate holds:

E[ϕ (x̂t)− ϕ(x̄)] ≤ 2

(
1− α̂η

2

)t
(ϕ(x0)− ϕ(x̄)) + σ2

0η,

where we recursively define x̂t =
(

1− α̂η
1+(α1−γβ)η)

)
x̂t−1 + α̂η

1+(α1−γβ)η)xt.

Proof. Notice that the assumption η ≤ 1
2L implies

σ2
0η

2

2(1−ηL) ≤ σ2
0η

2. Combining this estimate with
Corollary 8.5 yields:

ηE[ϕ(xt+1)− ϕ(x̄)] ≤ 1−(α2−γβ)η
2 E‖xt − x̄‖2 − 1+(α1−γβ)η

2 E‖xt+1 − x̄‖2 + σ2
0η

2. (8.11)

Proof of Claim 1: Lower-bounding the left-side using Lemma 8.1 and rearranging yields

1 + (2α1 + α2 − γβ)η

2
E‖xt+1 − x̄‖2 ≤

1− (α2 − γβ)η

2
E‖xt − x̄‖2 + σ2

0η
2. (8.12)

The assumption α1 + α2 − γβ > 0 ensures that the left side is positive, and therefore

E‖xt+1 − x̄‖2 ≤
(

1− 2(α1 + α2 − γβ)η

1 + (2α1 + α2 − γβ)η

)
E‖xt − x̄‖2 +

σ2
0η

2

1 + (2α1 + α2 − γβ)η
.

The assumption η ≤ 1
α2

ensures that the coefficient multiplying E‖xt − x̄‖2 lies in (0, 1). Iterating
the recursion and taking into account (α̂+ α1)η ≤ 3 directly yields (8.10).

Proof of Claim 2: In light of the expression (8.11), we aim to apply Corollary A.3 with
h(x) := ϕ(x) − ϕ(x̄), Dt := 1

2E‖xt − x̄‖
2, c1 := α2 − γβ, and c2 := α1 − γβ. The assumption

η ≤ min{ 1
(α1−γβ)+ ,

1
(α2−γβ)+ } directly implies 1 − c1η > 0 and 1 + c2η > 0. An application of

Corollary A.3 yields the estimate:

E[ϕ (x̂t)− ϕ(x̄)] ≤
(

1− α̂η

1 + (α1 − γβ)η

)t(
ϕ(x0)− ϕ(x̄) +

α̂

2
‖x0 − x̄‖2

)
+ σ2

0η.

Lemma 8.1 in turn implies α̂
2 ‖x0 − x̄‖2 ≤ ϕ(x0) + ϕ(x̄). Taking into account (α1 − γβ)η ≤ 1

completes the proof.

The following corollary obtains efficiency guarantees by combining Algorithm 4 with the geo-
metric decay schedule (Algorithm 8).
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Corollary 8.7 (Efficiency of Algorithm 4 with geometrically decaying schedule).
Suppose that Assumptions 2, 4(b), and 9 hold. Then the following are true.

1. (Distance) Suppose we are in the regime γβ
α1+α2

< 1 and that we have available an estimate

∆ ≥ ‖x0 − x̄‖2. Define the augmented strong convexity parameter α̂ = α1 + α2 − γβ. Then
Algorithm 4 may be augmented with the geometric decay schedule (Algorithm 8) under the
identification

c =
α̂

2
, C = 1, h(x) = ‖x− x̄‖2, δ0 = min

{
1

2L ,
1
α1
, 1
α2

}
, D =

σ2
0

2α̂
.

The resulting procedure will generate a point x satisfying E[‖x− x̄‖2] ≤ ε using

O
((

L+ α1 + α2

α̂

)
log

(
∆

ε

)
+

σ2
0

α̂2ε

)
samples.

2. (Function value) Suppose we are in the regime γβ
α1+α2

< 1
2 and that we have available an

estimate ∆ ≥ ϕ(x0)−ϕ(x̄). Define the augmented strong convexity parameter α̂ = α1 +α2−
2γβ. Then Algorithm 4 may be augmented with the geometric decay schedule (Algorithm 8)
under the identification

c =
α̂

2
, C = 2, h(x) = ϕ(x)− ϕ(x̄), δ0 = min

{
1

2L ,
1

(α1−γβ)+ ,
1

(α2−γβ)+

}
, D = σ2

0.

The resulting procedure will generate a point x satisfying ϕ(x)− ϕ(x̄) ≤ ε using

O
(
L+ α1 + α2

α̂
log

(
∆

ε

)
+
σ2

0

α̂ε

)
samples.

Proof. This is immediate from Theorem 8.6 and Lemma B.2.

Efficiency guarantees of the stochastic proximal point, proximal gradient, and clipped gradient
methods under Assumptions 1, 2, 3(c), 4(b) follow directly from Corollary 8.7 and the values of α1

and α2 in Table 3.

9 Inexact repeated minimization

All stochastic algorithms we have discussed so far in each iteration t apply a single step of a standard
algorithm on the static problem St(D(xt)). An alternative strategy is to apply an algorithm to the
static problem St(D(xt)) for a moderate number of iterations and switch the distribution at the end
of the run. Algorithms based on this principle can be interpreted as inexact repeated minimization.
Such algorithms can be superior in the typical settings where changing the distribution governing
the static problem may be much costlier than drawing a sample. We will informally call the process
of changing the distribution from D(x) to D(y) as deployment. In this section, we will show that it
is possible to maintain the sample complexity derived in previous sections, while using a number
of deployments that is only logarithmic in the problem parameters.
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9.1 Model-based algorithms

We begin by analyzing Algorithm 5, which effectively performs repeated minimization with each
subproblem solved approximately by a model-based algorithm (Algorithm 4). We describe two
versions of the procedure. The first version uses the last iterate of each run to warmstart the next
run, while the second version instead uses the running average of the iterates. Throughout the
section, we suppose that Assumptions 2, 4(b), and 9 hold.

Algorithm 5: Stagewise based Minimization

Input: initial u0, sequences {ηj}Jj=0 ⊂ (0,∞) and {Jt}Tt=0 ⊂ N.

for t = 0, 1, . . . , T do
Set x0 = ut
for j = 1, . . . , Jt do

Sample Sj
i.i.d∼ D(x0)

Set xj = arg min
x

{
`x0(x, Sj) + r(x) +

1

2ηj
‖x− xj−1‖2

}
end
Set

ut+1 =


xJt , if Version I

Γ̂Jtx0 +

Jt∑
j=1

Γ̂Jt δ̂j

Γ̂j
xj , if Version II

where we define δ̂j =
(α1+α2−γβ)ηj
1+(α1−γβ)ηj

and Γ̂j =

j∏
i=1

(1− δ̂i).

end

The following theorem shows a one-step improvement guarantee for Algorithm 5, which explic-
itly balances the impact of the number of inner iterations Jt and the step-size parameters ηj on the
overall performance.

Theorem 9.1 (One epoch improvement). Suppose we are in the regime γβ
α1+α2

< 1.

1. (Version I) Choose a sequence ηj ≤ 1
2L . Then the iterates ut generated by Version I of

Algorithm 5 satisfy

E‖ut+1 − x̄‖2 ≤
(

ΓJt + γβ
2α1+2α2−γβ

)
E‖ut − x̄‖2 +

2σ2
0

2α1+2α2−γβ

Jt∑
j=1

ηjδjΓJt
Γj

, (9.1)

where we set δj =
(2α1+2α2−γβ)ηj

1+ηj(2α1+α2−γβ) and Γj =
∏j
i=1(1− δi).

