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Abstract We consider the problem of constructing quantum channels, if they
exist, that transform a given set of quantum states {ρ1, . . . , ρk} to another such
set {ρ̂1, . . . , ρ̂k}. In other words, we must find a completely positive linear map,
if it exists, that maps a given set of density matrices to another given set of den-
sity matrices, possibly of different dimension. Using the theory of completely
positive linear maps, one can formulate the problem as an instance of a pos-
itive semidefinite feasibility problem with highly structured constraints. The
nature of the constraints makes projection based algorithms very appealing
when the number of variables is huge and standard interior point-methods for
semidefinite programming are not applicable. We provide empirical evidence
to this effect. We moreover present heuristics for finding both high rank and
low rank solutions. Our experiments are based on the method of alternating
projections and the Douglas-Rachford reflection method.
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1 Introduction

A basic problem in quantum information science is to construct, if it exists,
a quantum channel sending a given set of quantum states {ρ1, . . . , ρk} to an-
other set of quantum states {ρ̂1, . . . , ρ̂k}; see e.g., [10,18,20,24,25,28] and the
references therein. Quantum states ρj are mathematically represented as den-
sity matrices — positive semidefinite Hermitian matrices with trace one which
we denote as Aj ; while quantum channels are represented by trace preserving
completely positive linear maps — mappings T from the space of n×n density
matrices in Mn to m×m density matrices in Mm having the form

T (X) =

r∑
j=1

FjXF
∗
j , (1)

for some m×n matrices F1, . . . , Fr satisfying
∑r
j=1 F

∗
j Fj = In. See [11,21,28]

for more details. Here Mt is the vector space of t× t complex matrices.
Thus given some density matrices A1, . . . , Ak ∈ Mn and B1, . . . , Bk ∈

Mm, our task is to find a trace preserving completely positive linear map T sat-
isfying T (Aj) = Bj , for each j = 1, . . . , k. In turn, if we let {E11, E12, . . . , Enn}
denote the standard orthonormal basis of Mn, then a mapping T is a trace
preserving completely positive linear map if, and only if, the celebrated Choi
matrix of T , defined in block form by

C(T ) :=

P11 . . . P1n

... Pst
...

Pn1 . . . Pnn

 :=

T (E11) . . . T (E1n)
... T (Est)

...
T (En1) . . . T (Enn)

 (2)

is positive semidefinite and the trace preserving constraints, trace(Pst) = δst,
hold, where δst is the Kronecker delta. Note that the Choi matrix C(T ) is a
square nm×nm matrix, and hence can be very large even for moderate values
of m and n. Using the Choi matrix, ones sees that our problem is equivalent
to the positive semidefinite feasibility problem for P = (Pst):

∑
s,t(A`)stPst = B`, ` = 1, . . . , k

trace(Pst) = δst, 1 ≤ s ≤ t ≤ n
P ∈ Hnm+

 , (3)

where Hnm+ denotes the set of nm × nm positive semidefinite Hermitian ma-
trices. Moreover, the rank of the Choi matrix P has a natural interpretation:
it equals the minimal number of summands needed in any representation of
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the form (1) for the corresponding trace preserving completely positive map
T .

The set of all positive semidefinite matrices P ∈ Hnm+ that satisfy the
constant-trace constraint is a compact set. Therefore, problem (3) is never
weakly infeasible, i.e., infeasible but contains an asymptotically feasible se-
quence {P (j)}∞j=1 that satisfies the constraints in the limit. e.g., [14]. This
means that accurate algorithms can detect infeasibility. In the infeasible case,
the alternating projection (MAP) and the Douglas-Rachford (DR) projec-
tion/reflection algorithms that we use converge to the nearest points between
the linear manifold defined by the linear constraints and the semidefinite cone.
Infeasibility is detected if these nearest points are not equal.

We note that one can use standard primal-dual interior point semidefinite
programming packages to solve the feasibility problem. However, when the
size of the problem (m,n) grows, the efficiency and especially the accuracy
of the semidefinite programming approach is limited. To illustrate, even for
a reasonable sized problem m = n = 100, the number of complex variables
involved is 108/2.

In this paper, we exploit the special structure of the problem and develop
projection based methods to solve high dimensional problems with high ac-
curacy. We present numerical experiments based on the alternating projection
(MAP) and the Douglas-Rachford (DR) projection/reflection methods. We see
that the DR method significantly outperforms MAP for this problem. Our nu-
merical results show promise of projection based approaches for many other
types of feasibility problems arising in quantum information science.

We continue in Section 2 with a description of projection methods and the
details for the particular implementation for our problem. Section 3 contains
the numerical experiments. This includes heuristics for maximum rank solu-
tions in Section 3.2 and low and constrained rank solutions in Section 3.3. Our
concluding remarks are in Section 4.

2 Projection methods for constructing quantum channels

2.1 General background on projection methods

We begin by describing the method of alternating projections (MAP) and
the Douglas-Rachford method (DR) in full generality. To this end, consider a
Euclidean space E with an inner product 〈·, ·〉 and the induced norm ‖·‖. We are
interested in finding a point x lying in the intersection of two nonempty closed
subsets A and B of E . For example, A may be an affine subspace of Hermitian
matrices (over the reals) and B may be the convex cone of positive semidefinite
Hermitian matrices (over the reals), as in our basic quantum channel problem
(3). Projection based methods then presuppose that given a point x ∈ E ,
finding a point in the nearest-point set

projA(x) = argmina∈A{‖x− a‖}
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is easy, as is finding a point in projB(x). When A and B are closed and convex,
the nearest-point sets projA(x) and projB(x) are singletons.

Given a current point al ∈ A, the method of alternating projections then
iterates the following two steps:

choose bl ∈ projB(al);

choose al+1 ∈ projA(bl).

