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Abstract

We consider a popular nonsmooth formulation of the real phase retrieval problem.
We show that under standard statistical assumptions, a simple subgradient method
converges linearly when initialized within a constant relative distance of an optimal
solution. Seeking to understand the distribution of the stationary points of the problem,
we complete the paper by proving that as the number of Gaussian measurements
increases, the stationary points converge to a codimension two set, at a controlled
rate. Experiments on image recovery problems illustrate the developed algorithm and
theory.

Keywords: Phase retrieval, stationary points, subdifferential, variational principle, sub-
gradient method, spectral functions, eigenvalues

1 Introduction

Phase retrieval is a common task in computational science, with numerous applications
including imaging, X-ray crystallography, and speech processing. In this work, we consider
a popular real counterpart of the problem. Given a set of tuples {(ai, bi)}mi=1 ⊂ Rd × R,
the (real) phase retrieval problem seeks to determine a vector x ∈ Rd satisfying (aTx)2 = bi
for each index i = 1, . . . ,m. Due to its combinatorial nature, this problem is known to be
NP-hard [14]. One can model the real phase retrieval problem in a variety of ways. Here,
we consider the following “robust formulation”:

min
x

fS(x) :=
1

m

m∑
i=1

|(aTi x)2 − bi|.

This model of the problem has gained some attention recently with the work of Duchi-
Ruan [10] and Eldar-Mendelson [12]. Indeed, this model exhibits a number of desirable
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properties, making it amenable to numerical methods. Namely, in contrast to other possible
formulations, mild statistical assumptions imply that fS is both weakly convex [10, Corollary
3.2] and sharp [12, Theorem 2.4], with high probability. That is, there exist numerical
constants ρ, κ > 0 such that

the assignment x 7→ fS(x) +
η

2
‖x‖2 is a convex function,

and the inequality

fS(x)− inf fS ≥ κ‖x− x̄‖‖x+ x̄‖ holds for all x ∈ Rd.

Here, ±x̄ are the true signals and ‖ · ‖ denotes the `2-norm. Weak convexity is a well studied
concept in optimization literature [5,13,23,25], while sharpness and the closely related notion
of error bounds [2, 7, 21] classically underly rapid local convergence guarantees in nonlinear
programming. Building on these observations, Duchi and Ruan [10] showed that with proper
initialization, the so-called prox-linear algorithm [7,8,10,11,20] quadratically converges to ±x̄
(even in presence of outliers). The only limitation of their approach is that the prox-linear
method requires, at every iteration, invoking an iterative solver for a convex subproblem.
For large-scale instances (m� 1, d� 1), the numerical resolution of such problems is non-
trivial. In the current work, we analyze a lower-cost alternative when there are no errors in
the measurements.

We will show that the robust phase retrieval objective favorably lends itself to classical
subgradient methods. This is somewhat surprising because, until recently, convergence rates
of subgradient methods in nonsmooth, nonconvex optimization have remained elusive; see
the discussion in [6]. We will prove that under mild statistical assumptions and proper
initialization, the standard Polyak subgradient method

xk+1 = xk −
(
fS(xk)−min fS

‖gk‖2

)
gk with gk ∈ ∂fS(xk),

linearly converges to ±x̄, with high probability. We note that high quality initialization,
in turn, is straightforward to obtain; see e.g. [10, Section 3.3] and [29]. The argument we
present is appealingly simple, relying only on weak convexity and sharpness of the function.

Aside from the current work and that of [10], we are not aware of other attempts
to optimize the robust phase retrieval objective directly. Other works focus on differ-
ent problem formulations. Notably, Candès et al. [3] and Sun et al. [27] optimize the
smooth loss 1

m

∑m
i=1(〈ai, x〉2 − bi)

2 using a second-order trust region method and a gradi-
ent method, respectively. Wang et al. [29] instead minimize the highly nonsmooth function
1
m

∑m
i=1(|〈ai, x〉| −

√
bi)

2 by a gradient descent-like method. Another closely related recent
work is that of Tan and Vershynin [28]. One can interpret their scheme as a stochastic
subgradient method on the formulation 1

m

∑m
i=1 ||〈ai, x〉| −

√
bi|, though this is not explicitly

stated in the paper. Under proper initialization and assuming that ai are uniformly sam-
pled from a sphere, they prove linear convergence. Their argument relies on sophisticated
probabilistic tools. In contrast, we disentangle the probabilistic statements (weak convexity
and sharpness) from the deterministic convergence of Algorithm 1. As a proof of concept,
we illustrate the proposed subgradient method synthetic and large-scale real image recovery
problems.
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Figure 1: Depiction of the population objective fP with x̄ = (1, 1): graph (left), contours
(right).

Weak convexity and sharpness, taken together, imply existence of a small neighborhood
X of {±x̄} devoid of extraneous stationary points of fS (see Lemma 3.1). On the other
hand, it is intriguing to determine where the objective function fS may have stationary
points outside of this neighborhood. We complete the paper by proving that as the number
of Gaussian measurements increases, the stationary points of the problem converge to a
codimension two set, at a controlled rate. This suggests that there are much larger regions
than the neighborhood X , where the objective function has benign geometry.

We follow an intuitive and transparent strategy. Setting the groundwork, assume that
ai are i.i.d samples from a normal distribution N(0, Id×d). Hence the problem min fS is an
empirical average approximation of the population objective

min
x

fP (x) := Ea[|(aTx)2 − (aT x̄)2|].

Seeking to determine the location of stationary points of fS, we begin by first determining
the stationary points of fP . We base our analysis on the elementary observation that fP (x)
depends on x only through the eigenvalues of the rank two matrix X := xxT − x̄x̄T . More
precisely, equality holds:

fP (x) =
4

π

[
Tr(X) · arctan

(√∣∣∣∣λmax(X)

λmin(X)

∣∣∣∣
)

+
√
|λmax(X)λmin(X)|

]
− Tr(X).

See Figure 1 for a graphical illustration.
Using basic perturbation properties of eigenvalues, we will show that the stationary points

of fP are precisely
{0} ∪ {±x̄} ∪ {x ∈ x̄⊥ : ‖x‖ = c · ‖x̄‖}, (1.1)

where c ≈ 0.4416 is a numerical constant. Intuitively, this region, excluding {±x̄}, is where
numerical methods may stagnate. In particular, fP has no extraneous stationary points
outside of the subspace x̄⊥. Along the way, we prove a number of results in matrix theory,
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which may be of independent interest. For example, we show that all stationary points of a
composition of an orthogonally invariant gauge function with the map x 7→ xxT − x̄x̄T must
be either perpendicular or collinear with x̄.

Having located the stationary points of the population objective fP , we turn to the
stationary points of the subsampled function fS. This is where the techniques commonly used
for smooth formulations of the problem, such as those in [27], are no longer applicable; indeed,
the subdifferential ∂fP (x) is usually a very poor approximation of ∂fS(x). Nonetheless, we
show that the graphs of the subdifferentials ∂fP and ∂fS are close with high probability – a
result closely related to the celebrated Attouch’s convergence theorem [1]. The analysis of
the stationary points of the subsampled objective flows from there. Namely, we show that
there is a constant C such that whenever m ≥ Cd, all stationary points x of fS satisfy

‖x‖‖x− x̄‖‖x+ x̄‖
‖x̄‖3

. 4

√
d

m
or


∣∣∣‖x‖‖x̄‖ − c∣∣∣ . 4

√
d
m
·
(

1 + ‖x̄‖
‖x‖

)
|〈x,x̄〉|
‖x‖‖x̄‖ .

4

√
d
m
· ‖x̄‖‖x‖

 ,

with high probability; compare with (1.1). The argument we present is very general, relying
only on weak convexity and concentration of fS around its mean. Therefore, we believe that
the technique may be of independent interest.

We comment in Section B.1 on the structure of stationary points for the variant of the
phase retrieval problem, in which the measurements b are corrupted by gross outliers. It is
straightforward to obtain a full characterization of the stationary points of the population
objective using the techniques developed in earlier sections.

The outline for the paper is as follows. Section 2 summarizes notation and basic results we
will need. In Section 3, we analyze the linear convergence of the Polyak subgradient method
for a class of nonsmooth, nonconvex functions, which includes the subsampled objective fS.
In Section 4, we perform a few proof-of-concept experiments, illustrating the performance of
the Polyak subgradient method on synthetic and real large-scale image recovery problems.
Section 5 is devoted to characterizing the nonsmooth landscape of the population objective
fP . In Section 6, we develop a concentration theorem for the subdifferential graphs of fS
and fP , and briefly comment on robust extensions.

2 Notation

Throughout, we mostly follow standard notation. The symbol R will denote the real line,
while R+ and R++ will denote nonnegative and strictly positive real numbers, respectively.
We always endow Rd with the dot product 〈x, y〉 = xTy and the induced norm ‖x‖ :=√
〈x, x〉. The symbol Sd−1 will denote the unit sphere in Rd, while B(x, r) := {y : ‖x− y‖ <

r} will stand for the open ball around x of radius r > 0. For any set Q ⊂ Rd, the distance
function is defined by dist(x;Q) := infy∈Q ‖y−x‖. The adjoint of a linear map A : Rd → Rm

will be written as A∗ : Rm → Rd.
Since the main optimization problem we consider is nonsmooth, we will use some basic

generalized derivative constructions. For a more detailed discussion, see for example the
monographs of Mordukhovich [22] and Rockafellar-Wets [26].
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Consider a function f : Rd → R and a point x̄. The Fréchet subdifferential of f at x̄,
denoted ∂̂f(x̄), is the set of all vectors v ∈ Rd satisfying

f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o(‖x− x̄‖) as x→ x̄.

Thus v lies in ∂̂f(x̄) if and only if the affine function x 7→ f(x̄)+〈v, x− x̄〉 minorizes f near x̄
up to first-order. Since the assignment x 7→ ∂̂f(x) may have poor continuity properties, it is
useful to extend the definition slightly. The limiting subdifferential of f at x̄, denoted ∂f(x̄),
consists of all vectors v ∈ Rd such that there exist sequences xi and vi ∈ ∂̂f(xi) satisfying
(xi, f(xi), vi) → (x̄, f(x̄), v). We say that x̄ is stationary for f if the inclusion 0 ∈ ∂f(x̄)
holds. The graph of ∂f is the set

gph ∂f := {(x, y) ∈ Rd × Rd : y ∈ ∂f(x)}.

For essentially all functions that we will encounter, the two subdifferentials, ∂̂f(x̄) and
∂f(x̄), coincide. This is the case for C1-smooth functions f , where ∂̂f(x̄) and ∂f(x̄) consist
only of the gradient ∇f(x̄). Similarly for convex function f , both subdifferentials reduce to
the subdifferential in the sense of convex analysis:

v ∈ ∂f(x̄) ⇐⇒ f(x) ≥ f(x̄) + 〈v, x− x̄〉 for all x ∈ Rd.

Most of the nonsmooth functions we will encounter have a simple composite form:

F (x) := h(c(x)),

where h : Rm → R is a finite convex function and c : Rd → Rn is a C1-smooth map. For
such composite functions, the two subdifferentials coincide, and admit the intuitive chain
rule [26, Theorem 10.6, Corollary 10.9]:

∂F (x) = ∇c(x)∗∂h(c(x)) for all x ∈ Rd.

A function f : Rd → R is called ρ-weakly convex if f + ρ
2
‖ · ‖2 is a convex function.

It follows immediately from [26, Theorem 12.17] that a lower-semicontinuous function f is
ρ-weakly convex if and only if the inequality

f(y) ≥ f(x) + 〈v, y − x〉 − ρ

2
‖y − x‖2,

holds for all points x, y ∈ Rd and vectors v ∈ ∂f(x).
Finally, we will often use implicitly the observation that the Lipschitz constant of any

lower-semicontinuous function f on a convex open set U coincides with sup{‖ζ‖ : x ∈ U, ζ ∈
∂f(x)}; see e.g. [26, Theorem 9.13].

3 Subgradient method

In this work, we consider the robust formulation of the (real) phase retrieval problem. Setting
the stage, suppose we are given vectors {ai}mi=1 in Rd and measurements b := 〈ai, x̄〉2, for a
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fixed but unknown vector x̄. The goal of the phase retrieval problem is to recover the vector
x̄ ∈ Rd, up to a sign flip. The formulation of the problem we consider in this work is:

min
x

fS(x) :=
1

m

m∑
i=1

|〈aTi , x〉2 − bi|.

The function fS (in contrast to other possible formulations) has a number of desirable prop-
erties, which we will highlight as we continue.

In this section, we show that the landscape of the phase retrieval objective fS favorably
lends itself to classical subgradient methods. Namely, with proper initialization and under
appropriate statistical assumptions, the Polyak subgradient method [24] linearly converges
to ±x.