2. (Version II) Choose a sequence ηj ≤ min{ 1
2L ,

1
(γβ−α1)+ ,

1
α2
}. Then the iterates ut generated

by Version II of Algorithm 5 satisfy

E[ϕ(ut+1)− ϕ(x̄)] ≤
(

2Γ̂Jt + γβ
α1+α2

)
E[ϕ(ut)− ϕ(x̄)] + σ2

0

Jt∑
j=1

ηj δ̂jΓ̂Jt

Γ̂j
. (9.2)
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Proof. Fix an index t ∈ {0, . . . , T}. We will consider the outcome of the inner loop j = 1, . . . , Jt.
To simplify notation therefore let us drop the subscript t from ut. Setting y = x̄ in Lemma 8.2
yields the guarantee:

ηjE[ϕu(xj)− ϕu(x̄)] ≤ 1− α2ηj
2

E‖xj−1 − x̄‖2 −
1− α1ηj

2
E‖xj − x̄‖2 + σ2

0η
2
j , (9.3)

for all j = 1, . . . , Jt. The function gap inequality (3.2) in turn implies

ϕu(xj)− ϕu(x̄) ≥ ϕ(xj)− ϕ(x̄)− γβ‖xj − x̄‖ · ‖y − x̄‖

≥ ϕ(xj)− ϕ(x̄)− γβ

2
‖xj − x̄‖2 −

γβ

2
‖u− x̄‖2,

where the last estimate follows from Young’s inequality. Combining with (9.3) and rearranging, we
conclude

ηjE[ϕ(xj)− ϕ(x̄)] ≤ 1−α2ηj
2 E‖xj−1 − x̄‖2 − 1+(α1−γβ)ηj

2 E‖xj − x̄‖2 +
2σ2

0η
2
j+γβηjE‖u−x̄‖2

2 . (9.4)

Suppose now that we are running version I of Algorithm 5. Lower-bounding the left-side of
(9.4) using strong convexity, ϕ(xj)− ϕ(x̄) ≥ α1+α2

2 ‖xj − x̄‖2 (Lemma 8.1), and rearranging yields

E‖xj − x̄‖2 ≤
(

1− α2ηj
1 + ηj(2α1 + α2 − γβ)

)
E‖xj−1 − x̄‖2 +

2σ2
0η

2
j + ηjγβE‖u− x̄‖2

1 + ηj(2α1 + α2 − γβ)
.

The coefficient of E‖xj−1 − x̄‖2 is precisely 1− δj . Unrolling the recursion, we conclude

E‖xJt − x̄‖2 ≤ ΓJtE‖x0 − x̄‖2 +

Jt∑
j=1

2σ2
0η

2
j + ηjγβE‖u− x̄‖2

1 + ηj(2α1 + α2 − γβ)
· ΓJt

Γj
. (9.5)

Next to simplify the sum, algebraic manipulations yield

Jt∑
j=1

ηj
1 + ηj(2α1 + α2 − γβ)

· ΓJt
Γj

=
1

2α1 + 2α2 − γβ

Jt∑
j=1

δjΓJt
Γj

=
1− ΓJt

2α1 + 2α2 − γβ
, (9.6)

where the last equality uses Lemma A.1. Note also the expression

Jt∑
j=1

η2
j

1 + ηj(2α1 + α2 − γβ)
· ΓJt

Γj
=

1

2α1 + 2α2 − γβ

Jt∑
j=1

ηjδjΓJt
Γj

. (9.7)

Combining (9.6), (9.7), (9.5), and the equality x0 = u completes the proof of (9.1).
Suppose now that we are running version II of Algorithm 5. Then applying Lemma A.2 to the

recursion (9.4) directly implies

E[ϕ(ut+1)−ϕ(x̄)] ≤ Γ̂Jt

E[ϕ(x0)− ϕ(x̄)] + α1+α2−γβ
2 ‖x0 − x̄‖2 +

Jt∑
j=1

(α1+α2−γβ)(2σ2
0η

2
j+γβηj‖u−x̄‖2)

2Γ̂j(1+(α1−γβ)ηj)
]

 .

To simplify the right side, observe first α1+α2−γβ
2 ‖x0 − x̄‖2 ≤ ϕ(x0)−ϕ(x̄) (Lemma 8.1). Next the

same argument that justified (9.6) and (9.7) implies the expressions:

Jt∑
j=1

(α1 − α2 − γβ)ηj
1 + (α1 − γβ)ηj

· Γ̂Jt

Γ̂j
= 1− Γ̂Jt and

Jt∑
j=1

(α1 + α2 − γβ)η2
j

1 + (α1 − γβ)ηj
· Γ̂Jt

Γ̂j
=

Jt∑
j=1

ηj δ̂jΓ̂Jt

Γ̂j
.

The claimed estimate (9.2) follows immediately.
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Looking at the estimate (9.2), it is natural to choose Jt such that the estimate, 2Γ̂Jt + γβ
α1+α2

≤
1
2(1 + γβ

α1+α2
), holds. The following result summarizes the guarantees of such a procedure when the

stepsizes ηj are constant.

Corollary 9.2. Suppose we are in the regime γβ
α1+α2

< 1.

1. (Version I) Choose a constant parameter η ≤ 1
2L and set

Jt =

⌈(
1 +

1

(2α1 + 2α2 − γβ)η

)
log

(
2α1 + 2α2 − γβ
α1 + α2 − γβ

)⌉
∀t ≥ 0.

Then the iterates ut generated by Version I of Algorithm 5 satisfy

E‖ut − x̄‖2 ≤
(

1

2
(1 + γβ

2α1+2α2−γβ )

)t
E‖u0 − x̄‖2 +

2σ2
0η

α1+α2−γβ . (9.8)

2. (Version II) Choose η ≤ min{ 1
2L ,

1
(γβ−α1)+ ,

1
α2
} and set

Jt =

⌈(
1 +

1

(α1 + α2 − γβ)η

)
log

(
2(α1 + α2)

α1 + α2 − γβ

)⌉
∀t ≥ 0.

Then the iterates ut generated by Version II of Algorithm 5 satisfy

E[ϕ(ut)− ϕ(x̄)] ≤
(

1

2
(1 + γβ

α1+α2
)

)t
E[ϕ(u0)− ϕ(x̄)] +

2σ2
0η

1− γβ
α1+α2

. (9.9)

Proof. With the constant parameter η, the estimate (9.1) becomes

E‖ut − x̄‖2 ≤
((

1− (2α1+2α2−γβ)η
1+η(2α1+α2−γβ)

)jt−1

+ γβ
2α1+2α2−γβ

)
E‖ut−1 − x̄‖2 +

2σ2
0η

2α1+2α2−γβ ,

where we used the equality
∑jt−1

j=1

δjΓjt−1

Γj
= 1− Γjt−1 (Lemma A.1). The definition of jt−1 ensures

that the coefficient of E‖ut−1 − x̄‖2 is at most 1
2(1 + γβ

2α1+2α2−γβ ) and therefore

E‖ut − x̄‖2 ≤
1

2
(1 + γβ

2α1+2α2−γβ )E‖ut−1 − x̄‖2 +
2σ2

0η
2α1+2α2−γβ ,

Unrolling the recursion in t completes the proof of (9.8). Similarly, with the constant parameter η,
the estimate (9.2) becomes

E[ϕ(ut)− ϕ(x̄)] ≤
(

2
(

1− η(α1+α2−γβ)
1+(α1−γβ)η

)jt−1

+ γβ
α1+α2

)
E[ϕ(ut−1)− ϕ(x̄)] + σ2

0η.