When A and B are convex and there exists a pair of nearest points of A
and B, the method always generates iterates converging to such a pair. In
particular, when the convex sets A and B intersect, the method converges to
some point in the intersection A ∩ B. Moreover, when the relative interiors
of A and B intersect, convergence is R-linear with the rate governed by the
cosines of the angles between the vectors al+1− bl and al − bl. For details, see
for example [2,3,9,17]. When A and B are not convex, analogous convergence
guarantees hold, but only if the method is initialized sufficiently close to the
intersection [5, 13,22,23].

The Douglas-Rachford algorithm takes a more asymmetric approach. Given
a point x ∈ E , we define the reflection operator

reflA(x) = projA(x) + (projA(x)− x).

The Douglas-Rachford algorithm is then a “reflect-reflect-average” method;
that is, given a current iterate xl ∈ E , it generates the next iterate by the
formula

xl+1 =
xl + reflA(reflB(xl))

2
.

It is known that for convex instances, the “projected iterates” converge [26].
The rate of convergence has recently been shown to be linear when A and B are
affine subspaces with nonempty intersection [19, Theorem 4.6], and R-linear
when A and B are general convex sets whose relative interiors intersect [29,
Theorem 4.14]. The Douglas-Rachford algorithm has proven to be extremely
effective empirically for many types of problems; see for example [1,4,16]. The
Douglas-Rachford algorithm has been applied to nonconvex problems (even
though the convergence guarantee is not known) in physics applications; see
e.g. [6].

The salient point here is that for MAP and DR to be effective in practice,
the nearest point mappings projA and projB must be easy to evaluate. We
next observe that for the quantum channel construction problem — our basic
problem — these mappings are indeed fairly easy to compute (especially the
projection onto the affine subspace).

2.2 Computing projections in the quantum channel construction problem

In the current work, we always consider the space of Hermitian matrices Hnm
as a Euclidean space, that is we regard Hnm as an inner product space
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over the reals in the obvious way (where the inner product is defined as
〈S, T 〉 := trace(ST ) ∈ R for all S, T ∈ Hnm). The trace inner product induces

the Frobenius norm ‖P‖ :=
(∑

i,j(RePij)
2 + (ImPij)

2
)1/2

, where RePij and

ImPij are the real and the complex parts of Pij , respectively.
Recall that our basic problem is to find a Hermitian matrix P = (Pst)

satisfying 
∑
s,t(A`)stPst = B`, ` = 1, . . . , k

trace(Pst) = δst, 1 ≤ s ≤ t ≤ n
P ∈ Hnm+

 . (4)

We aim to apply MAP and DR to this formulation. To this end, we first
need to introduce some notation to help with the exposition. Define the linear
mappings LA : Hnm → ⊗kj=1Hm and LT : Hnm → Hn by

LA(P ) :=
(∑
s,t

(A`)stPst

)
`

and LT (P ) :=
(

trace(Pst)
)
s,t
,

and let
L(P ) := (LA(P ),LT (P )) ∈

(
⊗kj=1Hm

)
×Hn. (5)

Moreover assemble the vectors

B = (B1, . . . , Bk) and ∆ = (δst)s,t.

Thus we aim to find a matrix P in the intersection of Hnm+ with the affine
subspace

A := {P ∈ Hnm : L(P ) = (B,∆)}.

Projecting a Hermitian matrix P onto Hnm+ is standard due to the Eckart-
Young Theorem [15]. Indeed, if P = U Diag(λ1, . . . , λmn)U∗ is an eigenvalue
decomposition of P , then we have

projHmn
+

(P ) = U Diag(λ+1 , . . . , λ
+
mn)U∗,

where for any real number r, we set r+ = max{0, r}. Thus projecting a Her-
mitian matrix onto Hmn+ requires a single eigenvalue decomposition — a pro-
cedure for which there are many efficient and well-tested codes (e.g., [12]).

We next describe how to perform the projection onto the affine subspace
A, that is how to solve the nearest point problem

min
{1

2
‖P − P̂‖2 : L(P̂ ) = (B,∆)

}
.

Classically, the solution is

projA(P ) = P + L†R,

where L† is the Moore-Penrose generalized inverse of L and R := (B,∆)−L(P )
is the residual. In particular, computing projA(·) requires either solving a large
scale linear equation (for n2m2 real-valued unknowns), or finding the map L†.
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Finding the Moore-Penrose generalized inverse of a large linear mapping, like
the one we have here, can often be time consuming and error prone. Luckily,
the special structure of the affine constraints in our problem allow us to find L†
both very quickly and very accurately, so that in all our experiments the time
to compute the projection onto A is negligible compared to the computational
effort needed to perform the eigenvalue decompositions. We now describe how
to compute L† in more detail; full details can be found in Appendix A.

Henceforth, we use sHvec(Aj) ∈ Rn2

to denote a vectorization of the matrix
Aj with respect to a fixed basis of the Hermitian matrix Aj , with the following
order:

(i) real part of the off-diagonal of Aj ;
(ii) imaginary part of the off-diagonal of Aj ;
(iii) the diagonal of Aj .

(6)

We now construct the matrix M ∈ Rk×n2

by declaring

MT =
[
sHvec(A1) sHvec(A2) . . . sHvec(Ak)

]
. (7)

We then separate M into three blocks

M =
[
MRe MIm MD

]
,

where MD ∈ Rk×n has rows formed from the diagonals of matrices Aj , and
MRe and MIm have rows formed from the real and imaginary parts of Aj ,
respectively, for j = 1, . . . , k. Define now the matrices

MRe ImD :=
[
MRe −MIm MD

]
,

NRe ImD :=

[
1√
2

[
MRe MRe −MIm −MIm

−MIm MIm −MRe MRe

] [
MD 0

0 MD

]]
.

(8)

Permuting the rows and columns of NRe ImD in a certain way, described in
Appendix A we obtain a matrix denoted by Nfinal ∈ R2k×2n2

. Then L can be
represented in coordinates (i.e. acting on a vectorization of P ) in a surprisingly
simple way, namely as a matrix:

L :=

It(m−1) ⊗Nfinal 0

0

[[
Im−1 ⊗MRe ImD 0k(m−1),n2

][
em ⊗ In2

]T ] , (9)

where ⊗ denotes the Kronecker product, and t(n − 1) denotes the triangular

number t(n − 1) = n(n−1)
2 . Let the matrix (MRe ImD)null have orthonormal

columns that yield a basis for null(MRe ImD), i.e.,

null(MRe ImD) = range((MRe ImD)null).