3.1 Subgradient method for weakly convex and sharp functions

The linear convergence guarantees that we present are mostly independent of the structure
of fS and instead rely only on a few general regularity properties, which fS satisfies under
mild statistical assumptions. Consequently, it will help the exposition in the current section
to abstract away from fS.

Assumption A. Fix a function g : Rd → R such that there exist real ρ, µ > 0 satisfying the
following two properties.

1. Weak Convexity. The function g + ρ
2
‖ · ‖2 is convex;

2. Sharpness. The inequality holds:

g(x)−min g ≥ µ · dist(x;X ) for all x ∈ Rd,

where X 6= ∅ is the set of minimizers of g.

Duchi and Ruan [10], following the work of Eldar-Mendelson [12], showed that the robust
phase retrieval loss fS(·) satisfies Assumption A, under reasonable statistical assumptions.
We will discuss these guarantees in Section 3.2, where we will instantiate the subgradient
method on the robust phase retrieval objective. Consider now the standard Polyak subgra-
dient method applied to g (Algorithm 1).

Algorithm 1: Polyak Subgradient Method

Data: x0 ∈ Rd

Step k: (k ≥ 1)
Choose ζk ∈ ∂g(xk).
if ζk 6= 0 then

Set xk+1 = xk − g(xk)−min g
‖ζk‖2

ζk.

else
Exit algorithm.

end

As the fist step in the analysis of Algorithm 1, we must ensure that there are no extraneous
stationary points of g near X . This is the content of the following lemma.
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Lemma 3.1 (Neighborhood with no stationary points). Suppose Assumption A holds. Then
g has no stationary points x satisfying

0 < dist(x;X ) <
2µ

ρ
. (3.1)

Proof. Consider a stationary point x of g, which is outside of X . Let x̄ ∈ X be a point
satisfying ‖x− x̄‖ = dist(x;X ). Properties 1 and 2 then imply

µ · dist(x;X ) ≤ g(x)− g(x̄) ≤ ρ

2
‖x− x̄‖2 =

ρ

2
· dist2(x;X ).

Dividing through by dist(x;X ), the result follows.

The following Theorem 3.2 – the main result of this subsection – shows that when Algo-
rithm 1 is initialized within a certain tube T of X , the iterates xk stay within the tube and
converge linearly to X . It is interesting to note that the rate of local linear convergence does
not depend on the weak convexity constant ρ; indeed, the value ρ only dictates the size of
the tube T .

Theorem 3.2 (Linear rate). Suppose Assumption A holds. Fix a real γ ∈ (0, 1) and define
the tube

T :=

{
x ∈ Rd : dist(x;X ) ≤ γ · µ

ρ

}
,

and the corresponding Lipschitz constant

Lg := sup
x∈T , ζ∈∂g(x)

‖ζ‖.

Then Algorithm 1 initialized at any point x0 ∈ T produces iterates that converge Q-linearly
to X at the rate:

dist2(xk+1;X ) ≤
(

1− (1− γ)µ2

L2
g

)
dist2(xk;X ), (3.2)

Proof. We proceed by induction. Suppose that the theorem holds up to iteration k. We will
prove the inequality (3.2). To this end, let x̄ ∈ X be a point satisfying ‖xk−x̄‖ = dist(xk;X ).
Note that if xk lies in X , there is nothing to prove. Thus we may suppose xk /∈ X . Note
that the inductive hypothesis implies dist(xk;S) ≤ dist(x0;S) and therefore xk lies in T .
Lemma 3.2 therefore guarantees ζk 6= 0. Using Properties 1 and 2, we successively deduce

‖xk+1 − x̄‖2 = ‖xk − x̄‖2 + 2〈xk − x̄, xk+1 − xk〉+ ‖xk+1 − xk‖2

= ‖xk − x̄‖2 +
2(g(xk)− g(x̄))

‖ζk‖2
· 〈ζk, x̄− xk〉+

(g(xk)− g(x̄))2

‖ζk‖2

≤ ‖xk − x̄‖2 +
2(g(xk)− g(x̄))

‖ζk‖2

(
g(x̄)− g(xk) +

ρ

2
‖xk − x̄‖2

)
+

(g(xk)− g(x̄))2

‖ζk‖2

= ‖xk − x̄‖2 +
(g(xk)− g(x̄))

‖ζk‖2

(
ρ‖xk − x̄‖2 − (g(xk)− g(x̄))

)
≤ ‖xk − x̄‖2 +

(g(xk)− g(x̄))

‖ζk‖2

(
ρ‖xk − x̄‖2 − µ‖xk − x̄‖

)
= ‖xk − x̄‖2 +

ρ(g(xk)− g(x̄))

‖ζk‖2

(
‖xk − x̄‖ −

µ

ρ

)
‖xk − x̄‖.
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Combining the inclusion xk ∈ T with sharpness (Assumption 2), we therefore deduce

dist2(xk+1;X ) ≤ ‖xk+1 − x̄‖2 ≤
(

1− (1− γ)µ2

‖ζk‖2

)
‖xk − x̄‖2.

The result follows.

3.2 Convergence for the phase retrieval objective

We now turn to an application of Theorem 3.2 to the phase retrieval loss fS. In particular,
to run the subgradient method, we must only compute a subgradient of fS, which can be
easily done using the chain rule:

1

m

m∑
i=1

2〈ai, x〉 · sign(〈ai, x〉2 − bi)ai ∈ ∂fS(x).

Each iteration of Algorithm 1 thus requires a single pass through the set of measurement
vectors. We will see momentarily that under mild statistical assumptions, {±x̄} are the
unique minimizers of fS, as soon as m > 2d.

Thus for a successful application of Theorem 3.2, we must only address the following
questions:

(i) Describe the statistical conditions on the data generating mechanism, which insure that
Assumption A holds with high probability.

(ii) Estimate the Lipschitz constant of fS on the union of balls T = B(x̄, γµ
ρ

)∪B(−x̄, γµ
ρ

).

(iii) Describe a good initialization procedure for producing x0 ∈ T .

Essentially all of these points follow from the work of Duchi and Ruan [10], Eldar-Mendelson
[12], and Wang et al. [29]. We summarize them here for the sake of completeness. Henceforth,
let us suppose that ai ∈ Rd (for i = 1, . . . ,m) are independent realizations of a random vector
a ∈ Rd.

3.2.1 Sharpness

In order to ensure sharpness (or rather the stronger “stability” property [12]), we make the
following assumption on the distribution of a.

Assumption B. There exist constants κ∗st, p0 > 0 such that for all u, v ∈ Sd−1, we have

P (|〈a, v〉〈a, u〉| ≥ κ∗st) ≥ p0,

Roughly speaking, this mild assumption simply says that the random vector a has suf-
ficient support in all directions. In particular, the standard Gaussian a ∼ N(0, Id) satisfies
Assumption B with κ∗st = 0.365 and p0 = 0.25; see [10, Example 1]. The following is proved
in [10, Corollary 3.1].
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Theorem 3.3 (Sharpness). Suppose that Assumption B holds. Then there exists a numerical
constant c <∞ such that if mp2

0 ≥ cd, we have

P
(
fS(x)− fS(x̄) ≥ 1

2
κ∗stp0‖x− x̄‖‖x+ x̄‖ for all x ∈ Rd

)
≥ 1− 2 exp

(
−mp

2
0

32

)
.

To simplify notation, set dist(x; x̄) := min{‖x−x̄‖, ‖x+x̄‖}. Thus Assumption B implies,
with high probability, that fS is sharp. Indeed, Theorem 3.3 directly implies that with high
probability we have

fS(x)− fS(x̄) ≥ 1
2
κ∗stp0‖x− x̄‖‖x+ x̄‖

≥ 1
2
κ∗stp0 ·min{‖x− x̄‖, ‖x+ x̄‖} ·max{‖x− x̄‖, ‖x+ x̄‖}

≥ 1
2
κ∗stp0‖x̄‖ · dist(x; x̄).

Thus the sharpness condition in Assumption A holds for g = fS with µ = 1
2
κ∗stp0‖x̄‖.

3.2.2 Weak convexity

We next look at weak convexity of the objective fS. We will need the following definition.

Definition 3.4. A random vector a ∈ Rd is σ2-sub-Gaussian if for all unit vectors v ∈ Sd−1,
we have

E
[
exp

(
〈a, v〉2

σ2

)]
≤ e.

Assumption C. The random vector a is σ2-sub-Gaussian.

The following is a direct consequence of [10, Corollary 3.2].

Theorem 3.5 (Weak convexity). Suppose that Assumption C holds. Then there exists a
numerical constant c <∞ such that whenever m ≥ cd, the function fS is 4σ2-weakly convex,
with probability at least 1− exp

(
−m

c

)
.

Proof. This follows almost immediately from [10, Corollary 3.2]. Define the separable func-
tion h(z1, . . . , zm) := 1

m

∑m
i=1 |zi| and the map F : Rd → Rm with the i’th coordinate given

by Fi(x) := (aTi x)2 − bi. Observe the equality fS(x) = h(F (x)). Corollary 3.2 in [10] shows
that there exists a numerical constant c <∞ such that whenever m ≥ cd, with probability
at least 1− exp

(
−m

c

)
, we have

fS(y) ≥ h(F (x) +∇F (x)(y − x))− 2σ2‖y − x‖2 for all x, y ∈ Rd.

Since h is convex, for any vector v ∈ ∂h(F (x)) we have

h(F (x) +∇F (x)(y − x)) ≥ h(F (x)) + 〈v,∇F (x)(y − x)〉 = fS(x) + 〈∇F (x)∗v, y − x〉.

Taking into account the equality ∂fS(x) = ∇F (x)∗∂h(F (x)), we conclude that fS is 4σ2-
weakly convex.
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3.2.3 Lipschitz constant on a ball

Let us next estimate the Lipschitz constant of fS on a ball of a fixed radius. To this end,
observe the chain of inequalities

|fS(x)− fS(y)| ≤ 1

m

m∑
i=1

∣∣|〈ai, x〉2 − 〈ai, x̄〉2| − |〈ai, y〉2 − 〈ai, x̄〉2|∣∣
≤ 1

m

m∑
i=1

|〈ai, x〉2 − 〈ai, y〉2|

= ‖x− y‖‖x+ y‖ · 1

m

m∑
i=1

|〈ai, v〉〈ai, w〉|,

(3.3)

where we set v := x−y
‖x−y‖ and w := x+y

‖x+y‖ . Thus we would like to upper-bound the term
1
m

∑m
i=1 |〈ai, v〉〈ai, w〉| by a numerical constant, with high probability. Intuitively, there are

two key ingredients that would ensure this bound: the random vector a ∈ Rd should have
light tails (sub-Gaussian) and a should not concentrate too much along any single direction.
A standard way to model the latter is through an isotropy assumption.

Definition 3.6 (Isotropy). A random vector a ∈ Rd is isotropic if E[aaT ] = Id.

Note that a ∈ Rd is isotropic if and only if E[〈a, v〉2] = 1 for all unit vectors v ∈ Sd−1.

Assumption D. The random vector a is isotropic.

Assumptions C and D imply that the term 1
m

∑m
i=1 |〈ai, v〉〈ai, w〉| cannot deviate too

much from its mean, uniformly over all unit vectors v, w ∈ Rd. Indeed, the following is a
special case of [12, Theorem 2.8].

Theorem 3.7 (Concentration). Suppose that Assumptions C and D hold. Then there exist
constants c1, c2, c3 depending only on σ so that with probability at least 1−2 exp(−c2c

2
1 min{m, d2}),

the inequality holds:

sup
v,w∈Sd−1

∣∣∣∣∣ 1

m

m∑
i=1

|〈ai, v〉〈ai, w〉| − Ea[|〈a, v〉〈a, w〉|]

∣∣∣∣∣ ≤ c3
1c3

(√
d

m
+
d

m

)
.

We can now establish Lipschitz behavior of fS on bounded sets.

