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Complexity of nonsmooth nonconvex stochastic optimization?

mzin EZNP[f(xvz)}

Typical assumptions: convexity or smoothness

= different algorithms, analysis, guarantees

Nonsmooth and nonconvex losses arise often...

= structure (sparsity), robustness (outliers), stability (better conditioning)



Complexity of nonsmooth nonconvex stochastic optimization?

rnzin E.~p[f(z,z)]

Typical assumptions: convexity or smoothness

= different algorithms, analysis, guarantees

Nonsmooth and nonconvex losses arise often...

= structure (sparsity), robustness (outliers), stability (better conditioning)

Common problem class: (convex) o (smooth)

(Fletcher '80, Powell '83, Burke '85, Wright '90, Lewis-Wright '08, Cartis-Gould-Toint '11,...)



Outline

= Contemporary examples (low rank matrix recovery)

= deterministic rapid local search

= stochastic streaming and off-line algorithms
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Example: Low-rank Matrix Recovery
Problem: Find rank r matrix My > 0 satisfying
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for all M € R¥*? of rank 2r.
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Example: Low-rank Matrix Recovery
Problem: Find rank r matrix My > 0 satisfying

(A, My) =b;  Yi=1,...,m.
Measurement map:
AM) = ((A1, M), (A2, M), ..., (Am, M))
Restricted Isometry Property (RIP): Exist a norm |||-||| and constants
K1, k2 > 0 satisfying
rl[Mllr < [JAMM)| < w2l M|

for all M € R¥*? of rank 2r.

Natural Penalty Formulation:

. T
min  [ACXX ) — b
XGR‘b“
» Typical norms ||| = —=I - |2 and [||-|| = | - [lx
» /2-RIP valid for Gaussian A;, leads to smooth problems

» /1-RIP valid for structured A;, leads to nonsmooth problems



Example: phase retrieval®

diffraction patterns

source &
"Kample phase plate

LCandes, Li, Soltanolkotabi. Phase Retrieval from Coded Diffraction Patterns (2013)



Example: phase retrieval
Problem: Find 3 € R? satisfying
(a; z5)* = b;

for ai,...,am € R and by,...,bm € R.

2quadrativ: sensing (Chen-Chi-Goldsmith '15)
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Example: phase retrieval

Problem: Find 3 € R? satisfying
(G?Iﬁ)Z =0

for ai,...,am € R and by,...,bm € R.
Measurement map: bi = (aia; ,z4zy ) = Ai = asa;

RIP:2 Assume m > 2d + 1 and a; ~ N(0,1;). Then w.p. 1 —e™°™ have

1
ri[Mllr < —[AM)]1 < r2l|M]lr VM € R5*“.

RIP fails with |||-||| = \/IEH l2
. L T
Penalty Formulation: — ; — by.
y ulati min m;l(az ) |

2quadrativ: sensing (Chen-Chi-Goldsmith '15)



Examples

Blind deconvolution/bi-convex sensing. (Ling-Strohmer '15, Ahmed et al. '14)
m
.1
min =Y "~ [{ui, z)(vi, y) — bil
z,y MM
i=1
Robust PCA. (Candés et al. '11, Chandrasekaran et al. '11, Netrapalli et al. '14)

min |ILV — M]||x
LEIRdXT, VERTXm

Conditional Value-at-Risk. (Rockafellar-Uryasev '10, Ben-Tal-Teboulle '86,'07)
min {Expectation of f(z,-) on its a-tail}.
x
Equivalent formulation:
. 1
min -y + ———E[(f(z,2) —7)+]
~ER, z€RE 11—«

covariance estimation, dictionary learning, group synchronization, ...



Rapid local convergence



The two-part strategy

Typical approach.

1. Find initial solution estimate Z.
= Typically found via spectral method.

2. Run a “local search method.”

= Can be challenging to analyze.

Extensive literature in the smooth setting.

= http://sunju.org/research/nonconvex/

= Yuejie Chi, Yue M. Lu, and Yuxin Chen. “Nonconvex optimization meets
low-rank matrix factorization: An overview.” |IEEE Transactions on Signal
Processing 67.20 (2019): 5239-52609.



N

Conditioning in nonsmooth optimization

7 -

2 =] 3 1 2 2 =] 3 1 2

(a) (phase retrieval) (b) (blind deconvolution) (c) (robust PCA)
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Conditioning in nonsmooth optimization

Three properties: Define S := argmin F.
x> F(a)+ Sl
F(z) —min F > p - dist(z,S)

= Weak convexity: is convex

= Sharpness:

= Lipschitz:
T
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Conditioning in nonsmooth optimization
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Three properties: Define S := argmin F.