The generalized inverse of the top-left block is trivial to find from Nfinal. An
explicit expression for the generalized inverse of the bottom right-block can
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also be found. Therefore, we get an explicit blocked structure for the Moore-
Penrose generalized inverse of the complete matrix representation.

L† =

It(m−1) ⊗N
†
final 0

0

[
Im−1 ⊗M†Re ImD em−1 ⊗ (MRe ImD)null
−eTm−1 ⊗M

†
Re ImD In2 − (m− 1)(MRe ImD)null

] ,
(10)

as claimed. Thus L† is easy to construct by simply stacking various small
matrices together in blocks. Moreover, this means that both evaluations Lp and
L†R can be vectorized and evaluated efficiently and accurately in MATLAB.

3 Numerical experiments

In this section, we numerically illustrate the effectiveness of the projection and
reflection methods for solving quantum channel construction problems. The
large/huge problems were solved on an AMD Opteron(tm) Processor 6168,
1900.089 MHz cpu running LINUX. The smaller problems were solved using an
Optiplex 9020, Intel(R) Core(TM), i7-4770 CPUs, 3.40GHz,3.40 GHz, RAM
16GB running Windows 7.

For simplicity of exposition, in our numerical experiments, we set n = m.
Moreover, we will impose the common unital constraint T (In) = In condi-
tion along with the trace preserving constraint. The class of unital quantum
channels is considered in this work because of their practical importance as
they “leave the maximal mixed state invariant”, see e.g., [27]. Note that the
mathematics behind the solution of (3) presented in this work does not require
that the TPCP map to be found has to be unital or that m = n must hold.
In general, one can impose the additional linear constraint T ( 1

nIn) = 1
mIm.

We note in passing that the unital constraint implies that the last constraint
in each density matrix block of constraints for each i is redundant. To gener-
ate random instances for our tests we proceed as follows. We start with given
integers m = n, k and a value for r. We generate a Choi matrix P using r
random unitary matrices Fi, i = 1, . . . , r as the Kraus operators and a positive
probability distribution d, i.e., from (1) and (2) we set the blocks of P to be

Pst =

r∑
j=1

djFjEstF
∗
j .

The specific choice of Kraus operators (being unitary matrices) implies that
the resulting quantum channel defined by P is a convex combination of unitary
conjugations [30], thus guaranteeing that the quantum channel is unital. Note
that, given a density matrix X, then the trace preserving completely positive
map can now be evaluated using the blocked form of P in (2) as

T (X) =
∑
st

XstPst.
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We then generate random density matrices Aj , j = 1, . . . , k and set Bj as
the image of the corresponding trace preserving completely positive map T
on Aj , for all j. This guarantees that we have a feasible instance of rank r
and larger/smaller r values result in larger/smaller rank for the feasible Choi
matrix P .

Also, besides constructing TPCP maps of the form T (X) =
∑
j djUjXU

∗
j ,

for some probability vector (p1, ...., pr) and unitaries U1, . . . , Ur, we can also
construct a general T by choosing G1, . . . , Gr−1 randomly, and then set Fi =
1
Mi
Gi, for i = 1, . . . , r−1, for sufficiently large Mi > 0. We get Q = I−F1F

∗
1 −

. . .− Fr−1F ∗r−1 � 0. Then we let Fr be any matrix satisfying FrF
∗
r = Q. The

map T (X) =
∑r
j=1 FjXF

∗
j is then a TPCP map and we can take arbitrary

density matrices A1, . . . , Ak, and Bi = T (Ai), for i = 1, . . . , k, to test our
program.

3.1 Solving the basic problem with DR

We first look at our basic feasibility problem (3). We illustrate the numerical
results only using the DR algorithm since we found it to be vastly superior to
MAP; see Section 3.2, below. We found solutions of huge problems with sur-
prisingly high accuracy and very few iterations. The results are presented in
Table 1. As in Section 3.2 below, we use a multiple of the identity P0 = mnImn
as the starting point for DR. We give the size of the problem, the number of
iterations, the norm of the residual ‖Lp−R‖ after the projection on the PSD
cone at the end, the maximum value of the cosine values of angles between
successive iterates indicating the linear rate of convergence, and the total com-
putational time to perform a projection on the PSD cone. The projection on
the PSD cone dominates the time of the algorithm, i.e., the total time is
roughly the number of iterations times the projection time. To fathom the
size of the problems considered, observe that a problem with m = n = 170
finds a PSD matrix of order 3 × 104 which has approximately 4.5 × 108 vari-
ables. We reiterate that the solutions are found with extremely high accuracy
in very few DR iterations. Moreover, the solutions found are usually of max-
imum rank unless r is relatively small compared to m = n. This can be seen
specifically in the tests for maximum rank solutions in Table 2, i.e., full rank
is found for r = 30 decreasing till r = 14 for fixed m = n = 30, k = 16.