Corollary 3.8 (Lipschitz constant on a ball). Suppose that Assumptions C and D hold.
Then there exist constants c1, c2, c3 depending only on σ such that with probability at least

1− 2 exp(−c2c
2
1 min{m, d2}),

we have

|fS(x)− fS(y)| ≤

(
1 + c3

1c3

(√
d

m
+
d

m

))
‖x− y‖‖x+ y‖ for all x, y ∈ Rd, (3.4)

and consequently

max
ζ∈∂fS(x)

‖ζ‖ ≤ 2

(
1 + c3

1c3 ·

(√
d

m
+
d

m

))
‖x‖ for all x ∈ Rd. (3.5)
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Proof. Combining inequalities (3.3) with Theorem 3.7, we deduce that there exist constants
c1, c2, c3 depending only on σ such that with probability

1− 2 exp(−c2c
2
1 min{m, d2}),

all points x, y ∈ Rd satisfy

|fS(x)− fS(y)| ≤

(
Ea[|〈a, v〉〈a, w〉|] + c3

1c3

(√
d

m
+
d

m

))
‖x− y‖‖x+ y‖,

where we set v := x−y
‖x−y‖ and w := x+y

‖x+y‖ . Isotropy, in turn, implies

Ea[|〈a, v〉〈a, w〉|] ≤
√
Ea[|〈a, v〉|2] ·

√
Ea[|〈a, w〉|2] = 1,

Equation (3.4) follows immediately. Consequently, notice

limsup
x,y→z

|fS(x)− fS(y)|
‖x− y‖

≤ 2

(
1 + c3

1c3

(√
d

m
+
d

m

))
‖z‖.

Since the Lipschitz constant of fS at x coincides with the value maxζ∈∂f(x) ‖ζ‖ (see e.g. [26,
Theorem 9.13]), the estimate (3.5) follows.

We now have all the ingredients in place to apply Theorem 3.2 to the robust phase
retrieval objective. Namely, under Assumptions B, C, and D, we may set1

ρ := 4σ2; µ := 1
2
κ∗stp0‖x̄‖; Lg := 2

(
1 + c3

1c3 ·

(√
d

m
+
d

m

))(
1 +

κ∗stp0

16σ2

)
‖x̄‖. (3.6)

Thus, we have proved the following convergence guarantee – the main result of this
section. To simplify the formulas, we apply Theorem 3.2 only with γ := 1/2.

Corollary 3.9 (Linear convergence for phase retrieval). Suppose that Assumptions B, C,
and D hold. Then there exists a numerical constant c < ∞ such that the following is true.
Whenever we are in the regime, c

p20
≤ m

d
≤ d, and we initialize Algorithm 1 at x0 satisfying

min

{
‖x0 − x̄‖
‖x̄‖

,
‖x0 + x̄‖
‖x̄‖

}
≤ κ∗stp0

16σ2
, (3.7)

we can be sure with probability at least

1− 6 exp
(
−m ·min

{
p20
32
, c−1, c̃

})
that the produced iterates {xk} converge to {±x̄} at the linear rate:

dist2(xk+1; x̄) ≤

1−

 p0κ
∗
st

√
32

(
1 + ĉ ·

(√
p20
c

+
p20
c

))(
1 +

κ∗stp0
16σ2

)


2 dist2(xk; x̄). (3.8)

Here, c̃ and ĉ are constants that depend only on σ. In particular, aside from numerical
constants, the linear rate depends only on κ∗st, p0, and σ.

1The definition of Lg uses that the norm of any point in the tube T = B(x̄, γµρ ) ∪ B(−x̄, γµρ ) is clearly

upper bounded by ‖x̄‖+ µ
2ρ .

11



Thus under typical statistical assumptions, the subgradient method converges linearly
to {±x̄}, as long as one can initialize the method at a point x0 satisfying the relative error
condition ‖x0 ± x̄‖ ≤ R‖x̄‖, where R is a constant. A number of authors have proposed
initialization strategies that can achieve this guarantee using only a constant multiple of d
measurements [3, 10, 28–30]. For completeness, we record the strategy that was proposed in
[29], and rigorously justified in [10]. To simplify the exposition, we only state the guarantees
of the initialization under Gaussian assumptions on the measurement vectors ai.

Theorem 3.10 ( [10, Equation (15)]). Assume that ai ∼ N(0, Id) are i.i.d. standard Gaus-
sian. Define the value r̂2 := 1

m

∑m
i=1 bi and the index set Isel := {i ∈ [m] | bi ≤ 1

2
r̂2}.

Set

X init :=
∑
i∈Isel

aia
T
i and ŵ := argmin

w∈Sd−1

wTXinitw.

Then as soon as m
d
& ε−2 the point x0 = r̂ŵ satisfies

min

{
‖x0 − x̄‖
‖x̄‖

,
‖x0 + x̄‖
‖x̄‖

}
. ε log

1

ε

with probability at least ≥ 1− 5 exp(−cmε2), where c is a numerical constant.

For more details and intuition underlying the initialization procedure, see [10, Section
3.3].

4 Numerical Illustration

In this section, as a proof of concept, we apply the subgradient method to medium and
large-scale phase retrieval problems. All of our experiments were performed on a standard
desktop: Intel(R) Core(TM) i7-4770 CPU3.40 GHz with 8.00 GB RAM.

We begin with simulated data. Set d = 5000. We generated a standard Gaussian random
matrix A ∈ Rm×d for each value m ∈ {11, 000, 12225, 13500, 14750, 16000, 17250, 18500};
afterwards, we generated a Gaussian vector x̄ ∼ N(0, Id) and set b = (Ax̄)2. We then applied
the initialization procedure, detailed in Theorem 3.10, followed by the subgradient method.
Figure 4 plots the progress of the iterates produced by the subgradient method in each of the
seven experiments. The top curve corresponds to m = 11, 000, the bottom curve corresponds
to m = 18500, while the curves for the other values of m interpolate in between. The iterates
corresponding to m = 11, 000 stagnate; evidently the number of measurements is too small.
Indeed, the iterates do not even converge to a stationary point of the problem; this is in
contrast to the prox-linear method in [10]. The iterates for the rest of the experiments
converge to the true signal ±x̄ at an impressive linear rate.

In out second experiment, we use digit images from the MNIST data set [17]; these are
relatively small so that the measurement matrices can be stored in memory. We illustrate
the generic behavior of the algorithm on digit seven in Figure 2. The dimensions of the image
we use are 32 × 32 (with 3 RGB channels). Hence, after vectorizing the dimension of the
variable is d = 3072, while the number of Gaussian measurements is m = 3d = 9216. The

12



initialization produced appears to be reasonable; the digit is visually discernible. The true
image and the final image produced by the method are essentially identical. The convergence
plot appears in Figure 3.

Figure 2: Digit recovery; left is the true digit, middle is the initial, right is the digit produced
by the subgradient method. Dimension of the problem: (n, d,m) = (32, 3072, 9216).

0 50 100 150 200 250 300
Iteration k

10 7

10 5

10 3

10 1

101

|x
k

x|
/x

|

Figure 3: Convergence plot on MNIST digit (iterates vs. ‖xk − x̄‖/‖x̄‖).

We next apply the subgradient method for recovering large-scale real images. To allow
an easy comparison with previous work, we generate the data using the same process as
in [10, Section 6.3]. We first describe how we generate the operator A. To this end, let H ∈
{−1, 1}l×l/

√
l be a symmetric normalized Hadamard matrix. Consequently H satisfies the

equation H2 = Il. Note that by the virtue of being Hadamard, matrix vector multiplication
Hv requires time l log(l). For some integer k, we then generate k i.i.d. diagonal sign matrices

13



Figure 4: Convergence plot for the experiment on simulated data (iteration vs. ‖xk−x̄‖/‖x̄‖).

S1, . . . , Sk ∈ diag({−1, 1}l) uniformly at random, and defineA =
[
HS1 HS2 . . . HSk

]T ∈
Rkl×l.

We work with square colored images, represented as an array X ∈ Rn×n×3. The number
3 appears because colored images have 3 RGB channels. We then stretch the matrix X
into a 3n2-dimensional vector x̄ and set the measurements bi := (A(i, ·)x̄)2, where A(i, ·)
denotes the i’th row of A. Thus if the image is n×n, the number of variables in the problem
formulation is d := 3n2 and the number of measurements is m := kd = 3kn2. We use the
initialization procedure proposed in Theorem 3.10, with a standard power method (with a
shift) to find the minimal eigenvalue of X init. We complete the experiment by running the
subgradient method (Algorithm 1), which requires no parameter tunning.

We perform a large scale experiment on two pictures taken by the Hubble telescope.
Figure 5 describes the results of the experiment, while Figure 6 plots the iterate progress.
The image on the left is 1024 × 1024 and we use k = 3 Hadamard matrices. Hence the
dimensions of the problem are d ≈ 222 and m = 3d ≈ 224. The image on the right is
2048 × 2048 and we use k = 3 Hadamard matrices. Hence the dimensions of the problem
are d ≈ 224 and m = 3d ≈ 225. For the image on the left, the entire experiment, including
initialization and the subgradient method completed in 3 min. For the image on the right, it
completed in 25.6 min. The vast majority of time was taken up by the initialization. Thus a
more careful implementation and/or tunning of the initialization procedure could speed up
the experiment.

5 Nonsmooth landscape of the robust phase retrieval

In this section, we pursue a finer analysis of the stationary points of the robust phase retrieval
objective fS. To motivate the discussion, recall that under Assumptions B and C, Lemma 3.1

14



Figure 5: Image recovery; top row are the true images, bottom row are the images produced
by the subgradient method. We do not record the images produced by the initialization as
they were both completely black. Dimensions of the problem: (n, k, d,m) ≈ (1024, 3, 222, 224)
(left) and (n, k, d,m) ≈ (2048, 3, 224, 225) (right).

shows that there are no extraneous stationary points x satisfying

min

{
‖x− x̄‖
‖x̄‖

,
‖x+ x̄‖
‖x̄‖

}
<
κ∗stp0

4σ2
.

This result is uninformative when x is far away from x̄ or when x is close to the origin.
Therefore, it is intriguing to determine the location of all the stationary points of fS. In
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Figure 6: Convergence plot on the two Hubble images (iterates vs. ‖xk − x̄‖/‖x̄‖).

this section, we will see that under a Gaussian observation model, the stationary points of
fS cluster around the codimension two set, {0,±x̄} ∪ (x̄⊥ ∩ c · Sd−1), where c ≈ 0.4416 is a
numerical constant.

5.1 A matrix analysis interlude

Before continuing, we introduce some basic matrix notation. We mostly follow [9, 18, 19].
The symbol Sd will denote the Euclidean space of real symmetric d × d-matrices with the
trace inner product 〈X, Y 〉 := Tr(XY ). A function f : Rd → R is called symmetric if
equality, f(σx) = f(x), holds for all coordinate permutations σ. For any symmetric function
f : Rd → R, we define the induced function on the symmetric matrices fλ : Sd → R as the
composition

fλ(X) := f(λ(X)),

where λ : Sd → Rd assigns to each matrix X ∈ Sd its eigenvalues in nonincreasing order

λ1(X) ≥ λ2(X) ≥ . . . ≥ λn(X).

Note that f coincides with the restriction of fλ to diagonal matrices, fλ(Diag(x)) = f(x).
Any function on Sd that has the form fλ for some symmetric function f , is called spectral.
Equivalently, spectral functions on Sd are precisely those that are invariant under conjugation
by orthogonal matrices. Henceforth, let Od be the set of real d× d orthogonal matrices.

Recall that two matrices X, V ∈ Sd commute if and if they can be simultaneously di-
agonalized. When describing variational properties of convex spectral functions, a stronger
notion is needed. We say that X, V admit a simultaneous ordered spectral decomposition if
there exists a matrix U ∈ Od satisfying

UV UT = Diag(λ(V )) and UXUT = Diag(λ(X)).

Thus the definition stipulates that X and V admit a simultaneous diagonalization, where
the diagonals of the two diagonal matrices are simultaneously ordered.
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The following is a foundational theorem in the convex analysis of spectral functions, due
to Lewis [18]. An extension to the nonconvex setting was proved in [19], while a much
simplified argument was recently presented in [9].

Theorem 5.1 (Spectral convex analysis). Consider a symmetric function f : Rd → R ∪
{+∞}. Then f is convex if and only if fλ is convex. Moreover, if f is convex, then the
subdifferential ∂fλ(X) consists of all matrices V ∈ Sd satisfying λ(V ) ∈ ∂f(λ(X)) and such
that X and V admit a simultaneous ordered spectral decomposition.

5.2 Landscape of the population objective

Henceforth, we fix a point 0 6= x̄ ∈ Rd and assume that a ∈ Rd is a normally distributed
random vector a ∼ N(0, Id). In this section, we will investigate the population objective of
the robust phase retrieval problem:

fP (x) := Ea
[
|〈a, x〉2 − 〈a, x̄〉2|

]
.

Our aim is to prove the following result; see Figure 7 for a graphical depiction.

Theorem 5.2 (Landscape of the population objective).
The stationary points of the population objective fP are precisely

{0} ∪ {±x̄} ∪ {x ∈ x̄⊥ : ‖x‖ = c · ‖x̄‖}, (5.1)

where c > 0 (approx. c ≈ 0.4416) is the unique solution of the equation π
4

= c
1+c2

+arctan (c) .

