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Abstract

In the recent paper [3], it was shown that the stochastic subgradient method applied
to a weakly convex problem, drives the gradient of the Moreau envelope to zero at the
rate O(k−1/4). In this supplementary note, we present a stochastic subgradient method
for minimizing a convex function, with the improved rate Õ(k−1/2).

1 Introduction

Efficiency of algorithms for minimizing smooth convex functions is typically judged by the
rate at which the function values decrease along the iterate sequence. A different measure of
performance, which has received some attention lately, is the magnitude of the gradient. In
the short note [12], Nesterov showed that performing two rounds of a fast-gradient method

on a slightly regularized problem yields an ε-stationary point in Õ(ε−1/2) iterations.1 This
rate is in sharp contrast to the blackbox optimal complexity of O(ε−2) in smooth nonconvex
optimization [2], trivially achieved by gradient descent. An important consequence is that
the prevalent intuition – smooth convex optimization is easier than its nonconvex counter-
part – attains a very precise mathematical justification. In the recent work [1], Allen-Zhu
investigated the complexity of finding ε-stationary points in the setting when only stochastic
estimates of the gradient are available. In this context, Nesterov’s strategy paired with a
stochastic gradient method (SG) only yields an algorithm with complexity O(ε−2.5). Con-
sequently, the author introduced a new technique based on running SG for logarithmically
many rounds, which enjoys the near-optimal efficiency Õ(ε−2).

In this short technical note, we address a similar line of questions for nonsmooth convex
optimization. Clearly, there is a caveat: in nonsmooth optimization, it is impossible to
find points with small subgradients, within a first-order oracle model. Instead, we focus on
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1



the gradients of an implicitly defined smooth approximation of the function, the Moreau
envelope.

Throughout, we consider the optimization problem

min
x∈X

g(x), (1.1)

where X ⊆ Rd is a closed convex set with a computable nearest-point map projX , and
g : Rd → R a Lipschitz convex function. Henceforth, we assume that the only access to g is
through a stochastic subgradient oracle; see Section 1.1 for a precise definition. It will be
useful to abstract away the constraint set X and define ϕ : Rd → R ∪ {+∞} to be equal
to g on X and +∞ off X . Thus the target problem (1.1) is equivalent to minx∈Rd ϕ(x).
In this generality, there are no efficient algorithms within the first-order oracle model that
can find ε-stationary points, in the sense of dist(0; ∂ϕ(x)) ≤ ε. Instead we focus on finding
approximately stationary points of the Moreau envelope:

ϕλ(x) = min
y∈Rd

{ϕ(y) + 1
2λ
‖y − x‖2}.

It is well-known that ϕλ(·) is C1-smooth for any λ > 0, with gradient

∇ϕλ(x) = λ−1(x− proxλϕ(x)), (1.2)

where proxλϕ(x) is the proximal point

proxλϕ(x) := argmin
y∈Rd

{
ϕ(y) + 1

2λ
‖y − x‖2

}
.

When g is smooth, the norm of the gradient ‖∇ϕλ(x)‖ is proportional to the norm of the
prox-gradient (e.g. [5], [6, Theorem 3.5]), commonly used in convergence analysis of prox-
imal gradient methods [7, 13]. In the broader nonsmooth setting, the quantity ‖∇ϕλ(x)‖
nonetheless has an appealing interpretation in terms of near-stationarity for the target prob-
lem (1.1). Namely, the definition of the Moreau envelope directly implies that for any x ∈ Rd,
the proximal point x̂ := proxλϕ(x) satisfies

‖x̂− x‖ = λ‖∇ϕλ(x)‖,
ϕ(x̂) ≤ ϕ(x),

dist(0; ∂ϕ(x̂)) ≤ ‖∇ϕλ(x)‖.

Thus a small gradient ‖∇ϕλ(x)‖ implies that x is near some point x̂ that is nearly stationary
for (1.1). The recent paper [3] notes that following Nesterov’s strategy of running two rounds
of the projected stochastic subgradient method on a quadratically regularized problem, will
find a point x satisfying E‖∇ϕλ(x)‖ ≤ ε after at most O(ε−2.5) iterations. This is in sharp
contrast to the complexity O(ε−4) for minimizing functions that are only weakly convex —
the main result of [3]. Notice the parallel here to the smooth setting. In this short note, we
show that the gradual regularization technique of Allen-Zhu [1], along with averaging of the

iterates, improves the complexity to Õ(ε−2) in complete analogy to the smooth setting.