3.2 Heuristic for finding max-rank feasible solutions using DR and MAP

We now look at the problem of finding high rank feasible solutions. Recall
that this corresponds to finding a trace preserving completely positive map T
mapping Ai to Bi, so that T necessarily has a long operator sum representation
(1). We moreover use this section to compare the DR and MAP algorithms.
Our numerical tests fix m = n, k and then change the value of r, i.e., the value
used to generate the test problems.
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m = n, k, r iters norm-residual max-cos PSD-proj-CPUs
90,50,90 6 5.88e-15 .7014 233.8
100,60,90 7 7.243e-15 0.8255 821.7
110,65,90 7 7.983e-15 0.8222 1484
120,70,90 8 8.168e-15 0.8256 2583
130,75,90 8 7.19e-15 0.8288 3607
140,80,90 9 8.606e-15 0.8475 5832
150,85,90 11 8.938e-15 0.8606 6188
160,90,90 11 9.295e-15 0.8718 1.079e+04
170,95,90 12 9.412e-15 0.8918 1.139e+04

Table 1 Using DR algorithm; for solving huge feasibility problems; CPU time is for one
projection

The heuristic for finding a large rank solution starts by finding a (current)
feasible solution Pi, i = 1. We use a multiple of the identity as the starting
point P0 = mnImn to find the feasible point Pi using DR. We repeatedly set
our current point Pc to be the barycenter of all the t feasible points currently
found Pc = 1

t

∑t
i Pi. The algorithm proceeds by changing the starting point to

the other side and outside of the PSD cone, i.e., the new starting point to find
a new Pi, i > 1, is found by traveling in direction d = mnImn − trace(Pc)Pc
starting from Pc so that the new starting point P0 := Pc +αd is not PSD. For
instance, we may set α = 2j‖d‖2 for sufficiently large j. We then apply the
DR algorithm with the new starting point to find a new Pi until we find the
current barycenter matrix Pc � 0 or no increase in the rank of Pc occurs.

Again, we see that we find very accurate solutions and solutions of max-
imum rank. We find that DR is much more efficient both in the number of
iterations in finding a feasible solution from a given starting point and in the
number of steps in our heuristic needed to find a large rank solution. In Ta-
bles 2 and 3 we present the output for several values of r when using DR
and MAP, respectively. We use a randomly generated feasibility instance for
each value of r but we start MATLAB with the rng(default) settings so the
same random instances are generated. We note that the DR algorithm is suc-
cessful for finding a maximum rank solution and usually after only the first
step of the heuristic. The last three r = 12, 10, 8 values required 8, 9, 12 steps,
respectively. However, the final P solution was obtained to (a high) 9 decimal
accuracy.

The MAP always requires many more iterations and at least two steps for
the maximum rank solution. It then fails completely once r ≤ 12. In fact,
it reaches the maximum number of iterations while only finding a feasible
solution to 3 decimals accuracy for r = 12 and then 2 decimals accuracy for
r = 10, 8. We see that the cosine value has reached 1 for r = 12, 10, 8 and the
MAP algorithm was making no progress towards convergence.

For each value of r we include:

1. the number of steps of DR that it took to find the max-rank P ;
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2. the minimum/maximum/mean number of iterations for the steps in finding
P 1;

3. the maximum of the cosine of the angles between three successive iterates
2;

4. the value of the maximum rank found. 3

rank steps min-iters max-iters mean-iters max-cos max rank
r = 30 1 6 6 6 7.008801e-01 900
r = 28 1 7 7 7 7.323953e-01 900
r = 26 1 7 7 7 7.550174e-01 900
r = 24 1 8 8 8 7.911440e-01 900
r = 22 1 9 9 9 8.238539e-01 900
r = 20 1 9 9 9 8.454781e-01 900
r = 18 1 11 11 11 8.730321e-01 900
r = 16 1 15 15 15 8.995266e-01 900
r = 14 1 23 23 23 9.288445e-01 900
r = 12 8 194 3500 1.916375e+03 9.954262e-01 900
r = 10 9 506 3500 2.605778e+03 9.968120e-01 900
r = 8 12 2298 3500 3.350833e+03 9.986002e-01 900

Table 2 Using DR algorithm; with [m n k mn toler iterlimit] = [30 30 16 900 1e−14 3500];
max/min/mean iter and number rank steps for finding max-rank of P . The 3500 here means
9 decimals accuracy attained for last step.

rank steps min-iters max-iters mean-iters max-cos max rank
r = 30 2 55 67 61 8.233188e-01 900
r = 28 2 65 77 71 8.513481e-01 900
r = 26 2 78 89 8.350000e+01 8.754098e-01 900
r = 24 2 100 109 1.045000e+02 9.040865e-01 900
r = 22 2 124 130 127 9.250665e-01 900
r = 20 2 156 158 157 9.432779e-01 900
r = 18 2 239 245 242 9.689567e-01 900
r = 16 2 388 407 3.975000e+02 9.847052e-01 900
r = 14 2 1294 1369 1.331500e+03 9.980012e-01 900

r = 12 2 3500 3500 3500 1.000000e+00 493

r = 10 2 3500 3500 3500 1.000000e+00 483

r = 8 2 3500 3500 3500 1.000000e+00 475

Table 3 Using MAP algorithm; with [m n k mn toler iterlimit] = [30 30 16 900 1e −
14 3500]; max/min/mean iter and number rank steps for finding max-rank of P . The 3500
mean-iters means max iterlimit reached; low accuracy attained.

1 Note that if the maximum value is the same as iterlimit, then the method failed to
attain the desired accuracy toler for this particular value of r.

2 This is a good indicator of the expected number of iterations.
3 We used the rank function in MATLAB with the default tolerance, i.e., rank(P ) is the

number of singular values of P that are larger than mn ∗ eps(‖P‖), where eps(‖P‖) is the
positive distance from ‖P‖ to the next larger in magnitude floating point number of the
same precision. Here we note that we did not fail to find a max-rank solution with the DR
algorithm.
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3.3 Heuristic for finding low rank and rank constrained solutions

In quantum information science, one might want to obtain a feasible Choi
matrix solution P = (Pij) with low rank, e.g., [30, Section 4.1]. If we have
a bound on the rank, then we could change the algorithm by adding a rank
restriction when one projects the current iterate of P = (Pij) onto the PSD
cone. That is instead of taking the positive part of P = (Pij), we take the
nonconvex projection

Pr :=
∑

j≤r,λj>0

λjxjx
∗
j ,

where P has spectral decomposition
∑mn
j=1 λjxjx

∗
j with λ1 ≥ · · · ≥ λmn.