Theorem 5.2 provides an exact characterization of the stationary points of the population
objective fP . Looking ahead, when we will pass to the subsampled objective fS in Section 6,
we will show that every stationary point of fS is close to an approximately stationary point of
fP . Therefore it will be useful to have an extension of Theorem 5.2 that locates approximately
stationary points of fP . This is the content of the following theorem.

Theorem 5.3 (Location of approximate stationary points). There exists a numerical con-
stant γ > 0 such that the following holds. For any point x ∈ Rd with

ε := dist(0; ∂fP (x)) ≤ γ‖x‖,

it must be the case that ‖x‖ . ‖x̄‖ and x satisfies either

‖x‖‖x− x̄‖‖x+ x̄‖ . ε‖x̄‖2 or

 |‖x‖ − c‖x̄‖| . ε
‖x̄‖
‖x‖

|〈x, x̄〉| . ε‖x̄‖

 ,

where c > 0 is the unique solution of the equation π
4

= c
1+c2

+ arctan (c) .

We present the proofs of Theorem 5.2 in Section 5.3, and defer the proof of Theorem 5.3
to the Appendix (Section B), as the latter requires a much more delicate argument. At their
core, the arguments rely on the observation that the population objective fP (x) depends on
the input vector x only through the eigenvalues of the rank two matrix xxT − x̄x̄T . This
observation was already implicitly used by Candès et al. [4]. Since this matrix will appear
often in the arguments, we will use the symbol X := xxT − x̄x̄T throughout. For ease of
reference, we record the following simple observation: the matrix X is typically indefinite.
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Figure 7: The contour plot of the function x 7→ ‖∇fP (x)‖, where x̄ = (1, 1). The global min-
imizers of fP are ±x̄, while the three extraneous stationary points are (0, 0) and ±c(−1, 1),
where c ≈ 0.4416.

Lemma 5.4 (Eigenvalues of the rank two matrix). Suppose x and x̄ are not collinear. Then
X has exactly one strictly positive and one strictly negative eigenvalue.

Proof. Suppose the claim is false. Then either X is positive semidefinite or negative semidef-
inite. Let us dispense with the first case. Observe X � 0 if and only if (xTv)2 − (x̄Tv)2 ≥ 0
for all v. Hence if X were positive semidefinite, we would deduce x⊥ ⊂ x̄⊥; that is, x and x̄
are collinear, a contradiction. The case X � 0 is analogous.

The following lemma, as we alluded to above, shows that fP (x) depends on x only through
the eigenvalues of the rank two matrix X = xxT − x̄x̄T .
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Lemma 5.5 (Spectral representation of the population objective).
For all points x ∈ Rd, equality holds:

fP (x) = Ev
[∣∣∣〈λ(X), v〉

∣∣∣] , (5.2)

where vi ∈ R are i.i.d. chi-squared random variables vi ∼ χ2
1.

Proof. Observe the equalities:

fP (x) = Ea
[
|〈a, x〉2 − 〈a, x̄〉2|

]
= Ea[|〈a, x− x̄〉〈a, x+ x̄〉|]
= Ea[|(x− x̄)TaaT (x+ x̄)|]
= Ea

[
|Tr
(
aT (x+ x̄)(x− x̄)Ta

)
|
]
.

Thus in terms of the matrix M := (x + x̄)(x − x̄)T , we have fP (x) = Ea
[
|Tr
(
aTMa

)
|
]
.

Taking into account the equalities aTMa = aT
(
M+MT

2

)
a = aTXa, we deduce

fP (x) = Ea
[
|Tr
(
aTXa

)
|
]
.

Form now an eigenvalue decomposition X = UDiag(λ(X))UT , where U ∈ Rd×d is an orthog-
onal matrix. Rotation invariance of the Gaussian distribution then implies

Ea
[
|Tr(aTXa)|

]
= Ea

[
|Tr((Ua)TX(Ua))|

]
= Eu

[∣∣∣∣∣
d∑
i=1

λi(X)u2
i

∣∣∣∣∣
]
,

where ui are i.i.d standard normals. The result follows.

Thus Lemma 5.5 shows that the population objective fP is a spectral function of X.
Combined with Lemma 5.4, we deduce that there are two ways to rewrite the population
objective in composite form:

fP (x) = ϕλ(X) and fP (x) = ζ(λ1(X), λd(X)),

where
ϕ(z) := Ev

[∣∣∣〈z, v〉∣∣∣] and ζ(y1, y2) := Ev1,v2 [|v1y1 + v2y2|] . (5.3)

Notice that ϕ and ζ are norms on Rd and R2, respectively. It is instructive to compute ζ in
closed form, yielding the following lemma. Since the proof is a straightforward computation,
we have placed it in the appendix.

Lemma 5.6 (Explicit representation of the outer function).
Let v1, v2 ∼ χ2

1 be i.i.d. chi-squared. Then for all real (y1, y2) ∈ R+ × R−, equality holds:

Ev1,v2 [|v1y1 + v2y2|] =
4

π

[
(y1 + y2) arctan

(√
−y1

y2

)
+
√
−y1y2

]
− (y1 + y2).

Thus we have arrived at the following explicit representation of fP (x). Figure 1 in the
introduction depicts the graph and the contours of the population objective.

Corollary 5.7 (Explicit representation of the population objective).
The explicit representation holds:

fP (x) =
4

π

[
Tr(X) · arctan

(√∣∣∣∣λmax(X)

λmin(X)

∣∣∣∣
)

+
√
|λmax(X)λmin(X)|

]
− Tr(X).
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Figure 8: Contour plot of the function ζ(y1, y2) := Ev1,v2 [|v1y1 + v2y2|] on R+×R−. The black
line depicts all points (y1, y2) with ∇y1ζ(y1, y2) = 0; for the explanation of the significance
of this line, see Lemma 5.8.

5.3 Proof of Theorem 5.2

We next move on to the proof of Theorem 5.2. Let us first dispense with the easy implication,
namely that every point in the set (5.1) is indeed stationary for fP ; in the process, we will
see how the slope c ≈ 0.4416 arises. Clearly ±x̄ are minimizers of fP and are therefore
stationary. The chain rule ∂fP (x) = ∂ϕλ(X)x implies that x = 0 is stationary as well. Fix
now a point x ∈ x̄⊥ \ {0}. Observe that the extremal eigenvalues of X are

λ1(X) = ‖x‖2 and λd(X) = −‖x̄‖2,

with corresponding eigenvectors

e1 :=
x

‖x‖
and ed :=

x̄

‖x̄‖
.

Since λ1(X) and λd(X) each have multiplicity one, the individual eigenvalue functions λ1(·)
and λd(·) are smooth at X with gradients

∇λ1(X) = e1e
T
1 and ∇λd(X) = ede

T
d .

See for example [16, Theorem 5.11]. Setting (y1, y2) := (‖x‖2,−‖x̄‖2) and applying the chain
rule to the decomposition fP (x) = ζ(λ1(X), λd(X)) shows

∇fP (x) =
(
∇y1ζ(y1, y2)e1e

T
1 +∇y2ζ(y1, y2)ede

T
d

)
x = ∇y1ζ(y1, y2)x.

Thus a point x ∈ x̄⊥\{0} is stationary for fP if and only if the partial derivative ∇y1ζ(y1, y2)
vanishes. The points (y1, y2) satisfying the equation 0 = ∇y1ζ(y1, y2) trace out exactly the
line depicted in Figure 8.
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Lemma 5.8. The solutions of the equation 0 = ∇y1ζ(y1, y2) on R++×R−− are precisely the
tuples {(c2y,−y)}y>0, where c > 0 is the unique solution of the equation

π

4
=

c

1 + c2
+ arctan (c) .

Note c ≈ 0.4416.

Proof. Differentiating shows that ω(c) := c
1+c2

+ arctan (c) is a continuous strictly increasing
function on [0,+∞) with ω(0) = 0 and limc→+∞ ω(c) = π/2. Hence the equation π/4 = ω(c)
has a unique solution in the set (0,∞). A short computation yields the expression

∇y1ζ(y1, y2) =
4

π

(
y1 + y2

2
√
−y1/y2(y1 − y2)

− y2

2
√
−y1y2

+ arctan

(√
−y1

y2

))
− 1.

Set y1 = −c2y2 for some c > 0 and y2 < 0. Then plugging in this value of y1, equality
0 = ∇y1ζ(y1, y2) holds if and only if

π/4 =

(
c

1 + c2
+ arctan (c)

)
.

This equation is independent of y1 and its solution in c is exactly the value satisfying π/4 =
ω(c).

Thus we have proved the following.

Proposition 5.9. Let c > 0 be the unique solution of the equation π
4

= c
1+c2

+ arctan (c).

Then a point x ∈ x̄⊥ \ {0} is stationary for fP if and only if equality ‖x‖ = c‖x̄‖ holds.

In particular, we have proved one implication in Theorem 5.2. To prove the converse,
we must show that every stationary point of fP lies in the set (5.1). Various approaches
are possible based either on the decomposition fP (x) = ϕλ(X) or fP (x) = ζ(λ1(X), λd(X)).
We will focus on the former. We will prove a strong result about the location of stationary
points of arbitrary convex spectral functions of X. Indeed, it will be more convenient to
consider the more abstract setting as follows.

Throughout, we fix a symmetric convex function f : Rd → R and a point 0 6= x̄ ∈ Rd,
and define the function

g(x) := fλ(xx
T − x̄x̄T ).

Note, the population objective fP has this representation with f = ϕ. The chain rule directly
implies

∂g(x) = ∂fλ(X)x.

Therefore, using Theorem 5.1 let us also fix a matrix V ∈ ∂fλ(X) and a matrix U ∈ Od

satisfying

λ(V ) ∈ ∂f(λ(X)), V = U(Diag(λ(V ))UT , and X = UDiag(λ(X))UT .

The following two elementary lemmas will form the core of the argument.
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Lemma 5.10 (Eigenvalue correlation).
The following are true.

1. Eigenvalues. We have λi(X) = 〈Ui, x〉2 − 〈Ui, x̄〉2 for i ∈ {1, d}, and consequently

0 ≤ λ1(X) ≤ 〈U1, x〉2 ≤ ‖x‖2

0 ≤ −λd(X) ≤ 〈Ud, x̄〉2 ≤ ‖x̄‖2.
(5.4)

2. Anticorrelation. Equality holds:

〈U1, x〉〈Ud, x〉 = 〈U1, x̄〉〈Ud, x̄〉.

3. Correlation. Provided x /∈ {±x̄}, we have span{x, x̄} ⊂ span{U1, Ud} and

〈x, x̄〉 = 〈U1, x〉〈U1, x̄〉+ 〈Ud, x〉〈Ud, x̄〉.

Proof. From the eigenvalue decomposition, we obtain

λ1(X) = UT
1 XU1 = 〈U1, x〉2 − 〈U1, x̄〉2

λd(X) = UT
d XUd = 〈Ud, x〉2 − 〈Ud, x̄〉2.

Taking into account that always λ1(X) ≥ 0 and λ1(X) ≤ 0 (Lemma 5.4), we conclude
λ1(X) ≤ 〈U1, x〉2 and λd(X) ≥ −〈Ud, x̄〉2. Claim 1 follows. For Claim 2, simply observe

0 = UT
d XU1 = 〈U1, x〉〈Ud, x〉 − 〈U1, x̄〉〈Ud, x̄〉.

To see Claim 3, for each i ∈ {1, d} notice

〈Ui, x〉x− 〈Ui, x̄〉x̄ = XUi = λi(X)Ui.

Suppose x /∈ {±x̄}. Then if x and x̄ are not collinear, we may divide through by λi(X)
and deduce, span{U1, Ud} = span{x, x̄}. On the other hand, if x and x̄ are collinear, then
exactly one λ1 or λd is nonzero, and then x lies in the span of the corresponding column of
U . In either case, we may write x = 〈U1, x〉U1 + 〈Ud, x〉Ud and x̄ = 〈U1, x̄〉U1 + 〈Ud, x̄〉Ud in
terms of their orthogonal expansions. We deduce

〈x, x̄〉 = 〈〈U1, x〉U1 + 〈Ud, x〉Ud, 〈U1, x̄〉U1 + 〈Ud, x̄〉Ud〉 = 〈U1, x〉〈U1, x̄〉+ 〈Ud, x〉〈Ud, x̄〉,

as claimed.

Lemma 5.11 (Spectral subdifferential). The following hold:

max {|λ1(V )〈U1, x〉|, |λd(V )〈Ud, x〉|} ≤ ‖V x‖, (5.5)

and

g(x)− g(x̄) ≤ λ1(V )λ1(X) + λd(V )λd(X). (5.6)
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Proof. To see (5.5), observe that for all unit vectors z ∈ Sd−1, we have ‖V x‖ ≥ 〈z, V x〉.
Thus, testing against all z ∈ {±U1,±Ud} yields the lower bounds (5.5). To prove the final
bound (5.6), we exploit the convexity of fλ. The subgradient inequality implies

fλ(X)− fλ(0) ≤ 〈V,X〉 = λ1(V )λ1(X) + λd(V )λd(X).