The definition of jt−1 ensures that the coefficient of E[ϕ(ut−1) − ϕ(x̄)] is at most 1
2(1 + γβ

α1+α2
).

Iterating the recursion in t completes the proof of (9.9).

Consequently, we may equip Algorithm 5 with a geometrically decaying stepsize. The efficiency
estimates of the resulting procedure are recorded in the following corollary.

Corollary 9.3. Suppose that Assumptions 2, 4(b), and 9 hold, and that we are in the regime
γβ

α1+α2
< 1.
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1. (Version I) Suppose we have available an estimate ∆ ≥ ‖x0 − x̄‖2. Define the augmented
strong convexity parameter α̂ = α1+α2−γβ. Then Algorithm 5 (Version I) may be augmented
with the geometric decay schedule (Algorithm 8) with parameters:

ψ(δ) ≡ 1

2

(
1− γβ

2α1+2α2−γβ

)
, C = 1, h = ‖ · −x̄‖2, D =

2σ2
0

α1 + α2 − γβ
, δ0 =

1

2L
.

The resulting procedure will generate a point x satisfying E[‖x− x̄‖2] ≤ ε using

O
(

(1− γβ
2α1+2α2−γβ )−1 ·

(
log

(
∆

ε

)
+ log

(
σ2

0

α̂Lε

)))
(9.10)

deployments and

O
(

(1− γβ
2α1+2α2−γβ )−1 log

(
(1− γβ

2α1+2α2−γβ )−1
)
·
(
L

α̂
log

(
∆

ε

)
+

σ2
0

α̂2ε

))
(9.11)

samples.

2. (Version II) Suppose we have available an estimate ∆ ≥ ϕ(x0) − minϕ. Define the aug-
mented strong convexity parameter α̂ = α1 +α2− γβ. Then Algorithm 5 (Version II) may be
augmented with the geometric decay schedule (Algorithm 8) with parameters:

ψ(δ) ≡ 1

2

(
1− γβ

α1+α2

)
, C = 1, h(·) = ϕ(·)−ϕ(x̄), D =

2σ2
0

1− γβ
α1+α2

, δ0 = min{ 1
2L ,

1
(γβ−α1)+ ,

1
α2
}.

The resulting procedure will generate a point x satisfying E[ϕ(x)−minϕ] ≤ ε using

O

(
(1− γβ

α1+α2
)−1 ·

(
log

(
∆

ε

)
+ log

(
σ2

0

1− γβ
α1+α2

· 1

Lε

)))
deployments and

O

((
(1− γβ

α1+α2
)−1
)
· log((1− γβ

α1+α2
)−1) ·

(
1

α̂δ0
log

(
∆

ε

)
+

σ2
0

(1− γβ
α1+α2

)α̂ε

))
samples.

Proof. We prove the efficiency of Version I of Algorithm 5; the proof for version II is completely
analogoues. The procedure invokes the algorithm in k = 0, 1, . . . ,K stages, where K = d1 +
log2(Dη0

ε )e. Applying Lemma B.2, the number of deployments coincides with the sum

K∑
k=0

Tk =

⌈
1

ψ(δ0)
· log

(
2C∆

ε

)⌉
+

K∑
k=1

⌈
log(4C)

ψ(2−kδ0)

⌉
.

Simplifying yields (9.10). The total number of samples used in stage k is simply

Tk ·
⌈(

1 +
1

(2α1 + 2α2 − γβ)ηk

)
log

(
2α1 + 2α2 − γβ
α1 + α2 − γβ

)⌉
(9.12)

where T0 =
⌈

1
ψ(δ0) · log

(
2C∆
ε

)⌉
, Tk =

⌈
1

ψ(δk) · log(4C)
⌉

for k ≥ 1, and ηk = 2−kη0. Observe∑K
k=1

1
ηk

=
∑K

k=1 2k+1L ≤ 2K+2L ≤ 16Dη0

ε · L =
16σ2

0
α̂ε . Summing the expressions (9.12) across

k = 0, 1, . . . ,K yields (9.11).
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9.2 Accelerated method

We next explore applying an accelerated stochastic gradient method within inexact repeated min-
imization. Throughout the section, we suppose that Assumptions 1, 2, 3(b), 4(b) hold. The
accelerated method is summarized as Algorithm 6.

Algorithm 6: Stagewise Stochastic Accelerated Gradient

Input: initial u0, integers J, T ∈ N.
for t = 0, 1, . . . , T do

Set x0 = ut
for j = 1, . . . , J do

Sample zt ∼ D(ut)

xj = proxr/L (yj−1 − η∇`(yj−1, zt))

yj = xj +
1−

√
α/L

1 +
√
α/L

(xt − xt−1)

end
Set ut+1 = xJ

end

The idea of the argument is as follows. The convergence guarantees for the static stochastic
accelerated gradient method [32, Corollary 13] directly imply

Et[ϕx(xJ)− ϕx(y)] ≤
(

1−
√
α

L

)J
·
(
ϕx(x0)− ϕx(y) +

α

2
‖xJ − y‖2

)
+

σ2

√
αL

,

for all points y, where Et denotes the conditional expectation on ut. The following general lemma
shows how to translate efficiency estimates of this type for ϕx to a similar estimate for ϕ.

Theorem 9.4 (Reduction). Suppose we are in the parameter regime ρ < 1
2 . Fix a point x and

counter j ∈ N and suppose that an algorithm applied to the static problem St(D(x)) generates a
random point xj satisfying

E[ϕx(xj)− ϕx(y)] ≤ C(1− q)j
(
ϕx(x)− ϕx(y) +

α

2
‖xj − y‖2

)
+B ∀y ∈ Rd, (9.13)

where B,C ≥ 0 and q ∈ (0, 1) are some constants. Then the estimate holds:

E[ϕ(xj)− ϕ(x̄)] ≤
γβ
α + 2C(1− q)j

1− γβ
α − C(1− q))j

· (ϕ(x)− ϕ(x̄)) +
B

1− γβ
α − C(1− q))j

Proof. Appealing to the gap deviation inequality (3.2), we compute

ϕ(xj)− ϕ(x̄) ≤ ϕx(xj)− ϕx(x̄) + γβ‖xj − x̄‖ · ‖x− x̄‖

≤ ϕx(xj)− ϕx(x̄) +
γβ

2
‖xj − x̄‖2 +

γβ

2
‖x− x̄‖2 (9.14)

≤ γβ

α
(ϕ(x)− ϕ(x̄)) + ϕx(xj)− ϕx(x̄) +

γβ

2
‖xj − x̄‖2, (9.15)
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where (9.14) follows from Young’s inequality and (9.15) follows from strong convexity of ϕ. Next,
taking into account (9.13) with y = x̄, we conclude

E[ϕ(xj)− ϕ(x̄)] ≤ γβ

α
(ϕ(x)− ϕ(x̄)) + C(1− q)j

(
ϕx(x)− ϕx(x̄) +

α

2
‖xj − x̄‖2

)
+B +

γβ

2
E‖xj − x̄‖2.

The gap deviation inequality (3.2) guarantees

[ϕx(x)− ϕx(x̄)]− [ϕ(x)− ϕ(x̄)] ≤ γβ‖x− x̄‖2 ≤ 2γβ

α
(ϕ(x)− ϕ(x̄)),

while strong convexity of ϕ implies 1
2‖xj − x̄‖

2 ≤ 1
α(ϕ(xj)− ϕ(x̄)). We therefore deduce

E[ϕ(xj)− ϕ(x̄)] ≤
γβ
α + C(1− q)j

(
1 + 2γβ

α

)
1− γβ

α − C(1− q))j
· (ϕ(x)− ϕ(x̄)) +

B

1− γβ
α − C(1− q))j

.