Alternatively, we can do the following. Suppose a feasible Choi matrix
C(T ) = Pc = ((Pc)ij) is found with rank(Pc) = r. We can then attempt to
find a new Choi matrix of smaller rank restricted to the face F of the PSD cone
where the current Pc is in the relative interior of F , i.e., the minimal face of
the PSD cone containing Pc. We do this using facial reduction, e.g., [7,8]. More
specifically, suppose that Pc = V DV ∗ is a compact spectral decomposition,
where D ∈ Hr++ is diagonal, positive definite and has rank r. Then the minimal
face F of the PSD cone containing Pc has the form F = VHr+V ∗. Recall Lp = b
denotes the matrix/vector equation corresponding to the linear constraints
in our basic problem with p = sHvec(P ), the vectorization of the Hermitian
matrix P described in (6). Let Li,: denote the rows of the matrix representation
L. We let sHMat = sHvec−1 be the inverse mapping from a complex vector to
a Hermitian matrix. Note that sHMat = sHvec∗, i.e., the inverse and adjoint
are the same. Then each row of the equation Lp = b is equivalent to

〈L∗i,:, sHvec(P )〉 = 〈sHMat(L∗i,:), V P̄V
∗〉 = 〈V ∗ sHMat(L∗i,:)V, P̄ 〉, P̄ ∈ Hr+.

Therefore, we can replace the linear constraints with the smaller system L̄p̄ = b
with equations 〈L̄i,:, p̄〉, where L̄i,: = sHvec

(
V ∗ sHMat(L∗i,:)V

)
. In addition,

since the current feasible point Pc is in the relative interior of the face VHr+V ∗,
if we start outside the PSD cone Hr+ for our feasibility search, then we get
a singular feasible P̄ if one exists and so have reduced the rank of the corre-
sponding initial feasible P . We then repeat this process as long as we get a
reduction in the rank.

The MAP approach we are using appears to be especially well suited for
finding low rank solutions. In particular, the facial reduction works well be-
cause we are able to get extremely high accuracy feasible solutions before ap-
plying the compact spectral decomposition. If the initial P0 that is projected
onto the affine subspace is not positive semidefinite, then successive iterates
on the affine subspace stay outside the semidefinite cone, i.e., we obtain a
final feasible solution P̄ that is not positive definite if one exists. Therefore,
the rank of V̄ V̄ ∗ is reduced from the rank of P . The code for this has been
surprisingly successful in reducing rank. We provide some typical results for
small problems in Table 4. We start with a small rank (denoted by r) feasible
solution that is used to generate a feasible problem. Therefore, we know that
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the minimal rank is ≤ r. We then repeatedly solve the problem using facial
reduction until a positive definite solution is found which means we cannot
continue with the facial reduction. Note that we could restart the algorithm
using an upper bound for the rank obtained from the last rank we obtained.

m = n, k, r facial red. ranks final norm-residual
12,10,11 100,50,44,39 1.836e-15
12,10,10 92,61,43,44 1.786e-15
20,14,20 304,105,71 9.648e-15
22,13,20 374,121,75 9.746e-15

Table 4 Using MAP algorithm with facial reduction for decreasing the rank. Requested
tolerance 1e-14 satisfied at each step.

Finally, our tests indicate that the rank constrained problem, which is
nonconvex, often can be solved efficiently. Moreover, this problem helps in
further reducing the rank. To see this, suppose that we know a bound, rbnd,
on the rank of a feasible P . Then, as discussed above, we change the projection
onto the PSD cone by using only the largest rbnd eigenvalues of P . In our tests,
if we use r, the value from generating our instances, then we were always
successful in finding a feasible solution of rank r. Our final tests appear in
Tables 5 and 6. We generate problems with initial rank r. We then start solving
a constrained rank problem with starting constraint rank rs and decrease this
rank by 1 until we can no longer find a feasible solution; the final rank with a
feasible solution is rf . At each successful reduction we found a feasible solution
to the requested tolerance 1e− 14.

m = n, k, r starting/final constr. ranks, rs/rf
12,9,15 20 7
25,16,35 45 19
30,21,38 48 27

Table 5 Using DR algorithm for rank constrained problems with ranks rs to rf . Requested
tolerance 1e-14 satisfied at each step. See Table 6 for details on 12, 9, 15 instance one.

Table 6 illustrates the DR algorithm for finding a low rank solution for the
first instance in Table 5. We begin with starting rank 20. We see the increase in
max-cos and simultaneously the number of iterations needed to find a feasible
solution as the rank constraint decreases. We stop in reducing rank once we
cannot find a feasible solution with the iteration limit for DR set at 3,500.

4 Conclusion

In this paper, we studied the basic problem of constructing a quantum chan-
nel that maps between given sets of quantum states. We have used the Choi
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current constrained rank max-cos norm(residual) iterations
20 9.5183e-01 8.6510e-15 6.4700e+02
19 9.4773e-01 9.1083e-15 6.9600e+02
18 9.5347e-01 9.8330e-15 7.4700e+02
17 9.5947e-01 9.6879e-15 8.2300e+02
16 9.6289e-01 9.9593e-15 8.9700e+02
15 9.7182e-01 9.4914e-15 9.9700e+02
14 9.7775e-01 9.3193e-15 1.1670e+03
13 9.7630e-01 9.8646e-15 1.2830e+03
12 9.8125e-01 9.6170e-15 1.4250e+03
11 9.8389e-01 9.8741e-15 1.6660e+03
10 9.8834e-01 9.8033e-15 1.9860e+03
9 9.9109e-01 9.9461e-15 2.4430e+03
8 9.9260e-01 9.1184e-15 2.9920e+03
7 9.9704e-01 4.5293e-13 3.5000e+03
6 9.9960e-01 1.5008e-05 3.5000e+03

Table 6 Using DR algorithm for rank constrained problem instance one in Table 5 with
m = n = 12, k = 9, r = 15 and starting constrained rank 20 till final successful constrained
rank 7; feasibility failed for constrained rank 6 with iteration limit 3,500.

matrix representation for completely positive maps to show that the construc-
tion is equivalent to solving a Hermitian positive semidefinite linear feasibility
problem. This feasibility problem has special structure that can be exploited.
We have shown the efficiency of using alternating projection and Douglas-
Rachford projection/reflection algorithms for accurately solving large scale
problems to high accuracy. This included finding trace preserving completely
positive, TPCP, maps with high rank, as well as the nonconvex problems of
finding TPCP maps with low rank.
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A Background

A.1 Matrix representation of L and L†

In this section, we show that the matrices L in (9) and L† in (10) are indeed matrix repre-
sentations of the linear map L (defined in (5)) and its Moore-Penrose generalized inverse,
respectively, under a specific choice of basis of the vector space Hnm.