The result follows.

The following corollary follows quickly from the previous two lemmas.

Corollary 5.12 (Stationary point inclusion). Suppose that x is stationary for g, that is
V x = 0. Then one of the following conditions holds:

1. g(x) ≤ g(x̄)

2. x = 0

3. 〈x, x̄〉 = 0, λ1(V ) = 0.

Moreover, if x̄ minimizes g, then a point x is stationary for g if and only if x satisfies 1, 2,
or 3.

Proof. Suppose V x = 0 and that the first two conditions fail, that is x 6= 0 and g(x) > g(x̄).
We will show that the third condition holds. To this end, inequalities (5.5) and (5.6), along
with Lemma 5.10, directly imply the following:

0 < g(x)− g(x̄) ≤ λ1(V )λ1(X) + λd(V )λd(X), (5.7)

λ1(V )〈U1, x〉 = λd(V )〈Ud, x〉 = 0, (5.8)

x = 〈U1, x〉U1 + 〈Ud, x〉Ud. (5.9)

Aiming towards a contradiction, suppose λ1(V ) 6= 0. Then (5.8) and (5.9) imply 〈U1, x〉 = 0
and 〈Ud, x〉 6= 0. The second equation in (5.8), in turn, yields λd(V ) = 0. Appealing to
Lemma 5.10, we moreover deduce

0 ≤ λ1(X) = 〈U1, x〉2 − 〈U1, x̄〉2 ≤ 0.

Thus λ1(X) = 0 and therefore the right-hand-side of (5.7) is zero, a contradiction. We have
shown the equality λ1(V ) = 0, as claimed.

Inequality (5.7) implies λd(V ) 6= 0 and λd(X) 6= 0, and hence by Inequality (5.8),
we have 〈Ud, x〉 = 0. Combining the latter equality with Lemma 5.10, we conclude 0 =
〈U1, x〉〈Ud, x〉 = 〈U1, x̄〉〈Ud, x̄〉. Note 〈Ud, x̄〉 6= 0, since otherwise we would get λd(X) = 0
by (5.4). We conclude 〈U1, x̄〉 = 0. Finally, Lemma 5.10 then yields

〈x, x̄〉 = 〈U1, x〉〈U1, x̄〉+ 〈Ud, x〉〈Ud, x̄〉 = 0,

thereby completing the proof.
Now suppose that x̄ minimizes g. Clearly ±x̄ is a stationary point of g. In addition,

0 is a stationary point of g because V · 0 = 0. Thus, it remains to show that all points
satisfying 3 are stationary. Thus suppose x satisfies 3 and x 6= 0. Then the eigenvalues of
X are precisely ‖x‖2 and −‖x̄‖2 with eigenvectors U1 = ± x

‖x‖ and Ud = ± x̄
‖x̄‖ , respectively.

Thus, we have UTV x = Diag(λ(V ))UTx = (λ1(V )〈U1, x〉, 0, . . . , 0, λd(V )〈Ud, x〉)T = 0. We
conclude V x = 0, as required.
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The proof of Theorem 5.2 is now immediate.

Proof of Theorem 5.2. We have already proved that every point in the set (5.1) is stationary
for fP (Proposition 5.9). Thus we focus on the converse. In light of Proposition 5.9, it is
sufficient to show that every stationary point x of fP lies in the set {0,±x̄} ∪ x⊥. This is
immediate from Corollary 5.12 under the identification fP (x) = g(x) = ϕλ(X).

6 Concentration and stability

Having determined the stationary points of the population objective fP , we next turn to the
stationary points of fS. Our strategy is to show that with high probability, every stationary
point of fS is close to some stationary point of fP . The difficulty is that it is not true
that ∂fS(x) concentrates around ∂fP (x). Instead, we will see that the graphs of the two
subdifferentials ∂fS and ∂fP concentrate, which is sufficient for our purposes. Our argument
will rely on two basic properties, namely (1) the subsampled objective fS concentrates well
around fP , and (2) the function fS is weakly convex.

6.1 Concentration of subdifferential graphs

Armed with the concentration (Theorem 3.7) and the weak convexity (Theorem 3.5) guar-
antees, we can show that the graphs of ∂fP and ∂fS are close. The following theorem will
be our main technical tool, and is of interest in its own right. In essence, the result is a
quantitative extension of the celebrated Attouch’s convergence theorem [1] in convex analy-
sis. Henceforth, for any function l : Rd → R and a point x̄ ∈ Rd, with f(x̄) finite, we define
the local Lipschitz constant

lip(l; x̄) := limsup
x→x̄

|l(x)− l(x̄)|
‖x− x̄‖

.

Theorem 6.1 (Comparison). Consider four lsc functions f, g, l, u : Rd → R and a pair
(x, v) ∈ gph ∂g. Suppose that l is locally Lipschitz continuous and that the following condi-
tions  l(y) ≤f(y)− g(y) ≤ u(y)

g(y) ≥ g(x) + 〈v, y − x〉 − ρ

2
‖y − x‖2

 hold for all points y ∈ Rd.

Then for any γ > 0, there exists a point x̂ satisfying

‖x̂− x‖ ≤ 2γ and dist(v; ∂f(x̂)) ≤ 2ργ +
u(x)− l(x)

γ
+ lip(l; x̂).

In particular, if l(·) is constant, we have the estimate

dist
(

(x, v), gph ∂f
)
≤
√

4(ρ+
√

2 + ρ2) ·
√
u(x)− l(x). (6.1)
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Proof. From the two assumptions, for any point y ∈ Rd we have

f(y) ≥ g(y) + l(y) ≥ g(x) + l(y) + 〈v, y − x〉 − ρ

2
‖y − x‖2.

Define the function

ζ(y) := f(y)− 〈v, y − x〉+
ρ

2
‖y − x‖2 − l(y).

Clearly then we have

ζ(x)− inf ζ ≤ f(x)− l(x)− g(x) ≤ u(x)− l(x). (6.2)

Choose now any minimizer

x̂ ∈ argmin
y

{
ζ(y) +

u(x)− l(x)

4γ2
· ‖y − x‖2

}
.

First order optimality conditions and the sum rule [26, Exercise 10.10] immediately imply

u(x)− l(x)

2γ2
· (x− x̂) ∈ ∂ζ(x̂) ⊂ ∂f(x̂)− v + ρ(x̂− x) + lip(l; x̂)B(0, 1),

and hence

dist(v; ∂f(x̂)) ≤ u(x)− l(x)

2γ2
· ‖x̂− x‖+ ρ‖x̂− x‖+ lip(l; x̂). (6.3)

Next, we estimate the distance ‖x̂ − x‖. To this end, observe from the definition of x̂, we
have

ζ(x̂) +
u(x)− l(x)

4γ2
· ‖x̂− x‖2 ≤ ζ(x)

and hence
u(x)− l(x)

4γ2
· ‖x̂− x‖2 ≤ ζ(x)− ζ(x̂) ≤ u(x)− l(x), (6.4)

where the last inequality follows from (6.2). In the case u(x) = l(x), we deduce ζ(x) = ζ(x̂).
Thus we equally well could have set x̂ = x, and the theorem follows immediately from
(6.3). On the other hand, in the setting u(x) > l(x), the inequality (6.4) immediately yields
‖x̂ − x‖ ≤ 2γ, as claimed. Combining this inequality with (6.3) then gives the desired
guarantee

dist(v; ∂f(x̂)) ≤ 2ργ +
u(x)− l(x)

γ
+ lip(l; x̂).

Supposing l is a constant, we have the estimate

dist
(

(x, v), gph ∂f
)
≤

√
4γ2 +

(
2ργ +

u(x)− l(x)

γ

)2

.

Minimizing the right-hand-side in γ yields the choice γ =

√
u(x)−l(x)

(8+4ρ2)1/4
. With this value of γ, a

quick computation yields the claimed guarantee (6.1).
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Let us now specialize the theorem to the setting where the lower and upper bounds
l(·), u(·) are functions of the product ‖x− x̄‖ · ‖x+ x̄‖, as in phase retrieval.

Corollary 6.2. Fix two functions f, g : Rd → R. Suppose that g is ρ-weakly convex and that
there is a point x̄ and a real δ > 0 such that the inequality

|f(x)− g(x)| ≤ δ‖x− x̄‖ · ‖x+ x̄‖ holds for all x ∈ Rd.

Then for any stationary point x of g, there exists a point x̂ satisfying ‖x− x̂‖ ≤
√

4δ
ρ+2δ
·
√
‖x− x̄‖‖x+ x̄‖,

dist(0; ∂f(x̂)) ≤ (δ + 2
√
δ(ρ+ 2δ)) · (‖x− x̄‖+ ‖x+ x̄‖)

 .

Proof. Set u(x) := δ‖x− x̄‖ · ‖x− x̄‖ and l(x) := −δ‖x− x̄‖ · ‖x− x̄‖ and observe lip(l;x) ≤
δ(‖x− x̄‖ + ‖x + x̄‖). Applying Theorem 6.1, we deduce that for any γ > 0, there exists a
point x̂ satisfying

‖x̂−x‖ ≤ 2γ and dist(0; ∂f(x̂)) ≤ 2ργ+
2δ‖x− x̄‖‖x+ x̄‖

γ
+ δ(‖x̂− x̄‖+‖x̂+ x̄‖).

The triangle inequality implies

‖x̂− x̄‖ ≤ 2γ + ‖x− x̄‖ and ‖x̂+ x̄‖ ≤ 2γ + ‖x+ x̄‖,

and therefore

dist(0; ∂f(x̂)) ≤ 2(ρ+ 2δ)γ +
2δ‖x− x̄‖‖x+ x̄‖

γ
+ δ(‖x− x̄‖+ ‖x+ x̄‖)

Minimizing this expression in γ > 0 yields the choice γ :=
√

δ‖x−x̄‖‖x+x̄‖
ρ+2δ

. Plugging in this

value of γ and applying the AM-GM inequality then implies

dist(0; ∂f(x̂)) ≤ 4
√
δ(ρ+ 2δ)‖x− x̄‖‖x+ x̄‖+ δ(‖x− x̄‖+ ‖x+ x̄‖)

≤ (δ + 2
√
δ(ρ+ 2δ))(‖x− x̄‖+ ‖x+ x̄‖).

The result follows.

We now arrive at the main result of the section.

Corollary 6.3 (Subsampled stationary points). Consider the robust phase retrieval objective
fS(·) generated from i.i.d standard Gaussian vectors. There exist numerical constants c1, c2 >
0 such that whenever m ≥ c1d, then with probability at least 1−2 exp(−min{m/c1, c2m, d

2}),
every stationary point x of fS satisfies ‖x‖ . ‖x̄‖ and one of the two conditions:

‖x‖‖x− x̄‖‖x+ x̄‖
‖x̄‖3

. 4

√
d

m
or


∣∣∣∣‖x‖‖x̄‖ − c

∣∣∣∣ . 4

√
d

m
·
(

1 +
‖x̄‖
‖x‖

)
|〈x, x̄〉|
‖x‖‖x̄‖

. 4

√
d

m
· ‖x̄‖
‖x‖

 ,

where c > 0 is the unique solution of the equation π
4

= c
1+c2

+ arctan (c) .
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Proof. Theorem 3.7 shows that there exist constants c1, c2 > 0 such with probability at least
1− 2 exp(−c1 min{m, d2}), we have

|fS(x)− fP (x)| ≤ c2

2

(√
d

m
+
d

m

)
‖x− x̄‖‖x+ x̄‖ for all x ∈ Rd. (6.5)

Lemma 3.5, in turn, shows that there exist numerical constants c3, ρ > 0 such that provided

m ≥ c3d, the function fS is ρ-weakly convex, with probability at least 1 − exp
(
−m
c3

)
. Let

us now try to apply Corollary 6.2. To simplify notation, define ∆ :=
√

d
m

and set δ := c2∆.

Notice δ ≥ c2
2

(∆ + ∆2) and hence we may apply Corollary 6.2. We deduce that with high
probability, for any stationary point x of fS there exists a point x̂ ∈ Rd satisfying ‖x− x̂‖ ≤

√
4c2∆
ρ+2c2∆

·
√
‖x− x̄‖‖x+ x̄‖,

dist(0; ∂fP (x̂)) ≤ (c2∆ + 2
√
c2∆(ρ+ 2c2∆)) · (‖x− x̄‖+ ‖x+ x̄‖)

 . (6.6)

Notice
√

4c2∆
ρ+2c2∆

≤
√

∆ ·
√

4c2
ρ
≤ 2C ′

√
∆ and (c2∆ + 2

√
c2∆(ρ+ 2c2∆)) ≤ C ′

√
∆ for some

numerical constant C ′. For notational convenience, set Dx := ‖x− x̄‖ + ‖x + x̄‖. Thus, by
the AM-GM inequality, the inclusion x̂ ∈ B(x,C ′

√
∆Dx) holds.