Invoking the upper bound 2γβ
α ≤ 1 completes the proof.

Combining Algorithm 6 with the minibatch restart strategy (Algorithm 7) yields an overall
scheme with the following efficiency estimates.

Theorem 9.5 (Accelerated Stochastic Gradient). Suppose that Assumptions 1, 2, 3(b), 4(b) hold

and that we are in the regime ρ < 1
2 . Set the number of inner iterations J =

√
L
α log

(
4

1
2
−ρ

)
. Then

the iterates ut generated by Algorithm 6 satisfy

E[ϕ(ut)− ϕ(u0)] ≤
(

1

2(1− ρ)

)t
· E[ϕ(u0)− ϕ(x̄)] +

32σ2

5(1− ρ
1−ρ)
√
αL

. (9.16)

Consequently, if we have available an estimate ∆ ≥ ‖x0 − x̄‖2, then Algorithm 6 may be combined
with the minibatch restart strategy (Algorithm 7) by setting

h(·) = ϕ(·)− ϕ(x̄), τ = 1− 1

2(1− ρ)
, C = 1, B =

32σ2

5(1− ρ
1−ρ)
√
αL

.

The resulting procedure will generate a point x satisfying E[ϕ(x)−minϕ] ≤ ε using

O

((
1− 1

2(1−ρ)

)−1
(

log

(
∆

ε

)
+ log

(
σ2

(1− ρ
1−ρ)ε

√
αL

)))
(9.17)

deployments and

O

((
1− 1

2(1−ρ)

)−1
·

(√
L

α
log

(
∆

ε

)
+

σ2

(1− ρ
1−ρ)αε

))
(9.18)

samples.

Proof. Fix an index t = 0, 1, . . . , T and set x = ut. The convergence guarantees for the static
stochastic accelerated gradient method [32, Corollary 13] directly imply

Et[ϕx(xJ)− ϕx(y)] ≤
(

1−
√
α

L

)J
·
(
ϕx(x0)− ϕx(y) +

α

2
‖xJ − y‖2

)
+

σ2

√
αL

,
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for all points y, where Et denotes the conditional expectation on ut. Theorem 9.4 along with the
tower rule for expectation therefore implies

Et[ϕ(ut+1)− ϕ(x̄)] ≤
γβ
α + 2(1−

√
α/L)J

1− γβ
α − (1−

√
α/L))J

· (ϕ(ut)− ϕ(x̄)) +
σ2/
√
αL

1− γβ
α − (1−

√
α/L))J

.

The choice J guarantees that the coefficient in front of ϕ(ut) − ϕ(x̄) is at most 1
2(1−ρ) and the

inequality 1− ρ− (1− τ)J ≥ 3
4 −

7
8ρ ≥

5
16 holds. We therefore conclude

Et[ϕ(ut+1)− ϕ(x̄)] ≤ 1

2(1− ρ)
· (ϕ(ut)− ϕ(x̄)) +

16σ2

5
√
αL

.

Using the tower rule for expectations and iterating the recursion directly yields (9.16).
Following the notation of Lemma B.1, the number of deployments is given by

K∑
k=0

Tk =

⌈√
1

τ
log

(
2∆

ε

)⌉
+

⌈
1 + log2

(
32σ2

5(1− ρ
1−ρ)ε

√
αL

)⌉
·

⌈√
1

τ
log(4)

⌉
.

The estimate (9.17) follows immediately. The total number of samples used is

J ·
K∑
k=0

mkTk = O

(
1

τ
√
κ

log

(
4

1
2 − ρ

)(
log

(
∆

ε

)
+
B

ε

))
.

The claimed estimate (9.18) follows immediately.

Thus, in the nearly optimal parameter regime ρ < 1
2 , (Algorithm 6) enjoys the same sample

efficiency as its online counterpart, while requiring a number of deployments that is only logarithmic
in the problem parameters.

Acknowledgements: We thank Celestine Mendler-Dünner, Moritz Hardt, Juan C. Perdomo,
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A Averaging lemma

In this section, we investigate recursions of the form

δt · E[h(xt)] ≤ (1− c1δt)Dt−1 − (1 + c2δt)Dt + ωt ∀t ≥ 1, (A.1)

where h(·) is a convex function, c1, c2 ∈ R are some constants, and the sequences {δt}t≥1, {Dt}t≥0,
{ωt}t≥1 are nonnegative. The expectation is taken over randomness in the points xt, which are
usually the iterates produced by a stochastic algorithm. In typical circumstances δt > 0 is a user-
specified sequence (e.g. stepsize). Our goal is to determine the rate at which the value h(x̂t) tends
to zero, where x̂t is a running average of the iterates. Most of the material in this section follows
the discussion in [31, Section A.2, A.3] and [22].

We begin with the following elementary lemma, which can be proved by induction.

Lemma A.1. Consider a sequence of weights {δt}t≥0 in (0, 1). Then the partial products Γt =∏t
i=1(1− δi) satisfy the equation

∑t
i=1

δi
Γi

+ 1 = 1
Γt
.

The convergence guarantees will be stated in terms of the augmented weights

δ̂t :=
δt(c1 + c2)

1 + c2δt
and Γ̂t :=

t∏
i=1

(1− δ̂i),

and average iterates that are recursively defined as

x̂0 := x0 and x̂t := (1− δ̂t)x̂t−1 + δ̂txt ∀t ≥ 1.

The following lemma establishes the sought upper bound on the values h(x̂t). This result follows
quickly by reducing to the special case c1 = 1, c2 = 0, for which the lemma was proved in [31,
Lemma 12].

Lemma A.2 (Averaging). Consider a convex function h : Rd → R∪{∞} and let {xt}t≥0 ⊂ Rd be a
sequence of random vectors in dom h. Suppose that there are constants c1, c2 ∈ R and nonnegative
sequences {δt}t≥1, {Dt}t≥0, and {ωt}t≥1 satisfying (A.1). Suppose moreover the relations c1 + c2 >
0, 1− c1δt > 0, and 1 + c2δt > 0 hold for all t ≥ 1.Then the estimate holds:

E[h (x̂t)]

c1 + c2
+Dt ≤ Γ̂t

(
h(x)

c1 + c2
+D0 +

t∑
i=1

ωi

Γ̂i(1 + c2δi)

)
. (A.2)

Proof. The special case of this theorem in the setting c1 = 1 and c2 = 0 was proved in [31, Lemma
12]. We will reduce the general case to this setting. To this end, dividing the inequality (A.1)
through by 1 + c2δt yields

δ̂t · E[ĥ(xt)] ≤
(

1− δ̂t
)
Dt−1 −Dt + ω̂t,

where we set ĥ(x) := h(x)
c1+c2

and ω̂t := ωt
1+c2δt

. Noting the inclusion δ̂t ∈ (0, 1), an application of [31,
Lemma 12] completes the proof.
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δ̂t δ̂ 1
t+1

2
t+2 min{ 1

t+1 , δ̂} min{ 2
t+2 , δ̂}

Γ̂t (1− δ̂)t 1
t+1

2
(t+1)(t+2)

{
(1− δ̂)t if t < t0
Γ̂t0−1t0
t+1 if t ≥ t0

(1− δ̂)t if t < t′0
Γ̂t′0−1t

′
0(t′0+1)

(t+1)(t+2) if t ≥ t′0

Table 4: The table describes the values of Γ̂t =
∏t
i=1(1 − δ̂i) under various common choices of δ̂t.