A.1.1 Choice of orthonormal basis of Hs

We choose the standard orthonormal basis for the vector spaceH` of `×` Hermitian matrices
(over the reals) as follows. Let ej ∈ R` be the j-th standard unit vector for j = 1, . . . , `.
Then eie

T
j ∈ R`×` is zero everywhere except the (i, j)-th entry, which is 1. For i, j = 1, . . . , `,

define the (i, j)-th basis matrix as follows:

Eij =


1√
2

(eie
T
j + eje

T
i ) if i < j,

i√
2

(eje
T
i − eieTj ) if i > j,

eje
T
j if i = j.

(11)

Then Ereal,offdiag ∪ Eimag,offdiag ∪ Ediag forms an orthonormal basis of H`, where
– Ereal,offdiag := {Eij : 1 ≤ i < j ≤ `} collects the real zero-diagonal basis matrices,
– Eimag,offdiag := {Eij : 1 ≤ j < i ≤ `} collects the imaginary zero-diagonal basis

matrices, and
– Ediag := {Ejj : 1 ≤ j ≤ `} collects the real diagonal basis matrices.

We define a total ordering < on the tuples (i, j) for i, j = 1, . . . , `, so that the matrices are
ordered with Ereal,offdiag < Eimag,offdiag < Ediag in the element-wise sense (as stated in (6)).

For any (i, j), (̃i, j̃) ∈ {1, . . . , `}2, we say that (i, j) ≺ (̃i, j̃) if one of the following holds.
– Case 1: i < j (so that Eij is a real matrix with zero diagonal).

– i < j and ĩ ≥ j̃.
– i < j and ĩ < j̃, but j̃ > j.
– i < j and ĩ < j̃ = j, but ĩ > i.

– Case 2: i > j (so that Eij is a imaginary matrix with zero diagonal).
In this case we must have ĩ ≥ j̃.
– j < i and j̃ = ĩ.
– j < i and j̃ < ĩ, but ĩ > i.
– j < i and j̃ < ĩ = i, but j̃ > j.

– Case 3: i = j (so that Ejj is a real diagonal matrix).
In this case we must have ĩ = j̃.
– j < j̃.

For instance, when ` = 3, our orthonormal basis of choice is given in the following order:

E12 = 1√
2

0 1 0
1 0 0
0 0 0

 , E13 = 1√
2

0 0 1
0 0 0
1 0 0

 , E23 = 1√
2

0 0 0
0 0 1
0 1 0

 ,
E21 = 1√

2

 0 i 0
−i 0 0
0 0 0

 , E31 = 1√
2

 0 0 i
0 0 0
−i 0 0

 , E32 = 1√
2

0 0 0
0 0 i
0 −i 0

 ,
E11 =

1 0 0
0 0 0
0 0 0

 , E22 =

0 0 0
0 1 0
0 0 0

 , E33 =

0 0 0
0 0 0
0 0 1

 .
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We also work with nm × nm block matrices, with each block of size m × m. On the
space Hnm, for any 1 ≤ i, j ≤ nm, let

s :=

⌈
i

m

⌉
, t :=

⌈
j

m

⌉
, p := i−m(s− 1), and q := j −m(t− 1). (12)

Note that 1 ≤ s, t ≤ n are the block indices and 1 ≤ p, q ≤ m are the intra-block indices. For
instance, consider the matrix eie

T
j ∈ Hnm (having only 1 nonzero entry at position (i, j)).

The nonzero entry is at the (p, q)-th entry in the (s, t)-th block (which is of size m×m). The
orthonormal matrices Eij defined in (11) are related to the block indices (s, t) as described
in Table 7.

The nonzero m×m blocks of Eij

Case 1: s < t (Eij)st = 1√
2
epeTq

(Eij)ts = 1√
2
eqeTp

Case 2: s > t (Eij)st = − i√
2
epeTq

(Eij)ts = i√
2
eqeTp

Case 3: s = t (Eij)ss = Epq

Table 7 The nonzero blocks of Eij for any fixed i, j = 1, . . . , nm. (s, t, p, q) are defined in
terms of (i, j) as in (12). All blocks unspecified in the table are zero blocks.

Unlike Hs, we order the blocked orthonormal matrices Eij in Hnm via the following

total ordering < on the set I := {(i, j) : 1 ≤ i, j ≤ nm}. Let 1 ≤ i, j, ĩ, j̃ ≤ nm with
(i, j) 6= (̃i, j̃). Then letting

s :=
⌈

i
m

⌉
, t :=

⌈
j
m

⌉
, p = i−m(s− 1), q = j −m(t− 1),

s̃ :=
⌈

ĩ
m

⌉
, t̃ :=

⌈
j̃
m

⌉
, p̃ = ĩ−m(s̃− 1), q̃ = j̃ −m(t̃− 1),

the relation (i, j) < (̃i, j̃) holds if and only if one of the following holds.

– {p, q} 6= {p̃, q̃} and (min{p, q}, max{p, q}) ≺ (min{p̃, q̃}, max{p̃, q̃}).
– {p, q} = {p̃, q̃} and (s, t) ≺ (s̃, t̃).
– {p, q} = {p̃, q̃}, (s, t) = (s̃, t̃) and p < q. (Then q̃ = p < q = p̃.)