Claim 1. There exist constants C ′′, τ > 0 such that with high probability, for all ∆ < C ′′,
the inequality ‖x‖ ≤ τ‖x̄‖ holds for any stationary point x of fS.

Proof. We may assume that ‖x̄‖ ≤ ‖x‖ since otherwise the result is trivial. Next, observe
that ‖x‖ and ‖x̂‖ have comparable norms:

‖x̂‖ ≤ ‖x‖+ C ′
√

∆Dx ≤ (1 + 4C ′
√

∆)‖x‖,
‖x̂‖ ≥ ‖x‖ − C ′

√
∆Dx ≥ (1− 4C ′

√
∆)‖x‖,

where we have used the bound Dx ≤ 4‖x‖ twice. To make the last bound meaningful, we
may set C ′′ < ( 1

8C′
)2, thereby ensuring 1−4C ′

√
∆ ≥ 1/2. Because the norms are comparable,

we deduce

dist(0; ∂fP (x̂)) ≤ C ′
√

∆Dx ≤ 4C ′
√

∆‖x‖ ≤ 4C ′
√

∆

(1− 4C ′
√

∆)
‖x̂‖. (6.7)

Let us now decrease C ′′ if necessary to have C ′′ < min{
(

1
8C′

)2
,
(
γ

8C′

)2}, where γ is the

fixed constant from Theorem 5.3. Then for all ∆ < C ′′, we have 1 − 4C ′
√

∆ ≥ 1
2

and
4C′
√

∆
1−4C′

√
∆
≤ 8C ′

√
∆ ≤ γ. Now we can apply Theorem 5.3 to x̂, which guarantees that

‖x̂‖ . ‖x̄‖. Thus because the norms of ‖x‖ and ‖x̂‖ are comparable, we obtain the desired
result.

Provided ∆ ≤ min{
(

1
8C′

)2
,
(
γ

8C′

)2}, we obtain from (6.7) and Claim 1 the estimate

dist(0; ∂fP (x̂)) ≤ ε := C ′
√

∆Dx ≤ 8C ′
√

∆‖x̂‖ ≤ γ‖x̂‖.
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Applying Theorem 5.3 we find that the point x̂ ∈ B(x,C ′
√

∆Dx) satisfies either

‖x̂‖‖x̂− x̄‖‖x̂+ x̄‖ .
√

∆Dx‖x̄‖2 or

 |‖x̂‖ − c‖x̄‖| .
√

∆Dx
‖x̄‖
‖x̂‖

|〈x̂, x̄〉| .
√

∆Dx‖x̄‖

 . (6.8)

Applying the triangle inequality and the bound Dx ≤ (2 + 2τ)‖x̄‖, the claimed inequalities
all follow (see Appendix A for a detailed explanation).

Acknowledgments We thank Peng Zheng (University of Washington, Seattle) for invalu-
able help in developing the numerical illustrations.
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Appendices

A Auxiliary computations

Proof of Lemma 5.6. We let σ1 = y1 and σ2 = −y2. We may write

Ev
[
|σ1v

2
1 − σ2v

2
2|
]

=
1

2π

∫
R2

|σ1v
2
1 − σ2v

2
2| exp

(
−
(
v2

1 + v2
2

2

))
dv1dv2

=
1

2π

∫
R1

(
σ1v

2
1 − σ2v

2
2

)
exp

(
−
(
v2

1 + v2
2

2

))
dv1dv2

+
1

2π

∫
R2

(
σ2v

2
2 − σ1v

2
1

)
exp

(
−
(
v2

1 + v2
2

2

))
dv1dv2

where

R1 = {(v1, v2) :
√
σ1|v1| ≥

√
σ2|v2|}

R2 = {(v1, v2) :
√
σ2|v2| ≥

√
σ1|v1|} .

Using the convention arctan(θ) ∈
[−π

2
, π

2

]
, we define the angle θ1 := arctan

(√
σ1
σ2

)
. Passing

to the polar coordinates, we deduce

1

2π

∫
R1

(σ1v
2
1 − σ2v

2
2) exp

(
−
(
v2

1 + v2
2

2

))
dv1dv2

=
1

2π

∫
R1

r3(σ1 cos2(θ)− σ2 sin2(θ)) e−r
2/2 drdθ.

We break up the region R1 into three wedges corresponding to the angles [0, θ1], [2π, 2π−θ1],
and [π + θ1, π − θ1]. We will compute the integral over one of the regions. The rest will
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follow analogously. To this end, we successively deduce

1

2π

∫ θ1

0

∫ ∞
0

r3

(
σ1 cos2(θ)− σ2 sin2(θ)

)
e−r

2/2 drdθ

=
1

2π

∫ θ1

0

σ1 (1 + cos(2θ))− σ2 (1− cos(2θ)) dθ

=
1

2π

(
(σ1 − σ2)θ + (σ1 + σ2) sin(θ) cos(θ)

)∣∣∣∣θ1
0

=
1

2π

(
(σ1 − σ2)θ1 + (σ1 + σ2) sin(θ1) cos(θ1)

)
1

2π

∫ 2π

2π−θ1

∫ ∞
0

r3

(
σ1 cos2(θ)− σ2 sin2(θ)

)
e−r

2/2 drdθ

=
1

2π

(
(σ1 − σ2)θ1 + (σ1 + σ2) sin(θ1) cos(θ1)

)
1

2π

∫ π+θ1

π−θ1

∫ ∞
0

r3

(
σ1 cos2(θ)− σ2 sin2(θ)

)
e−r

2/2 drdθ

=
1

2π

(
2(σ1 − σ2)θ1 + 2(σ1 + σ2) sin(θ1) cos(θ1)

)
.

Similarly, we see that for the region R2, we have

1

2π

∫
R2

(σ2v
2
2 − σ1v

2
1) exp

(
−
(
v2

1 + v2
2

2

))
dv1dv2

=
1

2π

∫
R2

r3(σ2 sin2(θ)− σ1 cos2(θ)) e−r
2/2 drdθ.

We break up the region R2 into two wedges where the angles range from [θ1, π − θ1] and
[π + θ1, 2π − θ1] as we did in R1. We will show the explicit computation for one of these
terms and note the rest following using similar computations:

1

2π

∫ π−θ1

θ1

∫ ∞
0

r3

(
σ2 sin2(θ)−σ1 cos2(θ)

)
e−r

2/2 drdθ

=
1

2π

∫ π−θ1

θ1

σ2 (1− cos(2θ))− σ1 (1 + cos(2θ)) dθ

=
1

2π

(
(σ2 − σ1)θ − (σ1 + σ2) sin(θ) cos(θ)

)∣∣∣∣π−θ1
θ1

=
1

2π

(
(σ2 − σ1)(π − 2θ1) + 2(σ1 + σ2) sin(θ1) cos(θ1)

)
1

2π

∫ 2π−θ1

π+θ1

∫ ∞
0

r3

(
σ2 sin2(θ)−σ1 cos2(θ)

)
e−r

2/2 drdθ

=
1

2π

(
(σ2 − σ1)(π − 2θ1) + 2(σ1 + σ2) sin(θ1) cos(θ1)

)
.
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By combining the computed integrals, we arrive at the full answer

Ev
[
|σ1v

2
1 − σ2v

2
2|
]

=
4

π

[
(σ1 − σ2) arctan

(√
σ1

σ2

)
+
√
σ1σ2

]
− (σ1 − σ2),

as claimed.

Proof showing Equation (6.8) implies Corollary 6.3. We observe that Dx ≤ 2‖x‖ + 2‖x̄‖,
which by Claim 1 gives Dx ≤ (2τ + 2)‖x̄‖. First by applying the triangle inequality with
‖x̂− x‖ ≤ C ′

√
∆Dx and (6.8), we obtain

|‖x‖ − c‖x̄‖| ≤ |‖x− x̂‖+ ‖x̂‖ − c‖x̄‖| . C ′
√

∆Dx +
√

∆Dx
‖x̄‖
‖x̂‖

.

Using the bound on Dx gives the desired inequality. Next, we conclude

|〈x, x̄〉| ≤ ‖x̄‖‖x− x̂‖+ |〈x̂, x̄〉|
. C ′

√
∆Dx‖x̄‖+

√
∆Dx‖x̄‖.

Applying the bound on Dx, the result is shown. Lastly, using ‖x‖ ≤ τ‖x̄‖ and ‖x̂‖ . ‖x̄‖,
we conclude

‖x‖‖x− x̄‖‖x+ x̄‖ ≤ (‖x− x̂‖+ ‖x̂‖)(‖x− x̄‖‖x+ x̄‖)
≤ D2

x‖x− x̂‖+ ‖x̂‖‖x− x̄‖‖x+ x̄‖
. ‖x̄‖2Dx

√
∆ + ‖x̂‖(‖x̂− x̄‖+ ‖x̂− x‖)‖x+ x̄‖

. ‖x̄‖3
√

∆ + ‖x̄‖2
√

∆Dx + ‖x̂‖‖x̂− x̄‖‖x+ x̄‖
. ‖x̄‖3

√
∆ + ‖x̂‖‖x̂− x̄‖(‖x− x̂‖+ ‖x̂+ x̄‖)

. ‖x̄‖3
√

∆ + ‖x̄‖2Dx

√
∆ + ‖x̂‖‖x̂− x̄‖‖x̂+ x̄‖

. ‖x̄‖3
√

∆ +
√

∆Dx‖x̄‖2.

Dividing through by ‖x̄‖3, finishes the proof.

B Proof of Theorem 5.3

In this section, we will prove Theorem 5.3. Contrasting with Theorem 5.2, the proof of The-
orem 5.3 is much more delicate, in large part relying on perturbation bounds on eigenvalues;
e.g. Gershgorin theorem [15, Corollary 6.1.3]. We continue using the notation of Section 5.3.
Namely, fix a symmetric convex function f : Rd → R and a point x̄ ∈ Rd \ {0}, and define
the function

g(x) := fλ(xx
T − x̄x̄T ).

The chain rule directly implies
∂g(x) = ∂fλ(X)x.
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Therefore, using Theorem 5.1 let us also fix a matrix V ∈ ∂fλ(X) and a matrix U ∈ Od

satisfying

λ(V ) ∈ ∂f(λ(X)), V = U(Diag(λ(V ))UT , and X = UDiag(λ(X))UT .

We begin with two technical lemmas.

Lemma B.1. Suppose that there exists κ > 0 such that the inequality

g(x)− g(x̄) ≥ κ‖x− x̄‖‖x+ x̄‖ holds for all x ∈ Rd.

Then for any x /∈ {±x̄}, we have max{|λ1(V )|, |λd(V )|} ≥ κ/2.

Proof. Using Lemma 5.10, for i ∈ {1, d} we obtain

|λi(X)| = |〈Ui, x〉2 − 〈Ui, x̄〉2| = |〈Ui, x− x̄〉〈Ui, x+ x̄〉| ≤ ‖x− x̄‖‖x+ x̄‖.

Taking into account (5.6), yields

κ‖x− x̄‖‖x+ x̄‖ ≤ g(x)− g(x̄) ≤ λ1(V )λ1(X) + λd(V )λd(X)

≤ 2 max{|λ1(V )|, |λd(V )|}‖x− x̄‖‖x+ x̄‖,

as desired.

Lemma B.2. Suppose that there exists κ > 0 such that the inequality

g(x)− g(x̄) ≥ κ‖x− x̄‖‖x+ x̄‖ holds for all x ∈ Rd. (B.1)

Then any point x ∈ Rd \ {0} satisfies

κ‖x− x̄‖‖x+ x̄‖
‖x‖

− (|λ1(V )|+ |λd(V )|)‖x̄‖2

‖x‖
≤ dist(0; ∂g(x)).

Proof. First, note that for x ∈ {±x̄}, the result holds trivially, so we may assume x /∈
{±x̄}. Recall the equality ∂g(x) = ∂fλ(X)x. Fix now a vector V ∈ ∂fλ(X) satisfying
dist(0; ∂g(x)) = ‖V x‖. Using convexity, we deduce

g(x)− g(x̄) = fλ(xx
T − x̄x̄T )− fλ(0) ≤ 〈V, xxT − x̄x̄T 〉 ≤ ‖x‖dist(0, ∂g(x)) + |x̄TV x̄|.