= Weak convexity: x— F(x) + §||:c||2 is convex
= Sharpness: F(z) —min F > p - dist(z,S)
= Lipschitz: Fis L-Lipschitz on T := {x | dist(z, S) < 27”}
,,,,,,,,,, T
Lemma: 7 \ S contains no critical points. /é\‘
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Conditioning in nonsmooth optimization
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Three properties: Define S := argmin F.

= Weak convexity: x— F(x) + §||:c||2 is convex
= Sharpness: F(z) —min F > p - dist(z,S)
= Lipschitz: Fis L-Lipschitz on T := {x | dist(z, S) < 27”}
,,,,,,,,,, T
Lemma: 7 \ S contains no critical points. // /{#\‘
\ S ¥
Summary:

. B controls initialization

L
= — controls speed
I
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Conditioning in nonsmooth optimization

2 10
2 4 0 1 2 .
z s
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Three properties: Define S := argmin F.
x— F(x) + §||:c||2 is convex
F(z) —min F > p - dist(z,S)
Fis L-Lipschitz on T := {x | dist(z, S) < 27”}

= Weak convexity:

= Sharpness:

= Lipschitz:
,,,,,,,,,, T
Lemma: 7 \ S contains no critical points. ! /é\
1 S p )
Summary:
« £ controls initialization RIP = £ or(My)
P k2
L _ k2 [o1(My)

L
= — controls speed
I
8/23



Meta-Theorem:
Simple algorithms for sharp and weakly convex functions converge rapidly.
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Polyak subgradient method:

v = o (i) VF@)

Thm: (Polyak '67, Davis-D-MacPhee-Paquette '17)
Assuming xo € T, have
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— 2 41— (= for all ¢.
dist(z4;S) — ora
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Meta-Theorem:

Simple algorithms for sharp and weakly convex functions converge rapidly.

Polyak subgradient method:

v = o (i) VF@)

Thm: (Polyak '67, Davis-D-MacPhee-Paquette '17)
Assuming xo € T, have

dist(z¢41; ) (,u)2
— 2 41— (= for all ¢.
dist(z4;S) — L ora

= Off-the-shelf optimal sample and computational efficiency for phase
retrieval (real/complex), blind deconvolution, and quadratic sensing.

Remark:

= min I’ not known = can update lower bounds (Hazan-Kakade '19)

= measurement errors => linear convergence to a tolerance.



Figure: (d,m) ~ (223,22%). Iteration 1.
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N ~ (223,224). Iteration 3.
Figure: (d,m) = ( ) 10/23
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Figure: Convergence plot (iterates vs. ||z, — Z||/||Z]|)-

80
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Stochastic weakly-convex minimization



Streaming & offline algorithms

min F(z) =E;[f(z, z)]

T

Running assumption: weak convexity

fl,2)+ gl\ 17 is convex.
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Streaming & offline algorithms

min F(z) =E;[f(z, z)]

T

Running assumption: weak convexity
4 2 .
f(,2)+ §H -] is convex.
Main example: convex compositions
x + h(c(z))

h is convex and L-Lipschitz; ¢ is smooth with ¢-Lipschitz Jacobian (p = L)
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Streaming & offline algorithms

min F(z) =E;[f(z, z)]

T

Running assumption: weak convexity
fl,2)+ gl\ 17 is convex.

Main example: convex compositions

x + h(c(z))
h is convex and L-Lipschitz; ¢ is smooth with ¢-Lipschitz Jacobian (p = L)
Two approaches:

= Streaming: Sample z; and update z; using f(-, z¢)

= Offline: Sample S = {z1,...,2,} i.i.d. from P and approximate

F(z) = Eu[f(z,2)] with  FS(z):= %Zf(x,zi).



Interlude: subdifferential

Fact: For any f: R? — R, have equivalence:

= fis p-weakly convex

= Subgradient inequality: Vz3v, satisfying

F@) > f(@) + (vayy — @)Ly — 2
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Interlude: subdifferential

Fact: For any f: R? — R, have equivalence:

= fis p-weakly convex

= Subgradient inequality: Vz3v, satisfying

F) 2 (@) + {vey —a)=Ely — o

Subdifferential: of(z) :=={va}

Calculus: A(hoc)(z) = Ve(z) dh(c(x))




Four streaming algorithms

Problem:

fi

Example: (Stochastic subgradient)® Choose g € 8h;(ci(x)) and

zt =z —aVea(z)'y

3(Nemirovski-Juditsky-Lan—Shapiro '09, Ghadimi-Lan-Zhang '16...)