In other words, we order the 2-tuples (i, j) in I by grouping all those with the same
intra-block index (p, q) and block indices s < t together, for some p < q, followed by those
tuples with intra-block index (q, p) and block indices s < t. As an example, when m = 2
and n = 3, the following list gives the first few entries of I:

(1, 4), (1, 6), (3, 6), (2, 3), (2, 5), (4, 5), (1, 2), (3, 4), . . .

These first 2-tuples (i, j) in I have the corresponding 4-tuples (s, t, p, q) defined as in (12),
given as follows:

(1, 2, 1, 2), (1, 3, 1, 2), (2, 3, 1, 2), (1, 2, 2, 1), (1, 3, 2, 1), (2, 3, 2, 1), (1, 1, 1, 2), (2, 2, 1, 2), . . .

Note that the first three 2-tuples have the same intra-block index (p, q) = (1, 2). The imme-
diately following three 2-tuples have the intra-block index (q, p) = (2, 1), and so on.

A.1.2 Symmetric vectorization of Hermitian matrices

Using the ordered orthonormal basis of Hs described in (11) in Section A.1.1, we can de-
fine the corresponding symmetric vectorization of Hermitian matrices. Since any Hermitian
matrix in Hs can be expressed as a unique linear combination of the orthonormal basis
matrices Eij , the map

sHvec : Hs → Rs2 : H 7→ v,
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where v ∈ Rs2 is the unique vector such that H =
∑s

i,j=1 vijEij , is well-defined. The map

sHvec is a linear isometry (i.e., sHvec is a linear map and ‖ sHvec(H)‖2 = trace(H2) for all
H ∈ Hs), and its adjoint is given by

sHMat : Rs2 →Hs : v 7→
s∑

i,j=1

vijEij , (13)

which is also the inverse map of sHvec. For instance,

sHvec

([
1

√
2− i√

2 + i 3

])
=
[
2 −
√

2 1 3
]T
.

A.1.3 Ordering the rows and columns in the matrix representation of L

In the following, we compute matrix representations LA and LT of the linear maps LA :
Hnm → ⊗m

j=1Hm and LT : Hnm → Hn, respective. The matrix representation L =

(LA(·),LT (·)) is then chosen to be L =

[
LA

LT

]
, with LA ∈ Rkm2×n2m2

and LT ∈ Rm2×n2m2
.

Any matrix representation for the linear map LA (resp. LT ) depends on the choice of
the ordered orthonormal bases for Hnm and for Hm × · · · × Hm (resp. for Hnm and for
Hm). For Hnm, we use the ordered orthonormal basis defined on Page 16 in Section A.1.1.
For Hm × · · · × Hm, we use the orthonormal basis

(E12, 0, . . . , 0), (0, E12, . . . , 0), . . . , (0, 0, . . . , E12),
(E21, 0, . . . , 0), (0, E21, . . . , 0), . . . , (0, 0, . . . , E21),
(E13, 0, . . . , 0), (0, E13, . . . , 0), . . . , (0, 0, . . . , E13),
(E31, 0, . . . , 0), (0, E31, . . . , 0), . . . , (0, 0, . . . , E31), . . . , (0, 0, . . . , Emm).

(14)

We first construct a matrix representation LA of LA by rows. Recall that

LA(P ) =

 n∑
s,t=1

(A1)stPst,

n∑
s,t=1

(A2)stPst, . . . ,

n∑
s,t=1

(Ak)stPst


for any P ∈ Hnm, so the rows of LA are determined by the linear functionals

L`,p,q,Re (P ) :=
√

2Re
(∑n

s,t=1(A`)st(Pst)
)
pq

L`,p,q,Im (P ) :=
√

2Im
(∑n

s,t=1(A`)st(Pst)
)
pq

D`,q(P ) :=
(∑n

s,t=1(A`)st(Pst)
)
qq

for some ` ∈ {1, . . . , k} and p < q ∈ {1, . . . ,m}. Defining vectors α`,p,q,Re , α`,p,q,Im , β`,q ∈
R(nm)2 by 

L`,p,q,Re (P ) = (α`,p,q,Re )T sHvec(P ),

L`,p,q,Im (P ) = (α`,p,q,Im )T sHvec(P ),

D`,q(P ) = (β`,q)T sHvec(P ),

for all ` ∈ {1, . . . , k}, p < q ∈ {1, . . . ,m}, we get that

LA =
[
α1,1,2,Re · · · αk,1,2,Re α1,1,2,Im · · · αk,m,m,Im β1,1 · · · βk,1 β1,2 · · · βk,m

]T
.

Now we proceed to find the vectors α`,p,q,Re , α`,p,q,Im , β`,q .
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A.1.4 Computing the rows of LA

Fix any ` ∈ {1, . . . , k}. For any i, j ∈ {1, . . . , nm}, let (s, t, p, q) be defined as in (12).
If s < t, then using Table 7 we get

n∑
s̃,t̃=1

(A`)s̃t̃(Eij)s̃t̃ =
1
√

2

(
(A`)stepe

T
q + (A`)tseqe

T
p

)
=

1
√

2

(
Re (A`)st(epe

T
q + eqe

T
p ) + i Im (A`)st(epe

T
q − eqeTp )

)
If s > t, then

n∑
s̃,t̃=1

(A`)s̃t̃(Eij)s̃t̃ =
i
√

2

(
−(A`)stepe

T
q + (A`)tseqe

T
p

)
=

1
√

2

(
−Im (A`)ts(epe

T
q + eqe

T
p )− iRe (A`)ts(epe

T
q − eqeTp )

)
If s = t, then

n∑
s̃,t̃=1

(A`)s̃t̃(Eij)s̃t̃ = (A`)ssEpq .