Here, we assume δ̂ ∈ (0, 1) and set t0 =
⌈

1
δ̂
− 1
⌉
, t′0 =

⌈
2
δ̂
− 2
⌉
.

Observe that the efficiency estimate (A.2) is guided by the augmented weights δ̂i. Therefore,
when applying Lemma A.2, it is most convenient to specify δ̂i rather than δi. For any desired

value δ̂ ∈ (0, 1), we may then simply set δ = δ̂
c1+c2−c2δ̂

. Typical choices of the sequence δ̂t and the

corresponding products Γ̂t are summarized in Table 4.
It is now straightforward to evaluate the right side of (A.2) under the different choices of δ̂t,

as specified in Table 4. For simplicity, we record the resulting estimate only in the case that δ̂t is
constant across the iterations.

Corollary A.3 (Constant parameter). Assume the setting of Lemma A.2, and suppose that δt = δ
and ωi = ω are constant. Then the estimate holds:

E[h (x̂t)] + (c1 + c2)Dt ≤
(

1− c1δ

1 + c2δ

)t
(h(x) + (c1 + c2)D0) +

ω

δ
. (A.3)

Proof. The result follows directly from Lemma A.2 and algebraic manipulations. Namely, we
compute

t∑
i=1

Γ̂tω

Γ̂i(1 + c2δ)
=

ω

δ(c1 + c2)

t∑
i=1

Γ̂tδ(c1 + c2)

Γ̂i(1 + c2δ)
=

ω

δ(c1 + c2)

t∑
i=1

Γ̂tδ̂

Γ̂i
=

ω

δ(c1 + c2)
· (1− Γ̂t),

where the last equality follows from Lemma A.1. An application of Lemma A.2 completes the
proof.

B Stagewise scheme for improved efficiency

This section describes two restart schemes for improving the efficiency of constant-step stochas-
tic algorithms. We follow the discussion in [32, Appendix B.1], though closely related ideas can
be found for example in [4, 23]. There are two complementary approaches. The first is based
on restarting the constant step algorithm with exponentially increasing minibatches in order to
decrease the variance of gradient estimators. The second approach restarts the algorithm with
geometrically decreasing step-sizes. We discuss these two strategies in turn.

B.1 Minibatch restart

Suppose that we have available a stochastic algorithm A(y,m, T ) that generates a point yT satis-
fying

E[h(yT )] ≤ C(1− τ)Th(y0) +
B

m
, (B.1)
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where h is a nonnegative function and C,B > 0 and τ ∈ (0, 1) are some constants. In concrete
circumstances, h(y) may denote the function gap ϕ(y)−minϕ or the square distance to the solution
‖y − x̄‖2; the point y0 specifies the initialization and T is the number of iterations; B > 0 is
proportional to the variance σ2 of stochastic gradients used by the algorithm, which can be reduced
by a factor of m ∈ N by using a minibatch of size m. Thus the overall sample complexity of the
execution is proportional to m · T . For example, the stochastic gradient method on a smooth
strongly convex function ϕ satisfies (B.1) with h(y) = ϕ(y) − minϕ, C = 1, B = σ2/L, and
τ = α/L. If the stochastic gradients are used in minibatches of size m, the variance σ2 shrinks by
a factor of m.

The minibatch restart procedure, formally described in Algorithm 7, runs in stages by repeatedly
calling A(yk,mk, Tk). Specifically, in stage k, the method sets mk = 2k and finds a point y satisfying
E[h(yT )] ≤ 2 · Bmk , while using the output from the previous stage as a warmstart.

Algorithm 7: Minibatch restart

Input: y0 ∈ Rd, B,C > 0, τ ∈ (0, 1), estimate ∆ ≥ h(y0), accuracy ε > 0, algorithm
A(y,m, T ) satisfying (B.1).

Initialize: Set y = A(y0,m0, T0) with m0 = 1 and T0 = τ−1 · log(2C∆
ε ).

Set K =
⌈
1 + log2

(
B
ε

)⌉
.

Step k = 1, . . . ,K:

Set y = A(y,mk, Tk) with mk = 2k, Tk = dτ−1 · log(4C)e.

Return y.

The overall efficiency of the scheme is summarized in the following lemma. The proof can be
found in [32, Appendix B.1].

Lemma B.1 (Minibatch restart). The point y returned by Algorithm 7 satisfies E[h(y)] ≤ ε and
the efficiency estimate holds:

K∑
k=0

mkTk = O
(

1

τ
· log

(
2C∆

ε

)
+
B log(4C)

τε

)
.

Algorithm 7 is effective when working with minibatches of the loss functions is computationally
feasible. There are, however, important situations where each iteration using a minibatch becomes
prohibitively expensive computationally. For example, a proximal point update on a single loss
function `(·, z) may be computable in closed form, whereas computing the proximal point of an
average 1

s

∑s
i=1 `(x, zi) may computationally challenging. The following section provides an alter-

native strategy to minibatching that is based on geometrically decreasing the step-size used by the
algorithm.

B.2 Geometric decay schedule

Suppose that we have available a stochastic algorithm A(y0, δ, T ), such that as long as δ < δ0, the
method generates a point yT satisfying

E[h(yT )] ≤ C (1− ψ(δ))T h(y0) +Dδ, (B.2)

where h is a nonnegative function, C,D > 0 and δ0 ∈ (0, 1) are some constants that are specific to
the algorithm, and ψ is a function mapping [0, δ0) into (0, 1). In typical circumstances, h(y) may
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denote the function gap ϕ(y)−minϕ or the square distance to the solution ‖y− x̄‖2; the coefficient
δ is proportional to a step-size parameter that the user is free to choose; the function ψ(δ) = cδ is
linear for some constant c > 0. The procedure, formally described in Algorithm 8, runs in stages
by repeatedly calling A(yk, δk, Tk). Specifically, in stage k, the method sets δk = δ02−k and finds a
point y satisfying E[h(yT )] ≤ 2·Dδk, while using the output from the previous stage as a warmstart.

Algorithm 8: Geometric decay schedule

Input: y0 ∈ Rd, C,D > 0, δ0 ∈ (0, 1), estimate ∆ ≥ h(y0), accuracy ε > 0, algorithm
A(y, δ, T ) satisfying (B.2).

Initialize: Set y0 = A(y0, δ0, T0) with T0 = 1
ψ(δ0) · log(2C∆

ε ).

Set K =
⌈
1 + log2

(
Dδ0
ε

)⌉
.

Step k = 1, . . . ,K:

Set yk = A(yk−1, δk, Tk) with δk = 2−kδ0, Tk =

⌈
1

ψ(δk)
· log(4C)

⌉
.

Return yK .

The overall efficiency of the scheme is summarized in the following lemma. The proof can be
found in [32, Appendix B.1].

Lemma B.2 (Geometric decay). The point y returned by Algorithm 8 satisfies E[h(yK)] ≤ ε and
the efficiency estimate holds:

K∑
k=0

Tk =

⌈
1

ψ(δ0)
· log

(
2C∆

ε

)⌉
+

K∑
k=1

⌈
log(4C)

ψ(2−kδ0)

⌉
.