Four streaming algorithms

Problem:

Example: (Stochastic subgradient)® Choose g € 8h;(ci(x)) and

zt =z —aVea(z)'y

= argmin {h,,-(ci(m)) + (Vei(x) g,y — x) + i”y - IH2}

Y

3(Nemirovski-Juditsky-Lan—Shapiro '09, Ghadimi-Lan-Zhang '16...)



Four streaming algorithms

Problem:

0.5
Example: (Stochastic clipped subgradient)® Choose g € dhi(c;(z)) and

o = argmin { [hi(e.(r)) + (Veu() gy~ )] V 1o+ 5ol =l |

3(Duchi-Ruan '17, Asi-Duchi '18 ...)



Four streaming algorithms

Problem:

fi

Example: (Stochastic prox-linear)?

z" = argmin {hi (ci(z) + Vei(z)(y — x)) + %Hy - w”Q}

Y

3(Burke '85, Lewis-Wright '15, Duchi-Ruan '17,...)



Four streaming algorithms

Problem:

0.5

Example: (Stochastic proximal point method)?

1
+ . 2
= hq' Ci -_— —

x" = argmin { i(c (y))+2a|\y || }

Y

3(Ryu—Boyd '16, Toulis-Tran-Airoldi '16, Bianchi '16...)



Algorithm:

Model-Based streaming algorithm
min F(z) = E.[f(z, 2)].

Sample: z; ~ P

. 1
Set: w1 = argmin { fo, (y,20) + 5 ly — w1l* |
y 20[15



Model-Based streaming algorithm

min F(z) = E.[f(z, 2)].
Algorithm: ’
Sample: z; ~ P

. 1
Set: w1 = argmin { fo, (y,20) + 5 ly — w1l* |
y 20[15

Assumption:

Folw2) = f(e.2) and  fa(y,2) < f(,2) + 5y — 2l

Vz,y




Model-Based streaming algorithm

min F(z) = E.[f(z, 2)].
Algorithm: ’
Sample: z; ~ P

. 1
Set: iy = angmin { fu, (g,20) + 5[y — o}
y 20[15

Assumption:

folw2) = f(w.2) and  fa(y.2) < f@2) + gly —al® ey
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Phase Retrieval Experiments

prox-linear
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Figure: Target accuracy 104

Towards convergence guarantees. ..
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Challenges

1. Biased search directions:

SGD E [CCt+1 - l‘t] = —atVF(xt)

MODEL:  E [z¢41 — x¢] no clear meaning!
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Challenges

1. Biased search directions:

SGD E [Z‘t+1 - .Tt] = —othF(mt)

MODEL: E[z¢4+1 —x¢]  no clear meaning!

2. Unclear what to measure:

(a) F(z) — inf F > Q(1) (b) [VF(2)] > Q(1)

16 /23



Moreau envelope

F(@) = inf { Fly) + 5y — o]}

—F(z) = |2* -1
- - Fya(z)
Fya(2)
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Moreau envelope

F(@) = inf { Fly) + 5y — o]}

—F(z) = |2* -1
- - Fya(z)
Fya(2)

Implicit Smoothing. F» is C* for all A < p~! with

VE(z) = A (z — prox, p(x) |

where

prox, p(¢) = argmin { F(y) + gxly —«/* }
y

17/23



Moreau envelope

= Approximate stationarity: set & = prox, g(z)

VE\(z) € 0F(2)

T

Small ||[VFy(z)|| = = is nearby a nearly stationary point of F.

18/23



Convergence guarantees

Assumptions: For all x,y, z, have
1. (accuracy) Efi(v,2) = f(z) and Efu(y,2) < f(y) + 5lly — 2l
2. (convexity)  fz(-,z) are p-weakly convex
3. (Lipschitz)  f.(x,2) — fu(y,2) < L(2)|ly — || where E[L(2)?] < oo

Moreau envelope is almost Lyapunov function for algorithm dynamics!

Theorem (Davis-D '18)

Setting A = 1/2(p + ), methods achieve approximate descent on envelope:
E[Fx(2e) = Fx(2e41)] > | VEx(@o)|*/A=aiE|| L|* /A

Hence for aey = T~/? get complexity E||V Fx (z¢+)|| = O(T~/*).