2



1.1 Convergence Guarantees

Let us first make precise the notion of a stochastic subgradient oracle. To this end, we fix a
probability space (Ω,F , P ) and equip Rd with the Borel σ-algebra. We make the following
three standard assumptions:

(A1) It is possible to generate i.i.d. realizations ξ1, ξ2, . . . ∼ dP .

(A2) There is an open set U containing X and a measurable mapping G : U × Ω → Rd

satisfying Eξ[G(x, ξ)] ∈ ∂g(x) for all x ∈ U .

(A3) There is a real L ≥ 0 such that the inequality, Eξ [‖G(x, ξ)‖2] ≤ L2, holds for all x ∈ X .

The three assumption (A1), (A2), (A3) are standard in the literature on stochastic subgradi-
ent methods. Indeed, assumptions (A1) and (A2) are identical to assumptions (A1) and (A2)
in [11], while Assumption (A3) is the same as the assumption listed in [11, Equation (2.5)].

Henceforth, we fix an arbitrary constant ρ > 0 and assume that diameter of X is bounded
by some real D > 0. It was shown in [4, Section 2.1] that the complexity of finding a point x

satisfying E‖∇ϕ1/ρ(x)‖ ≤ ε is at most O(1)· (L
2+ε2)

√
ρD

ε2.5
. We will see here that this complexity

can be improved to Õ
(
L2+ρ2D2

ε2

)
by adapting the technique of [1].

The work horse of the strategy is the subgradient method for minimizing strongly convex
functions [8–10,14]. For the sake of concreteness, we summarize in Algorithm 1 the stochastic
subgradient method taken from [10].

Algorithm 1: Projected stochastic subgradient method for strongly convex functions
PSSMsc(x0, µ,G, T )

Data: x0 ∈ X , strong convexity constant µ > 0 on X , maximum iterations T ∈ N,
stochastic subgradient oracle G.

Step t = 0, . . . , T − 2: Sample ξt ∼ dP

Set xt+1 = projX

(
xt − 2

µ(t+1)
·G(xt, ξt)

) ,

Return: x̄ = 2
T (T+1)

∑T−1
t=0 (t+ 1)xt.

The following is the basic convergence guarantee of Algorithm 1, proved in [10].

Theorem 1.1. The point x̄ returned by Algorithm 1 satisfies the estimate

E [ϕ(x̄)−minϕ] ≤ 2L2

µ(T + 1)
.

For the time being, let us assume that g is µ-strongly convex on X . Later, we will add
a small quadratic to g to ensure this to be the case. The algorithm we consider follows an
inner outer construction, proposed in [1]. We will fix the number of inner iterations T ∈ N.
and the number of outer iterations I ∈ N. We set ϕ(0) = ϕ and for each i = 1, . . . , I define
the quadratic perturbations

ϕ(i+1)(x) := ϕ(i)(x) + µ2i−1‖x− x̂i+1‖2.
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Each center x̂i+1 is obtained by running T iterations of the subgradient method Algorithm 1
on ϕ(i). We record the resulting procedure in Algorithm 2. We emphasize that this algorithm
is identical to the method in [1], with the only difference being the stochastic subgradient
method used in the inner loop.

Algorithm 2: Gradual regularization for strongly convex problems
GRsc(x1, µ, λ, T, I, G)

Data: Initial point x1 ∈ X , strong convexity constant µ > 0, an averaging parameter
λ > 0, inner iterations T ∈ N, outer iterations I ∈ N, stochastic oracle G(·, ·).

Set ϕ(0) = ϕ, G(0) = G, x̂0 = x0, µ0 = µ.
Step i = 0, . . . , I:

Set x̂i+1 = PSSMsc(x̂i,
∑i

j=0 µj, G
(i), T )

µi+1 = µ · 2i+1

Define the function and the oracle

ϕ(i+1)(x) := ϕ(i)(x)+
µi+1

2
‖x−x̂i+1‖2 and G(i+1)(x, ξ) := G(i)(x, ξ)+µi+1(x−x̂i+1).

Return: x̄ = 1

λ+
∑I

i=1 µi
(λx̂I+1 +

∑I
i=1 µix̂i).

Henceforth, let µi, ϕ
(i), and x̂i be generated by Algorithm 2. Observe that by construc-

tion, equality

ϕ(i)(x) = ϕ(x) +
i∑

j=1

µi
2
‖x− x̂i‖2,

holds for all i = 1, . . . , I. Consequently, it will be important to relate the Moreau envelope
of ϕ(i) to that of ϕ. This is the content of the following two elementary lemmas.

Lemma 1.2 (Completing the square). Fix a set of points zi ∈ Rd and real ai > 0, for
i = 1, . . . , I. Define the convex quadratic

Q(y) =
I∑
i=1

ai
2
‖y − zi‖2.