(B.2)

We next upper bound the term |x̄TV x̄|. To this end, fix a matrix U ∈ Od satisfying V =
UDiag(λ(V ))UT and X = UDiag(λ(X))UT , and such that the inclusion λ(V ) ∈ ∂f(λ(X))
holds. Taking into account x̄ ∈ span{U1, Ud} (Lemma 5.10), we deduce

|x̄TV x̄| = |λ1(V )〈U1, x̄〉2 + λd(V )〈Ud, x̄〉2| ≤ (|λ1(V )|+ |λd(V )|)‖x̄‖2.

Combining this estimate with (B.2) and (B.1) completes the proof.

We next prove a quantitative version of Corollary 5.12. The argument follows a similar
outline.
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Theorem B.3 (Quantitative Version of Corollary 5.12). Suppose that there exists a constant
κ > 0 such that the inequality

g(y)− g(x̄) ≥ κ‖y − x̄‖‖y + x̄‖ holds for all y ∈ Rd.

Suppose |λ1(V )|, |λd(V )| are both upper bounded by a numerical constant2 and set ε := ‖V x‖.
Then there exists a numerical constant γ > 0, such that whenever ε ≤ γ · ‖x‖, we have that
‖x‖ . ‖x̄‖ and x satisfies either

‖x‖‖x− x̄‖‖x+ x̄‖ . ε‖x̄‖2 or

{
|λ1(V )| . ε/‖x‖
|〈x, x̄〉| . ε‖x̄‖

}
.

Proof. Clearly, we may suppose x /∈ {0,±x̄} and ε 6= 0, since otherwise the theorem would
hold vacuously. We will prove the following precise bound, which immediately implies the
statement of the theorem: there exists a numerical constant γ > 0, such that whenever
ε ≤ γ‖x‖, the inequalities ‖x‖ ≤ δ‖x̄‖ and

min

 ‖x− x̄‖‖x+ x̄‖
2
κ

max
{(
‖x‖√

2
+
√

2‖x̄‖2
‖x‖

)
, ‖x‖(κ

√
2+2|λd(V )|)
κ

} ,max

{
|λ1(V )|‖x‖√

2
,

κ|〈x, x̄〉|
2
√

2δ‖x‖+ 2‖x̄‖

} ≤ ‖V x‖,
(B.3)

hold, where we define the numerical constant

δ :=

√
2(|λ1(V )|+ |λd(V )|)

κ
+ 1.

As a first step, we show that ‖x‖ is within a numerical constant of ‖x̄‖.
Claim 2. Provided γ < κ(1−1/δ)2

2
, the inequality, ‖x‖ ≤ δ‖x̄‖, holds.

Proof. Assume for sake of contradiction ‖x‖‖x̄‖ > δ :=
√

2(|λ1(V )|+|λd(V )|)
κ

+ 1. Lemma B.1 shows

max{|λ1(V )|, |λd(V )|} ≥ κ
2
, and therefore δ > 1. Using the bound dist(0; ∂g(x)) ≤ ‖V x‖ = ε

and Lemma B.2, we deduce:

κ‖x− x̄‖‖x+ x̄‖
‖x‖2

− ε

‖x‖
≤ (|λ1(V )|+ |λd(V )|)‖x̄‖2

‖x‖2
.

Clearly, we have

κ‖x− x̄‖‖x+ x̄‖
‖x‖2

≥ κ(‖x‖ − ‖x̄‖)2

‖x‖2
≥ κ(1− 1/δ)2.

Let us now choose γ < κ(1−1/δ)2

2
, thereby guaranteeing ε

‖x‖ ≤
κ(1−1/δ)2

2
. Hence, we obtain

κ(1− 1/δ)2

2(|λ1(V )|+ |λd(V )|)
≤ 1

|λ1(V )|+ |λd(V )|

(
κ‖x− x̄‖‖x+ x̄‖

‖x‖2
− ε

‖x‖

)
≤ ‖x̄‖

2

‖x‖2
<

1

δ2
.

2This holds whenever (t, s) 7→ f(t, s, 0, . . . , 0) is Lipschitz continuous.
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Rearranging yields
κ

2(|λ1(V )|+ |λd(V )|)
<

1

(δ − 1)2
,

a contradiction.

Looking back at the expression, define the values:

ρ1 =
‖x‖√

2
and ρ3 =

2

κ
max

{(
‖x‖√

2
+

√
2‖x̄‖2

‖x‖

)
,
‖x‖(κ

√
2 + 2|λd(V )|)
κ

}
.

Notice that the inequality, ερ3 ≥ ‖x − x̄‖‖x + x̄‖, would immediately imply the validity of
the theorem. Thus, we assume ερ3 < ‖x− x̄‖‖x+ x̄‖ throughout. It suffices now to show

|λ1(V )| ≤ ε/ρ1 and |〈x, x̄〉| ≤ ε

κ

(
2
√

2δ‖x‖+ ‖x̄‖
)
.

We do so in order. We begin by observing that the inequality (5.5) guarantees

max{|λ1(V )〈U1, x〉|, |λd(V )〈Ud, x〉|} ≤ ε. (B.4)

Claim 3. The inequality |λ1(V )| < ε/ρ1 holds.

Proof. Let us assume the contrary, |λ1(V )| ≥ ε/ρ1. Inequality (B.4) then implies |〈U1, x〉| ≤
ρ1, while Lemma 5.10 in turn guarantees

0 ≤ λ1(X) = 〈U1, x〉2 − 〈U1, x̄〉2 ≤ ρ2
1.

Taking into account 〈U1, x〉2+〈Ud, x〉2 = ‖x‖2 (Lemma 5.10, correlation), we deduce 〈Ud, x〉2 ≥
‖x‖2 − ρ2

1. Combining this with (B.4), we deduce

|λd(V )| ≤ ε

|〈Ud, x〉|
≤ ε√

‖x‖2 − ρ2
1

.

Therefore, using the correlation inequality (5.6), we find

ερ3κ < κ‖x− x̄‖‖x+ x̄‖ ≤ g(x)− g(x̄) ≤ λ1(V )λ1(X) + λd(V )λd(X)

≤ |λ1(V )|(〈U1, x〉2 − 〈U1, x̄〉2) +
ε√

‖x‖2 − ρ2
1

(
〈Ud, x̄〉2 − 〈Ud, x〉2

)
≤ ε|〈U1, x〉|+

ε〈Ud, x̄〉2√
‖x‖2 − ρ2

1

≤ ε

(
ρ1 +

‖x̄‖2√
‖x‖2 − ρ2

1

)
.

Dividing through by ε and plugging in the value of ρ1 yields

ρ3κ <
‖x‖√

2
+

√
2‖x̄‖2

‖x‖
,

which contradicts the definition of ρ3.
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Let us now decrease γ > 0 further by ensuring γ < min{κ(1−1/δ)2

2
, κ

2
√

2
}. Thus, from

Claim 3 and our standing assumption ‖V x‖ ≤ κ‖x‖
2
√

2
, we conclude

|λ1(V )| <
√

2ε

‖x‖
<
κ

2
.

Lemma B.1 guarantees, max{|λ1(V )|, |λd(V )|} ≥ κ/2; thus, we deduce |λd(V )| ≥ κ/2. Ap-
plying (B.4), we find that

|〈Ud, x〉| ≤
ε

|λd(V )|
≤ 2ε

κ
. (B.5)

Thus, by Lemma 5.10, we have

|〈U1, x̄〉〈Ud, x̄〉| = |〈U1, x〉〈Ud, x〉| ≤
2‖x‖ε
κ

. (B.6)

Claim 4. The inequality |〈Ud, x̄〉| > |〈U1, x̄〉| holds.

Proof. Let us assume the contrary |〈Ud, x̄〉| ≤ |〈U1, x̄〉|. Then from (B.6) we obtain3 〈Ud, x̄〉2 <
2‖x‖ε
κ

. Hence from Lemma 5.10, we find that |λd(X)| ≤ 〈Ud, x̄〉2 ≤ 2‖x‖ε
κ

. Putting these facts
together with the correlation inequality (5.6), we successively deduce

ερ3κ < κ‖x− x̄‖‖x+ x̄‖ ≤ g(x)− g(x̄) ≤ λ1(V )λ1(X) + |λd(V )| · |λd(X)|

≤
√

2ε

‖x‖
· λ1(X) + |λd(V )| · 2‖x‖ε

κ

≤ κ
√

2ε‖x‖
κ

+
2|λd(V )|ε‖x‖

κ
,

where the last inequality uses the bound λ1(X) ≤ ‖x‖2. Therefore, we have reached a
contradiction to the definition of ρ3.

Combining Claim 4 with the expression 〈U1, x̄〉2+〈Ud, x̄〉2 = ‖x̄‖2, we conclude 〈Ud, x̄〉2 ≥
‖x̄‖2

2
. Therefore, (B.6) and Claim 2 imply the strong result:

|〈U1, x̄〉| ≤
2
√

2ε‖x‖
κ‖x̄‖

≤ 2
√

2εδ

κ
. (B.7)

Thus combining Claim 2, Lemma 5.10, and (B.5) we conclude

|〈x, x̄〉| = |〈U1, x〉〈U1, x̄〉+ 〈Ud, x〉〈Ud, x̄〉| ≤ |〈U1, x̄〉| · ‖x‖+ |〈Ud, x〉| · ‖x̄‖

≤ ε

κ

(
2
√

2δ‖x‖+ 2‖x̄‖
)
.

The proof is complete.

3If ab < δ, then min{a, b}2 < δ.
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In order to interpret the conclusion of Theorem B.3 on the phase retrieval objective fP ,
we must show that the condition {

|λ1(V )| . ε/‖x‖
|〈x, x̄〉| . ε‖x̄‖

}

guarantees that the equation ‖x‖ = c · ‖x̄‖ almost holds, where c is defined in Theorem 5.2.
This is the content of the following two lemmas. Note that it is easy to verify the equality
λ1(V ) = ∇y1ζ(y1, y2), where we set (y1, y2) := (λ1(X), λd(X)).

Lemma B.4 (Extension of Lemma 5.8). Fix a real constant 0 ≤ ε < 1. The solutions of
the inequality |∇y1ζ(y1, y2)| ≤ ε on R++ × R−− are precisely the elements of the open cone

{(c2y,−y) : 0 < y, 0 < c1 ≤ c ≤ c2},

where c1, c2 are the unique solutions of the equations

π

4
(1 + ε) =

c2

1 + c2
2

+ arctan (c2) ,

and
π

4
(1− ε) =

c1

1 + c2
1

+ arctan (c1) .

Moreover, considering c1 and c2 as functions of ε, we have c2(ε) − c1(ε) ≤ 5πε whenever
0 < ε < 1/2.

Proof. The proof is completely analogous to that of Lemma 5.8. We leave the details to the
reader. The only point worth commenting is the inequality c2(ε) − c1(ε) ≤ 5πε whenever
0 < ε < 1/2. To get this bound, observe that 0 < c2(ε) ≤ c2(.5) ≤ .83 for all ε ≤ 1/2 as c2

is a increasing function of ε. Therefore,

π

2
ε =

c2

1 + c2
2

− c1

1 + c2
1

+ arctan(c2)− arctan(c1) ≥ c2

1 + c2
2

− c1

1 + c2
1

=
1− c1c2

(1 + c2
1)(1 + c2

2)
(c2 − c1)

≥ 1− c2
2

(1 + c2
1)(1 + c2

2)
(c2 − c1) ≥ 1− c2

2

(1 + c2
2)2

(c2 − c1).

(B.8)
Thus, we have

c2(ε)− c1(ε) ≤ πε

2

(1 + c2
2(ε))2

1− c2
2(ε)

≤ πε

2

(1 + .832)2

1− .832
≤ 5πε,

as claimed.

Lemma B.5. Fix a real constant 0 ≤ ε < 1
3

and vectors x, x̄ ∈ Rd \ {0}. Suppose λ1(X) =
−c2λd(X) for some real constant c > 0 and |〈x, x̄〉| ≤ ε‖x̄‖‖x‖. Then we have

1− (1 + c2)(ε+ ε2) ≤ c2‖x̄‖2

‖x‖2
≤ 1 + (1 + c2)(ε+ ε2).
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Proof. Fix a decomposition x = 〈x,x̄〉
‖x̄‖2 x̄+v, where v ∈ x̄⊥. Note inequality |〈x, x̄〉| ≤ ε‖x‖‖x̄‖

implies that x̄ and x are not collinear, and therefore ‖v‖ > 0. Define the constant α = 〈x,x̄〉
‖x̄‖2 .