“Duchi and Ruan. Stochastic methods for composite optimization problems. (2017)

5Nurminskii. The quasigradient method for the solving of the nonlinear programming problems (1973)
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Moreau envelope is almost Lyapunov function for algorithm dynamics!

Theorem (Davis-D '18)

Setting A = 1/2(p + ), methods achieve approximate descent on envelope:
E[F(z¢)—Fx(ze41)] > o E|VEx () ||2//\ (gradient descent bound)
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Convergence guarantees

Assumptions: For all x,y, z, have
1. (accuracy) Efi(v,2) = f(z) and Efu(y,2) < f(y) + 5lly — 2l
2. (convexity)  fz(-,z) are p-weakly convex
3. (Lipschitz)  f.(x,2) — fu(y,2) < L(2)|ly — || where E[L(2)?] < oo

Moreau envelope is almost Lyapunov function for algorithm dynamics!

Theorem (Davis-D '18)

Setting A = 1/2(p + ), methods achieve approximate descent on envelope:
E[Fx(2e) = Fx(2e41)] > | VEx(@o)|*/A=aiE|| L|* /A
Hence for aey = T~/? get complexity E||V Fx (z¢+)|| = O(T~/*).

Almost sure convergence of stochastic prox-linear* and subgradient®

previously known. Functional rates improve under convexity.

“Duchi and Ruan. Stochastic methods for composite optimization problems. (2017)

5 Nurminskii. The quasigradient method for the solving of the nonlinear programming problems (1973)
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Off-line Algorithms

Form i.i.d. sample S = {z1,...,2,} C R? from P and approximate

m

F(z) = E.[f(z,2)] with FS(x) := %Zf(x,zl)

Theorem (Davis-D '18)
Setting A = 1/2p, with probability 1 — ~, the estimate holds:

sup ||VFY (z) — VEA(z)]2 < O ( Ld (T))

lz|<R e

» Estimate is tight even for smooth losses.



Off-line Algorithms

Uniform vs. Graphical Convergence:

sup ||VFY(z) — VF\(x)||2 ~ dist(gph dF, gph F%).

el <R

gph OF

gph OF®

Figure: Graphical but not uniform



Off-line Algorithms

Uniform vs. Graphical Convergence:

sup ||VFY(z) — VF\(x)||2 ~ dist(gph dF, gph F%).

el <R

gph OF

gph OF®

Figure: Graphical but not uniform

» Other results: d-independent rates for GLM, landscape analysis, regularity ...

Proofs use
= nonsmooth analysis (Brgndsted-Rockafellar '65, Ekeland '79, Attouch '84)

= stability of ERM (Shalev-Shwartz et al. '09, Bousquet et al. '02)
= concentration (McDiarmid '89, Bartlett-Mendelson '02)



Fast stochastic algorithms

Back to phase retrieval:

2
min — E |a,
z€Rd M

(a; xﬁ)

min E,|(a’z)* -
zER

—(a'=)?
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When is the sample average well conditioned?

= sharpness u is ubiquitous [small ball technique (Mendelson '14)]
= parameters p and L rely on light tails
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Fast stochastic algorithms
Back to phase retrieval:

min —Z| ai ©) — (ai z3)°| ~ min E,|(a'z)* — (a x)?|.
zeRd M zeRd

When is the sample average well conditioned?

= sharpness u is ubiquitous [small ball technique (Mendelson '14)]
= parameters p and L rely on light tails

Are there fast algorithms for the population objective? Yes!
min E,f(z,a).
z€R4

Theorem (Davis-D-Charisopoulos '19)

Stochastic algorithms on weakly convex and sharp functions converge linearly
in the tube T w.h.p.

Surprising;:
= Evaluating E, [f(z, a)] to £ accuracy requires O(e ’2) samples

= This result: to get ¢ close to minimizer, need O ( =5 log(e 1)) samples.



Fast stochastic algorithms

Algorithm:®
Model-based algorithms + step-decay

—4— Subgradient A
10-1E —= Clipped E

—+— Proximal

—o— Prox-linear
102 —=— Ry -2t 4
1079 El
1071 E E|
107°F E
1070 E|

»

L L L L L
1,000,000 2,000,000 3,000,000 4,000,000 5,000,000
Iterations

(a) Phase retrieval (b) Step decay

S related algorithm in convex setting (Xu-Lin-Yang '16)
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Thank you
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