In particular, when ψ has the form ψ(δ) = cδ for some constants c ∈ (0, 1
δ0

), the estimate becomes

K∑
k=0

Tk = O
(

1

cδ0
· log

(
2C∆

ε

)
+
D log(4C)

εc

)
. (B.3)

C Proof of Theorem 7.5

The argument we present is based on the technique of estimate sequences, originally introduced by
Nesterov [37, Section 2.2.1] for deterministic algorithms, and recently extended by [31] to stochastic
settings. In particular, we closely follow the notation and the proof outline of [31, Section 4.1].

Recall that Algorithm 2 amounts to the recursion
xt = arg min

x
〈gt, x〉+ r(x) +

1

2ηt
‖x− yt−1‖2,

βt = δt(1−δt)ηt+1

ηtδt+1+ηt+1δ2
t

yt = xt + βt(xt − xt−1)

 ,

where δt and γt are defined in (7.6), with γ0 ≥ α̂. Henceforth, define Γt :=
∏t
i=1(1− δi).
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Estimate Sequences. We next set up the machinery of estimate sequences. To this end, define
the auxiliary vectors

g̃t := η−1
t (yt−1 − xt) and r′t := g̃t − gt ∈ ∂r(xt),

and the “local models”

lt(x) := f(yt−1) + 〈gt, x− yt−1〉+
α̂

2
‖x− yt−1‖2 + r(xt) + 〈r′t, x− xt〉.

Note that Lemma 7.1 guarantees the bound E[lt(x̄)] ≤ ϕ(x̄). This is worth emphasizing: in
expectation, the models lt evaluated at x̄ lower bound the minimal value ϕ(x̄).

Estimate sequences are constructed by aggregating the “local models” along the iterations.
Namely, fix a vector v0 ∈ Rd and define the sequence of functions:

d0(x) := ϕ(x0) +
γ0

2
‖x− v0‖2, (C.1)

dt(x) := (1− δt)dt−1(x) + δtlt(x) ∀t ≥ 1, (C.2)

Since each function dt is a spherical quadratic, we may write it in standard form

dt(x) = d∗t +
γt
2
‖x− vt‖2, (C.3)

for some vectors vt ∈ Rd and real d∗t ∈ R. The following relationship between the sequences vt, xt,
and yt follows from algebraic manipulations and is classical [31, Lemma 1]:

(xt−1 − yt−1) +
δtγt−1

γt
(vt−1 − yt−1) = 0 ∀t ≥ 1. (C.4)

Henceforth, we will let Et[·] denote the expectation conditioned on g0, . . . , gt−1. We begin with
the following basic lemma showing that lower bounds on the deviations E[d∗t ] − E[ϕ(xt)] directly
control the progress of the algorithm.

Lemma C.1 (Basic estimate sequence bound). Suppose that there exists a sequence of numbers
ξt ≥ 0 satisfying E[d∗t ] ≥ E[ϕ(xt)]− ξt for each t ≥ 0. Then for each t ≥ 0 the estimate holds:

E
[
ϕ(xt)− ϕ(x̄) +

γt
2
‖x̄− vt‖2

]
≤ Γt

[
ϕ(x0)− ϕ(x̄) +

γ0

2
‖x0 − x̄‖2

]
+ ξt.

Proof. Lemma 7.1 guarantees the bound Et[lt(x̄)] ≤ ϕ(x̄). Therefore from the definition of the
estimate sequence, we have

Et[dt(x̄)] = (1− δt)dt−1(x̄) + δtEt[lt(x̄)] ≤ (1− δt)dt−1(x̄) + δtϕ(x̄)

Using the tower rule for expectations, subtracting ϕ(x̄) from both sides, and unrolling the recursion,
yields

E[dt(x̄)]− ϕ(x̄) ≤ (1− δt)(E[dt−1(x̄)]− ϕ(x̄)) ≤ Γt(d0(x̄)− ϕ(x̄)).

Using the expression (C.3) for dt therefore gives

E
[
d∗t − ϕ(x̄) +

γt
2
‖x̄− vt‖2

]
≤ Γt(d0(x̄)− ϕ(x̄)).

Taking into account the assumed bound, E[d∗t ] ≥ E[ϕ(xt)]− ξt, completes the proof.
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In light of Lemma C.1, our immediate task is to find conditions guaranteeing the inequality
E[d∗t ] ≥ E[ϕ(xt)] − ξt for some deterministic sequence ξt. This is the content of the following
theorem, whose proof we postpone to Section C.1.

Theorem C.2 (Accelerated stochastic gradient method). Suppose ηt ≤ 1
4L and that for all t =

0, . . . , T the inequality holds: √
1 +

δt
α̂ηt
≤ α̂/B√

32(1 + ηtB)
. (C.5)

Then for all t = 0, . . . , T , the estimate E[d∗t ] ≥ E[ϕ(xt)]− ξt holds, where ξt are defined recursively
as ξt = (1− δt)ξt−1 + 9

8ηtσ
2.

Let us now deduce Theorem 7.5 from Theorem C.2. Namely, setting ηt = 1
4L and γ0 = α̂ results

in the expressions δt =
√
α̂ηt = (1/2)

√
α̂/L for all indices t. Therefore the sufficient condition

(C.5) amount to √
1 + 2

√
L

α̂
≤

1−2ρ
ρ√

32(1 + α
4L · ρ)

.

Using the estimate 1 + α
4L · ρ ≤ 2 on the right and ρ ≤ 1

3 on the left, it suffices to ensure√
1 + 2

√
3κ ≤ 2

2
√

32

1− 2ρ

ρ
.

Solving for ρ yields exactly the parameter regime assumed in Theorem 7.5. An application of
Lemma C.1 yields therefore the guarantee

E [ϕ(xt)− ϕ(x̄)] ≤ 2Γt [ϕ(x0)− ϕ(x̄)] + ξt.

Unrolling the recursion for ξt and using Lemma A.1 yields

ξt =
9

8
Γt

t∑
i=1

ηiσ
2

Γi
=

9σ2

16
√
Lα̂

(1− Γt).

This completes the proof of Theorem 7.5.

C.1 Proof of Theorem C.2

The argument we present closely parallels that of [31, Theorem 3], which in turn builds on Nesterov’s
original treatment in [37, p. 78]. Assume by induction E[d∗t−1] ≥ E[ϕ(xt−1)] − ξt−1 for some
constant ξt−1 ≥ 0. We aim to establish an analogous estimate for the next iterate. The same
algebraic manipulations as in the very beginning of [31, Theorem 3] apply verbatim, yielding the
lower bound

d∗t ≥ (1− δt)d∗t−1 + δtlt(yt−1)− ηt
2
‖g̃t‖2

+ δt(1−δt)γt−1

γt

(
〈g̃t, vt−1 − yt−1〉+

α̂

2
‖vt−1 − yt−1‖2

)
.

(C.6)

In the static setting (both deterministic [37] and stochastic [31]), the term ‖vt−1 − yt−1‖2 is lower-
bounded by zero and ignored. We will instead carry this term forward in order to offset the bias.
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To simplify notation, define the bias ∆t := ∇f(yt−1) − E[gt]. Combining (C.2), (C.6), and the
inductive hypothesis yields

E[d∗t ] ≥ (1− δt)[E[ϕ(xt−1)]− ξt−1] + δtE[lt(yt−1)]− ηt
2
E[‖g̃t‖2]

+ δt(1−δt)γt−1

γt
E
(
〈g̃t, vt−1 − yt−1〉+

α̂

2
‖yt−1 − vt−1‖2

)
.