Then equality holds:

Q(y) = Q (z̄) +
∑I

i=1 ai
2
‖y − z̄‖2,

where z̄ = 1∑I
i=1 ai

∑I
i=1 aizi is the centroid.

Proof. Taking the derivative shows that Q(·) is minimized at z̄. The result follows.

Lemma 1.3 (Moreau envelope of the regularization). Consider a function h : Rd → R ∪
{+∞} and define the quadratic perturbation

f(x) = h(x) +
I∑
i=1

ai
2
‖x− zi‖2,
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for some zi ∈ Rd and ai > 0, with i = 1, . . . , I. Then for any λ > 0, the Moreau envelopes
of h and f are related by the expression

∇f1/λ(x) = λ
λ+A

(
∇h1/(λ+A)(x̄) +

I∑
i=1

ai(x− zi)

)
,

where we define A :=
∑I

i=1 ai and x̄ := 1
λ+A

(
λx+

∑I
i=1 aizi

)
is the centroid.

Proof. By definition of the Moreau envelope, we have

f1/λ(x) = argmin
y

{
h(y) +

I∑
i=1

ai
2
‖y − zi‖2 + λ

2
‖y − x‖2

}
. (1.3)

We next complete the square in the quadratic term. Namely define the convex quadratic:

Q(y) := λ
2
‖y − x‖2 +

I∑
i=1

ai
2
‖y − zi‖2.

Lemma 1.2 directly yields the representation Q(y) = Q(x̄) + λ+A
2
‖y − x̄‖2. Combining with

(1.3), we deduce
f1/λ(x) = h1/(λ+A)(x̄) +Q(x̄).

Differentiating in x yields the equalities

∇f1/λ(x) = λ
λ+A
∇h1/(λ+A)(x̄) + λ

(
λ

λ+A
− 1
)

(x̄− x) + λ
λ+A

I∑
i=1

ai(x̄− zi)

= λ
λ+A
∇h1/(λ+A)(x̄) + λ

λ+A

I∑
i=1

ai(x− zi),

as claimed.

The following is the key estimate from [1, Claim 8.3].

Lemma 1.4. Suppose that for each index i = 1, 2, . . . , I, the vectors x̂i satisfy

E[ϕ(i−1)(x̂i)−minϕ(i−1)] ≤ δi.

Then the inequality holds:

E

[
I∑
i=1

µi‖x∗I − x̂i‖

]
≤ 4

I∑
i=1

√
δiµi,

where x∗I is the minimizer of ϕI.
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Henceforth, set

Mi :=
i∑

j=1

µj and M := MI .

By convention, we will set M0 = 0. Combining Lemmas 1.3 and 1.4, we arrive at the
following basic guarantee of the method.

Corollary 1.5. Suppose for i = 1, 2, . . . , I + 1, the vectors x̂i satisfy

E[ϕ(i−1)(x̂i)−minϕ(i−1)] ≤ δi.

Then the inequality holds:

E‖∇ϕ1/(λ+M)(x̄)‖ ≤ (λ+ 2M)

√
2δI+1

µ+M
+ 4

I∑
i=1

√
δiµi,

where x̄ = 1
λ+M

(λx̂I+1 +
∑I

i=1 µix̂i).

Proof. Fix an arbitrary point x and set x̄ = 1
λ+M

(λx +
∑I

i=1 x̂i). Then Lemma 1.3, along
with a triangle inequality, directly implies

‖∇ϕ1/(λ+M)(x̄)‖ ≤
(
1 + M

λ

)
‖∇ϕ(I)

1/λ(x)‖+
I∑
i=1

µi‖x− x̂i‖

≤
(
1 + M

λ

)
‖∇ϕ(I)

1/λ(x)‖+
I∑
i=1

µi(‖x− x∗I‖+ ‖x∗I − x̂i‖)

≤
(
1 + M

λ

)
‖∇ϕ(I)

1/λ(x)‖+M‖x− x∗I‖+
I∑
i=1

µi‖x∗I − x̂i‖

≤ (λ+ 2M)‖x− x∗I‖+
I∑
i=1

µi‖x∗I − x̂i‖.

where the last inequality uses that ∇ϕ(I)
1/λ is λ-Lipschitz continuous and ∇ϕ(I)

1/λ(x
∗
I) = 0 to

deduce that ‖∇ϕ(I)
1/λ(x)‖ ≤ λ‖x− x∗I‖. Using strong convexity of ϕI , we deduce

‖x− x∗I‖2 ≤ 2
µ+M

(ϕ(I)(x)− ϕ(I)(x∗I)).