Fix any ` = 1, . . . , k and p̂ < q̂ from {1, . . . ,m}. Then for all i, j ∈ {1, . . . , nm}, defining
(s, t, p, q) as in (12), we have

L`,p̂,q̂,Re (Eij) =


Re (A`)st if s < t and {p, q} = {p̂, q̂}
−Im (A`)ts if s > t and {p, q} = {p̂, q̂}
(A`)ss if s = t, p < q and (p, q) = (p̂, q̂)

0 otherwise,

and

L`,p̂,q̂,Im (Eij) =



Im (A`)st if s < t and (p, q) = (p̂, q̂)

−Im (A`)st if s < t and (p, q) = (q̂, p̂)

−Re (A`)ts if s > t and (p, q) = (p̂, q̂)

Re (A`)ts if s > t and (p, q) = (q̂, p̂)

(A`)ss if s = t, p > q and (p, q) = (q̂, p̂)

0 otherwise,

and

D`,q̂(Eij) =


√

2Re (A`)st if s < t and p = q = q̂

−
√

2Im (A`)st if s > t and p = q = q̂

(A`)ss if s = t and p = q = q̂.

Therefore for any p̂ < q̂ = 1, . . . ,m and any i, j = 1, . . . , nm, using (s, t, p, q) defined in (12)
and the definitions of MRe ,MIm ,MD on Page 6,(

α`,p̂,q̂,Re

)
i,j

= αT
`,p̂,q̂,Re sHvec(Eij) = L`,p̂,q̂,Re (Eij)

=


1√
2

(MRe )`,st if s < t and {p, q} = {p̂, q̂}
− 1√

2
(MIm )`,ts if s > t and {p, q} = {p̂, q̂}

(MD)`,s if s = t, p < q and (p, q) = (p̂, q̂)

0 otherwise,

implying that αT
`,p̂,q̂,Re is one of the first k rows of the matrix

[
It(m−1) ⊗NRe ImD 0

]
.

(Here note that the number of pairs (p̂, q̂) with 1 ≤ p̂ < q̂ ≤ m is t(m − 1) = 1
2
m(m − 1).
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The zero block corresponds to the index pairs (i, j) with p = q, where (s, t, p, q) are the
block indices defined in (12).) Similarly,(

α`,p̂,q̂,Im

)
i,j

= αT
`,p̂,q̂,Im sHvec(Eij) = L`,p,q,Im (Eij)

=



1√
2

(MIm )`,st if s < t and (p, q) = (p̂, q̂)

− 1√
2

(MIm )`,st if s < t and (p, q) = (q̂, p̂)

− 1√
2

(MRe )`,ts if s > t and (p, q) = (p̂, q̂)
1√
2

(MRe )`,ts if s > t and (p, q) = (q̂, p̂)

(MD)`,s if s = t, p > q and (p, q) = (q̂, p̂)

0 otherwise,

so αT
`,p̂,q̂,Im is one of the last k rows of the matrix

[
It(m−1) ⊗NRe ImD 0

]
. Finally,

(β`,q̂)ij = D`,q̂(Eij) =


(MRe )`,st if s < t and p = q = q̂

−(MIm )`,st if s > t and p = q = q̂

(MD)`,s if s = t and p = q = q̂,

so βT
`,q̂ is one of the rows of the matrix

[
0 Im ⊗MRe ImD

]
.

Hence, a matrix representation of LA is given by[
It(m−1) ⊗NRe ImD 0

0 Im ⊗MRe ImD

]
.

A.1.5 Computing LT

Recall the linear map LT : Hnm → Hn : P 7→ [trace(Pst)]s,t=1,...,n, which defines the
second component of L. We compute a matrix representation LT of LT by columns, i.e., by
considering LT (Eij) ∈ Hn for i, j = 1, . . . , nm. Defining (s, t, p, q) as in (12), we have

LT (Eij) =

{
Est if p = q,

0 otherwise.

Hence the (i, j)-th column of LT is given by

sHvec(LT (Eij)) =

{
sHvec(Est) if p = q,

0 otherwise.

This implies that LT =
[
0 eTm × In2

]
, where the zero block corresponds to the (i, j) pairs

with p 6= q, and each row eTm in the Kronecker product corresponds to those (i, j) pairs with
the same block indices (s, t) (and there are m pairs of (i, j) with the same block indices that
have nonzero intra-block traces).

A.1.6 Alternative column orderings, eliminating redundant rows

Combining the results from the previous two sections, we arrive at a matrix representation
of L:

L =

[
LA

LT

]
=

It(m−1) ⊗NRe ImD 0
0 Im ⊗MRe ImD

0 eTm ⊗ In2

 . (15)

In the final matrix representation that we use, some of the rows of the second block rows are
linearly dependent of the other rows, if the linear map LA contains the unital constraints.
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Hence we remove those rows and replace the original matrix representation L in (15) by the
following matrix:

L =

It(m−1) ⊗NRe ImD 0

0
[
Im−1 ⊗MRe ImD 0

]
0 eTm ⊗ In2


=

It(m−1) ⊗NRe ImD 0 0
0 Im−1 ⊗MRe ImD 0
0 eTm−1 ⊗ In2 In2

 .
Note that we can use alternative ordering for the off-diagonal entries inside the blocks. While
this does not change the ordering of the columns in the second block column in (15) (which
correspond to the diagonal entries inside the blocks), it can affect the column ordering of
NRe ImD (resulting in e.g. Nfinal).

A.1.7 Pseudoinverse of L

Using the block diagonal structure of L and the fact that[
Im−1 ⊗MRe ImD 0
eTm−1 ⊗ In2 In2

]†
=

[
Im−1 ⊗M†Re ImD em−1 ⊗ (MRe ImD)null

−eTm−1 ⊗M
†
Re ImD In2 − (m− 1)(MRe ImD)null

]
(16)

(which can be easily verified to be the pseudoinverse), it is immediate that

L† =

It(m−1) ⊗NRe ImD 0

0

[
Im−1 ⊗MRe ImD 0
eTm−1 ⊗ In2 In2

]†

=

It(m−1) ⊗NRe ImD 0 0

0 Im−1 ⊗M†Re ImD em−1 ⊗ (MRe ImD)null

0 −eTm−1 ⊗M
†
Re ImD In − (m− 1)(MRe ImD)null

 .