(C.7)

Next, using convexity, we conclude

E[ϕ(xt−1)] ≥ E
[
f(yt−1) + 〈∇f(yt−1), xt−1 − yt−1〉+ r(xt) + 〈r′t, xt−1 − xt〉

]
= E [lt(yt−1) + 〈g̃t, xt−1 − yt−1〉+ 〈∆t, xt−1 − yt−1〉] .

Combining this estimate with (C.7) yields

E[d∗t ] ≥ E[lt(yt−1)]− (1− δt)ξt−1 −
ηt
2
E[‖g̃t‖2]

+ (1− δt)E
[
〈g̃t, (xt−1 − yt−1) +

δtγt−1

γt
(vt−1 − yt−1)〉

]
+
α̂δt(1− δt)γt−1

2γt
E
[
‖yt−1 − vt−1‖2

]
+ (1− δt)E〈∆t, xt−1 − yt−1〉

The quantity (xt−1 − yt−1) + δtγt−1

γt
(vt−1 − yt−1) is zero by construction (C.4). We conclude

E[d∗t ] ≥ E[lt(yt−1)]− (1− δt)ξt−1 −
ηt
2
Et[‖g̃t‖2]

+ (1− δt)
(
α̂γt−1δt

2γt
E[‖yt−1 − vt−1‖2] + E〈∆t, xt−1 − yt−1〉

)
. (C.8)

The next two lemmas lower bound E[lt(yt−1)] and the term (C.8).

Lemma C.3. For every index t ≥ 1 the estimate holds:

α̂γt−1δt
2γt

‖yt−1 − vt−1‖2 + 〈∆t, xt−1 − yt−1〉 ≥ −γt−1δt
2γtα̂

· ‖∆t‖2.

Lemma C.4. For every index t, the estimate holds:

E[ϕ(xt)] ≤ E[lt(yt−1)] +

(
Lη2

t

2
− 3ηt

4

)
E[‖g̃t‖2] + ηtσ

2 + ηtE[‖∆t‖2].

Combining the estimate (C.8) and Lemmas C.3, C.4, we obtain

E[d∗t ≥ Eϕ(xt)− (1− δt)ξt−1 − ηtσ2 − Pt,

where we define the error term

Pt :=

(
Lη2

t

2
− ηt

4

)
E[‖g̃t‖2] + ηt

(
1 + (1−δt)γt−1δt

2γtα̂ηt

)
E‖∆t‖2.

Our final goal is to show the estimate Pt ≤ cηtσ
2 for some constant c, which will complete the

induction by setting ξt := (1− δt)ξt−1 + (1 + c)σ2ηt. To this end, let us simplify the expression for
Pt by using (7.6) to write

(1− δt)γt−1δt
2γtα̂ηt

=
1

2
· (1− δt)γt−1

γt
· δt
α̂ηt

=
1

2

(
1− δtα̂

γt

)
· δt
α̂ηt

=
1

2

(
δt
α̂ηt
− δ2

t

γtηt

)
=

1

2

(
δt
α̂ηt
− 1

)
.
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Thus we arrive at the expression

Pt :=

(
Lη2

t

2
− ηt

4

)
E[‖g̃t‖2] +

ηt
2

(
1 +

δt
α̂ηt

)
E‖∆t‖2.

The strategy is now to show that E[‖g̃t‖2] is much larger than ‖yt−1 − x̄‖2 while E‖∆t‖2 is much
smaller than ‖yt−1 − x̄‖2. This is the content of the following lemma.

Lemma C.5. For each index t ≥ 1, the estimate holds:

E
[
‖g̃t‖2

]
≥ α̂2

8(1 + ηtB)2
E
[
‖yt−1 − x̄‖2

]
− σ2,

Using Lemma C.5 and the estimates ηt ≤ 1
4L and E‖∆t‖2 ≤ B2E‖yt−1 − x̄‖2 we conclude

Pt =

(
Lη2

t

2
− ηt

4

)
E[‖g̃t‖2] + ηt

(
1 + (1−δt)γt−1δt

2γtα̂ηt

)
E‖∆t‖2

≤ ηt
(
−1

8E[‖g̃t‖2] + 1
2

(
1 + δt

α̂ηt

)
E‖∆t‖2

)
≤ ηt

8 σ
2 + ηt

(
− α̂2

64(1+ηtB2 + 1
2

(
1 + δt

α̂ηt

)
B2
)
E‖yt−1 − x̄‖2

≤ ηt
8 σ

2.

This completes the induction by setting ξt = (1− δt)ξt−1 + 9
8ηtσ

2.

D Proofs of technical lemmas in Section C

D.1 Proof of Lemma C.3

Using the expression, xt−1 − yt−1 = δtγt−1

γt
(yt−1 − vt−1) and Young’s inequality, we deduce

α̂γt−1δt
2γt

‖yt−1 − vt−1‖2 + 〈∆t, xt−1 − yt−1〉 = γt−1δt
γt

(
α̂

2
‖yt−1 − vt−1‖2 + 〈∆t, yt−1 − vt−1〉

)
≥ −γt−1δt

2γtα̂
· ‖∆t‖2.

The proof is complete.

D.2 Proof of Lemma C.4

The argument follows similar reasoning as [31, Lemma 2], with a careful accounting for the bias.
Using smoothness, we estimate

ϕ(xt) ≤ E[f(yt−1) + 〈∇f(yt−1), xt − yt−1〉+
L

2
‖xt − yt−1‖2 + r(xt)]

= E[f(yt−1) + 〈gt, xt − yt−1〉+
L

2
‖xt − yt−1‖2 + r(xt)] + E[〈E[gt]− gt, xt − yt−1〉]

+ E[〈∇f(yt−1)− E[gt], xt − yt−1〉],

(D.1)
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where the last equality follows from algebraic manipulations. Next, we compute

E〈E[gt]− gt, xt − yt−1〉 = E〈E[gt]− gt, xt〉 = E〈E[gt]− gt, xt − wt〉,

where we define wt := proxηtr(yt−1−ηtE[gt]). Taking into account that the proximal map proxηtr(·)
is nonexpansive, we deduce

‖xt − wt‖ = ‖proxηtr(yt−1 − ηtgt)− proxηtr(yt−1 − ηtE[gt])‖ ≤ ηt‖gt − E[gt]‖.

Therefore continuing (D.1) we obtain

ϕ(xt) ≤ E[f(yt−1) + 〈gt, xt − yt−1〉+
L

2
‖xt − yt−1‖2 + r(xt)] + ηtσ

2

+ E[〈∇f(yt−1)− E[gt], xt − yt−1〉]

= E[lt(yt−1) + 〈g̃t, xt − yt−1〉+
L

2
‖xt − yt−1‖2] + ηtσ

2

+ E[〈∇f(yt−1)− E[gt], xt − yt−1〉]

= E[lt(yt−1)] +

(
Lη2

t

2
− ηt

)
E[‖g̃t‖2] + ηtσ

2

+ E[〈∇f(yt−1)− E[gt], xt − yt−1〉].

Finally, Young’s inequality yields

E[〈∇f(yt−1)− E[gt], xt − yt−1〉] ≤ ηt‖∇f(yt−1)− E[gt]‖2 +
1

4η
‖xt − yt−1‖2

= η‖∇f(yt−1)− E[gt]‖2 +
ηt
4
‖g̃t‖2,

thereby completing the proof.