Then a quick computation shows the following decomposition:

X =
[

x̄
‖x̄‖

v
‖v‖

] [(α2 − 1)‖x̄‖2 α‖x̄‖‖v‖
α‖x̄‖‖v‖ ‖v‖2

] [
x̄
‖x̄‖

v
‖v‖

]T
.

Notice that the above 2× 2-matrix is invertible, and therefore its eigenvalues must be λ1(X)
and λd(X). By the Gershgorin theorem [15, Corollary 6.1.3] applied to the 2× 2 matrix, we
know that λ1(X) and λd(X) must lie in the union of the intervals

D̄1 = {z : |z − ‖v‖2| ≤ |α|‖x̄‖‖v‖} and D̄2 = {z : |z − (α2 − 1)‖x̄‖2| ≤ |α|‖x̄‖‖v‖}.

We next prove the following claim.

Claim 5. The intervals D̄1 and D̄2 are contained in the following intervals around ‖x‖2 and
−‖x̄‖2, respectively:

D̄1 ⊂ D1 := {z : |z − ‖x‖2| ≤ (ε2 + ε)‖x‖2},
D̄2 ⊂ D2 := {z : |z + ‖x̄‖2| ≤ (ε2 + ε)‖x‖2}.

Moreover, we have D1 ∩D2 = ∅ and D1 ⊂ R++.

Proof. Consider the interval D̄1. A routine computation shows

|α| ≤ ε‖x‖
‖x̄‖

, 0 ≤ α2 ≤ ε2‖x‖2

‖x̄‖2
, and 0 ≤ α〈x, x̄〉 ≤ ε2‖x‖2.

Using ‖x‖ ≥ ‖v‖ and ‖v‖2 = ‖x‖2 − 2α〈x, x̄〉 + α2‖x̄‖2, we successively deduce for any
z ∈ D̄1, the inequalities

−|α|‖x̄‖‖x‖ ≤ z − ‖v‖2 ≤ |α|‖x̄‖‖x‖
−ε‖x‖2 ≤ z − ‖x‖2 + 2α〈x, x̄〉 − α2‖x̄‖2 ≤ ε‖x‖2

−ε‖x‖2 + α2‖x̄‖2 − 2α〈x, x̄〉 ≤ z − ‖x‖2 ≤ ε‖x‖2 + α2‖x̄‖2 − 2α〈x, x̄〉
−ε‖x‖2 − ε2‖x‖2 ≤ z − ‖x‖2 ≤ ε‖x‖2 + ε2‖x‖2.

Thus we have shown D̄1 ⊂ D1. Similarly, for all z ∈ D̄2, we compute

−|α|‖x̄‖‖v‖ ≤ z − (α2 − 1)‖x̄‖2 ≤ |α|‖x̄‖‖v‖
−ε‖x‖2 + α2‖x̄‖2 ≤ z + ‖x̄‖2 ≤ ε‖x‖2 + α2‖x̄‖2

−ε‖x‖2 ≤ z + ‖x̄‖2 ≤ ε‖x‖2 + ε2‖x‖2.

We conclude D̄2 ⊂ D2. Provided ‖x‖ 6= 0 and ε2 + ε < 1, it is clear D1 ⊂ R++. It remains
to show that D2 ∩D1 = ∅. Clearly it is sufficient to guarantee that the sum of the radii of
D2 and D1 is strictly smaller than the distance between the centers:

(ε2 + ε)‖x‖2 + (ε2 + ε)‖x‖2 < ‖x‖2 − (−‖x̄‖2).

Rearranging, we must guarantee 2(ε2 + ε) − 1 < ‖x̄‖2
‖x‖2 . Clearly this is the case as soon as

ε < 1/3. The result follows.
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Thus we have proved D1 ∩ D2 = ∅ and D1 ⊂ R++. Since D̄1 and D̄2, each contains at
least one eigenvalue, it must be the case that λd(X) lies in D̄2 and λ1(X) lies in D̄1. We
thus conclude ∣∣λ1(X)− ‖x‖2

∣∣ ≤ (ε2 + ε)‖x‖2∣∣λd(X) + ‖x̄‖2
∣∣ ≤ (ε2 + ε)‖x‖2.

Writing λ1(X) = −c2λd(X), we obtain∣∣−c2λd(X)− c2‖x̄‖2 + c2‖x̄‖2 − ‖x‖2
∣∣ ≤ (ε2 + ε)‖x‖2,

and hence ∣∣‖x‖2 − c2‖x̄‖2
∣∣ ≤ (1 + c2)(ε2 + ε)‖x‖2.

The result follows.

Combining Lemmas B.4 and B.5, we arrive at the following.

Corollary B.6 (Small λ1(V ) and near orthogonality). Fix a real constant 0 ≤ ε ≤ 1
8

and
consider a point x ∈ Rd \ {0} satisfying |∇y1ζ(λ1(X), λd(X))| ≤ ε and |〈x, x̄〉| ≤ ε‖x‖‖x̄‖.
Then x satisfies ∣∣‖x‖ − c‖x̄‖∣∣ ≤ 26ε‖x̄‖,
where c is the solution of the equation π

4
= c

1+c2
+ arctan(c).

Proof. Define the quantities c1(ε) and c2(ε) to be the solutions of the equations

π

4
(1− ε) =

c1

1 + c2
1

+ arctan(c1),

π

4
(1 + ε) =

c2

1 + c2
2

+ arctan(c2),

respectively. First, since c2(·) is an increasing function, it is easy to verify c2(ε) < 1 whenever
0 < ε ≤ 1

8
; thus we have 2ε(1 + c2

2(ε)) < 1
2
. By Lemma B.4, we know that whenever

|∇y1ζ(λ1(X), λd(X))| ≤ ε, there exists ĉ satisfying λ1(X) = −ĉ2λd(X) and 0 < c1(ε) ≤ ĉ ≤
c2(ε). Lemma B.5, in turn, implies

(1− 2ε(1 + ĉ2))‖x‖2 ≤ ĉ2‖x̄‖2 ≤ (1 + 2ε(1 + ĉ2))‖x‖2.

Looking at the right-hand-side, we deduce

c2
1(ε)‖x̄‖2 ≤ ĉ2‖x̄‖2 ≤

(
1 + 2ε(1 + c2

2(ε))
)
‖x‖2,

while looking at the left-hand-side yields

(1− 2ε(1 + c2
2(ε)))‖x‖2 ≤ ĉ2‖x̄‖2 ≤ c2

2(ε)‖x̄‖2.

Isolating ‖x‖2 and taking square roots we obtain

c1(ε)√
1 + 2ε(1 + c2

2(ε))
‖x̄‖ ≤ ‖x‖ ≤ c2(ε)√

1− 2ε(1 + c2
2(ε))

‖x̄‖. (B.9)
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Applying Lemma B.4 and the inequality c2(ε) < 1, we upper bound the right-hand-side:

c2(ε)√
1− 2ε(1 + c2

2(ε))
≤ 5πε+ c√

1− 4ε

= c

(
1 +

5πε/c+ 1−
√

1− 4ε√
1− 4ε

)
≤ c

(
1 +

5πε/c+ 4ε√
1/2

)
≤ c(1 + 57ε).

Exactly the same reasoning shows

c1(ε)√
1 + 2ε(1 + c2

2(ε))
≥ c(1− 57ε).

Thus the inequality
∣∣‖x‖ − c‖x̄‖∣∣ ≤ 57cε‖x̄‖ ≤ 26ε‖x̄‖ holds, as claimed.

We are now ready to prove the inexact extension of Theorem 5.3.

Proof of Theorem 5.3. We use the decomposition g = fP (X) and f = ϕ. Let us verify that
we may apply Theorem B.3. To this end, observe that the population objective satisfies

fP (x)− fP (x̄) = Ea
[〈

a,
x− x̄
‖x− x̄‖

〉〈
a,

x+ x̄

‖x+ x̄‖

〉]
‖x− x̄‖‖x+ x̄‖ ≥ κ‖x− x̄‖‖x+ x̄‖

for the numerical constant κ [12, Corollary 3.7]. Moreover, clearly ζ is globally Lipschitz
(being a norm), and therefore |λ1(V )| and |λd(V )| are bounded by a numerical constant.
Thus provided ε := ‖V x‖ satisfies ε ≤ γ · ‖x‖ for the numerical constant γ, we can be sure
that x satisfies either

‖x‖‖x− x̄‖‖x+ x̄‖ . ε‖x̄‖2 or

{
|λ1(V )| . ε/‖x‖
|〈x, x̄〉| . ε‖x̄‖

}
.

Now suppose the latter is the case, and let C be a numerical constant satisfying |λ1(V )| ≤
Cε/‖x‖ and |〈x, x̄〉| ≤ Cε‖x̄‖. We aim to apply Corollary B.6. To do so, we must ensure

|λ1(V )| ≤ Cε

‖x‖
≤ 1

8
and

∣∣∣∣〈 x

‖x‖
,
x̄

‖x̄‖

〉∣∣∣∣ ≤ Cε · ‖x̄‖
‖x‖‖x̄‖

=
Cε

‖x‖
≤ 1

8
.

Adjusting γ if necessary, we can be sure that ε/‖x‖ is below 1
8C

. Applying Corollary B.6,

with Cε
‖x‖ in place of ε, we conclude |‖x‖ − c‖x̄‖| . ε‖x̄‖‖x‖ , as claimed.

B.1 Comments on Robustness

We have thus far assumed that the measurement vector b = (Ax)2 has not been corrupted
by errant noise. In this section, we record a few straightforward extensions of earlier results,
which hold if the measurements b are noisy.
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Assumption E. Let b1, . . . , bm be m i.i.d. copies of

b̂ = (aTx)2 + δ · ξ,

where δ ∈ {0, 1}, ξ ∈ R, and a ∈ Rd are independent random variables satisfying (1)
pfail := P (δ 6= 0) < 1, (2) E [|ξ|] <∞, and (3) a ∼ N(0, Id).

Under corruption by δ · ξ, we define new population and subsampled objectives

f̂P (x) := Ea,ξ,δ[|(aTx)2 − (aT x̄)2 − δ · ξ|];

f̂S(x) :=
1

m

m∑
i=1

|(aTi x)2 − bi|.

Then by following the outline of the proof of Lemma 5.5, we arrive at a similar characteri-
zation of f̂P as a spectral function.

Lemma B.7 (Spectral representation of the population objective).
For all points x ∈ Rd, equality holds:

f̂P (x) = Ev,ξ,δ
[∣∣∣〈λ(X), v〉 − δ · ξi

∣∣∣] ,
where vi ∈ R are i.i.d. chi-squared random variables vi ∼ χ2

1.

Thus, we may write
f̂P (x) = ϕ̂(λ(X)),

where ϕ̂ is the convex symmetric function

ϕ̂(z) := Ev,ξ,δ
[∣∣∣〈z, v〉 − δ · ξi∣∣∣] .

Moreover, provided that x̄ is a minimizer of f̂P , the complete set of stationary points of f̂p
may be determined from Corollary 5.12. We prove this now.

Lemma B.8. For all x ∈ Rd, the following inequality holds:

f̂P (x)− f̂P (±x̄) ≥ (1− 2pfail)fP (x).

Consequently, if pfail < 1/2, the points ±x̄ are the only minimizers of f̂p, and there exists a
numerical constant κ such that

f̂P (x)− f̂P (±x̄) ≥ κ(1− 2pfail)‖x− x̄‖‖x+ x̄‖.

Proof. By expanding the difference, we find that

f̂P (x)− f̂P (±x̄) = (1− pfail)(fP (x)− fP (x̄)) + pfailEa,ξ
[
|(aTx)2 − (aT x̄)2 − ξ| − |ξ|

]
≥ (1− pfail)fP (x)− pfailEa

[
|(aTx)2 − (aT x̄)2|

]
≥ (1− 2pfail)fP (x).

Only the sharpness inequality is left to prove, but this is simply a consequence of the sharp-
ness of fP , which was proved in [12, Corollary 3.7].
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Therefore, by Corollary 5.12 we arrive at the complete characterization of the stationary
points of f̂P .

Theorem B.9. The set of stationary points of f̂P are precisely

{±x} ∪ {0} ∪ {x | 〈x, x̄〉 = 0, and ∃ζ ∈ ∂ϕ̂(λ(X)),max
i
{ζi} = 0}.

The exact location of those stationary points orthogonal to x̄ depends on the structure
of the convex function ϕ̂, which in turn depends the distribution of the noise δ · ξ. We will
not attempt to characterize such ϕ̂.

By the sharpness of f̂P , a quantitative version of Theorem B.9 immediately follows from
Theorem B.3. When coupled together with a concentration inequality like that in Theo-
rem 3.7, such a theorem would imply concentration of the subdifferential graphs of f̂S and
f̂P . We omit these straightforward details.
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