Setting x = x̂I+1, taking expectations, and applying Lemma 1.4 completes the proof.

Let us now determine δi > 0 by invoking Theorem 1.1 for each function ϕ(i). Observe

Eξ‖G(i)(x, ξ)‖2 ≤ 2(L2 +D2M2
i ).

Thus Theorem 1.1 guarantees the estimates:

E[ϕ(i−1)(x̂i)−minϕ(i−1)] ≤
4(L2 +D2M2

i−1)

(T + 1)(µ+Mi−1)
, (1.4)
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Hence for i = 1, . . . , I, we may set δi to be the right-hand side of (1.4). Applying Corol-
lary 1.5, we therefore deduce

E‖∇ϕ1/(λ+M)(x̄)‖ ≤ (λ+ 2M)

√
2δI+1

µ+M
+ 4

I∑
i=1

√
δiµi

≤ 1√
T + 1

(
(λ+ 2M)

√
8(L2 +D2M2)

(µ+M)2
+ 4

I∑
i=1

√
4(L2 +D2M2

i−1)

(µ+Mi−1)
· µi

)
.

(1.5)
Clearly we have µ1

µ
= 2, while for all i > 1, we also obtain

µi
µ+Mi−1

≤ µi
µ+ µi−1

=
2i

1 + 2i−1
≤ 2.

Hence, continuing (1.5), we conclude

E‖∇ϕ1/(λ+M)(x̄)‖ ≤ 1√
T + 1

(√
8 · (λ+ 2M)

√(
L
M

)2
+D2 + 8

√
2 · |I| ·

√
L2 +D2M2

)
In particular, by setting I = log2(1 + λ

2µ
), we may ensure M = λ. For simplicity, we assume

the former is an integer. Thus we have proved the following key result.

Theorem 1.6 (Convergence on strongly convex functions). Suppose g is µ-strongly convex
on X and we set I = log2(1 + λ

2µ
) for some λ > 0. Then x̄ returned by Algorithm 2 satisfies

E‖∇ϕ1/(2λ)(x̄)‖ ≤

(
14
√

2 · log2(1 + λ
2µ

)
)
·
√
L2 +D2λ2

√
T + 1

When g is not strongly convex, we can simply add a small quadratic to the function and
run Algorithm 2. For ease of reference, we record the full procedure in Algorithm 3

Algorithm 3: Gradual regularization for non strongly convex problems

Data: Initial point xc ∈ X , regularization parameter µ > 0, an averaging parameter
λ > 0, inner iterations T ∈ N, outer iterations I ∈ N, stochastic oracle G(·, ·).

Set ϕ̂(x) := ϕ(x) + µ
2
‖x− xc‖2, Ĝ(x, ξ) = G(x, ξ) + µ(x− xc), x0 = xc.

Set x̄ = GRsc(xc, µ, λ/2, T, I, Ĝ)
Return: z̄ = µ

µ+λ
xc + λ

µ+λ
x̄.

Our main theorem now follows.

Theorem 1.7 (Convergence on convex functions after regularization). Let ρ > 0 be a fixed
constant, and suppose we are given a target accuracy ε ≤ 2ρD. Set µ := ε

2D
, λ := 2ρ− ε

2D
,

and I = log2(
3
4

+ ρD
ε

). Then for any T > 0, Algorithm 3 returns a point z̄ satisfying:

E‖∇ϕ1/(2ρ)(z̄)‖ ≤
(
28
√

2 · log2(
3
4

+ ρD
ε

)
)
·
√

2L2 + 3ρ2D2

√
T + 1

+
ε

2
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Setting the right hand side to ε and solving for T , we deduce that it suffices to make

O

(
log3(ρD

ε
)(L2 + ρ2D2)

ε2

)
calls to projX and to the stochastic subgradient oracle in order to find a point z̄ ∈ X satisfying
E‖∇ϕ1/(2ρ)(z̄)‖ ≤ ε.

Proof. Lemma 1.3 guarantees the bound∥∥∥∇ϕ1/(λ+µ)

(
µ

µ+λ
xc + λ

µ+λ
x̄
)∥∥∥ ≤ λ+µ

λ
‖∇ϕ̂1/λ(x̄)‖+ µD.

Applying Theorem 1.6 with λ replaced by 1
2
λ and L replaced by 2(L2 +D2µ2), we obtain

E
∥∥∇ϕ1/(2ρ)(z̄)

∥∥ ≤ λ+µ
λ

(
14
√
2·log2

(
1+

λ
4µ

))
·
√

2(L2+D2µ2)+
1
4
D2λ2

√
T+1

+
ε

2
.

Some elementary simplifications yield the result.
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