D.3 Proof of Lemma C.5

The result will follow quickly from the following stand-alone lemma.

Lemma D.1. Fix a constant η ≤ 2/L, a point y ∈ Rd, and a vector v ∈ Rd satisfying ‖v−∇f(y)‖ ≤
B‖y − x̄‖. Define the proximal gradient update and the displacement vector:

y+ = proxηr(y − ηv) and g̃ = η−1(y − y+).

Then the estimate holds:

‖g̃‖ ≥ α̂

2(1 + ηB)
‖y − x̄‖. (D.2)

Before proving Lemma D.1, let us see how it implies Lemma C.5—the result we are after.
Setting y = yt−1 and v = E[gt] in Lemma D.1 yields

‖η−1
t (yt−1 − proxηtr(yt−1 − ηtE[gt]))‖ ≥

α̂

2(1 + ηB)
‖yt−1 − x̄‖ ∀t ≥ 1. (D.3)

Therefore, we now compute

‖g̃t‖ = η−1
t ‖yt−1 − proxηtr(yt−1 − ηtgt)‖

≥ η−1
t ‖yt−1 − proxηtr(yt−1 − ηtE[gt])‖ − η−1

t ‖proxηtr(yt−1 − ηtgt)− proxηtr(yt−1 − ηtE[gt])‖
≥ η−1

t ‖yt−1 − proxηtr(yt−1 − ηtE[gt])‖ − ‖gt − E[gt]‖,

≥ α̂

2(1 + ηtB)
‖yt−1 − x̄‖ − ‖gt − E[gt]‖,
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where the first inequality follows from the reverse triangle inequality, the second inequality uses
that the proximal map is nonexpansive, and the third follows from (D.3). Rearranging and using
the inequality 2a2 + 2b2 ≥ (a+ b)2 yields

2‖g̃t‖2 + 2‖gt − E[gt]‖2 ≥ (‖g̃t‖+ ‖gt − E[gt]‖)2 ≥
(

α̂

2(1 + ηB)
‖yt−1 − x̄‖

)2

.

Taking expectations of both sides completes the proof of Lemma C.5. It remains to verify Lemma D.1.

Proof of Lemma D.1. To simplify notation, define the error ∆ = v − ∇f(y). Since y+ is the
minimizer of the η−1-strongly convex function 〈v, ·−y〉+r+ 1

2η‖·−y‖
2, we deduce for every x ∈ Rd

the estimate holds:

〈v, y+ − y〉+
1

2η
‖y+ − y‖2 + r(y+) ≤ 〈v, x− y〉+

1

2η
‖x− y‖2 + r(x)− 1

2η
‖y+ − x‖2. (D.4)

Next, algebraic manipulations yield the equality

‖y+ − y‖2 + ‖y+ − x‖2 − ‖x− y‖2 = 2〈y − y+, x− y〉+ 2‖y − y+‖2

= 2η〈g̃, x− y〉+ 2η2‖g̃‖2.

Combining this estimate with (D.4) yields

〈v, y+ − y〉+ r(y+) ≤ 〈v, x− y〉+ r(x) + 〈g̃, y − x〉 − η‖g̃‖2. (D.5)

Smoothness of f in turn guarantees

〈v, y+ − y〉 = 〈∇f(y), y+ − y〉+ 〈v −∇f(y), y+ − y〉

≥ f(y+)− f(y)− L

2
‖y+ − y‖2 − η〈∆, g̃〉.

Combining this estimate with (D.5) therefore yields

ϕ(y+) ≤ f(y)+〈v, x− y〉+ r(x) + 〈g̃, y − x〉 −
(
η − Lη2

2

)
‖g̃‖2 + η〈∆, g̃〉. (D.6)

Set now x = x̄ in (D.6) and using strong convexity observe the estimate

〈v, x̄− y〉 = 〈∇f(y), x̄− y〉+ 〈v −∇f(y), x̄− y〉

≤ f(x̄)− f(y)− α̂

2
‖y − x̄‖2.

We thus deduce

ϕ(y+) ≤ ϕ(x̄)+〈g̃, y − x̄〉 − α̂

2
‖y − x̄‖2 −

(
η − Lη2

2

)
‖g̃‖2 + η〈∆, g̃〉. (D.7)

Lower-bounding ϕ(y+) by ϕ(x̄) and rearranging yields

〈g̃, y − x̄〉 ≥ α̂
2 ‖y − x̄‖

2 +
(
η − Lη2

2

)
‖g̃‖2 − η〈∆, g̃〉.

Using Cauchy-Schwarz, lower bounding the term
(
η − Lη2

2

)
‖g̃‖2 by zero, and dividing through by

‖y − x̄‖ yields

‖g̃‖ ≥ α̃

2
‖y − x̄‖ − η‖∆‖‖g̃‖

‖y − x̄‖
≥ α̂

2
‖y − x̄‖ − ηB‖g̃‖.

Rearranging completes the proof of (D.2).
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E Estimate (3.4) implies an angle condition

Squaring both sides of (3.4), expanding, and dividing by ‖∇fx(x)‖ · ‖∇fx̄(x)‖ yields

2

〈
∇fx(x)

‖∇fx(x)‖
,
∇fx̄(x)

‖∇fx̄(x)‖

〉
≥ ‖∇fx(x)‖
‖∇fx̄(x)‖

+ (1− ρ2)
‖∇fx̄(x)‖
‖∇fx(x)‖

.

Lower bounding the right side with the estimate a+ b ≥ 2
√
ab, we conclude

〈
∇fx(x)
‖∇fx(x)‖ ,

∇fx̄(x)
‖∇fx̄(x)‖

〉
≥√

1− ρ2, as claimed.

F Numerical experiments on strategic classification

This section describes the experimental setup of strategic classification used in [35, 41] and in
the current work. Specifically, we begin with the Kaggle data set [28], which contains a historical
financial record of 15000 individuals. Each individual is described by ten features a ∈ R10, with the
label b ∈ {0, 1} indicating whether 90 days have passed since the person experienced delinquency.
In the experiments, we subsample n/2 records labeled with 0 and with 1, respectively. We normalize
all features to have zero mean and unit variance. The goal is to learn a classifier parametrized by
x ∈ R10 that accurately predicts the label. As in [35, 41] we use the regularized logistic loss:

1

n

n∑
i=1

−bi · x>ai + log(1 + exp(x>ai)) +
α

2
‖x‖2,

for some parameter α > 0. We isolate three features (utilization of credit lines, number of open
credit lines, number of real estate loans) that the individuals will strategically adapt in reaction
to a deployed classifier. Namely, when a classifier parametrized by x is deployed, each individual
updates the features a as

aS = aS − γ · xS ,

where S is the index set of the three strategic features. This update is equivalent to (1.3) with
the linear utility function u(x, a) = −〈a, x〉 and quadratic cost c(a′, a) = 1

2γ ‖a
′ − a‖2. The label of

each individual stay the same. It is shown in [41, Section B.2] that the gradient of the population
objective is Lipschitz continuous in x with constant L = 1

4n

∑n
i=1 ‖ai‖2 +α and is Lipschitz contin-

uous in (a, b) with parameter β = 2. Therefore, we may estimate ρ = 2γ
α . Therefore the interesting

parameter for the strategic effects is γ ∈ (0, α2 ). This estimate is fairly crude and experimentally
we see that numerical methods can work well in a much wider parameter regime.
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