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Abstract

The task of recovering a low-rank matrix from its noisy linear measurements plays
a central role in computational science. Smooth formulations of the problem often
exhibit an undesirable phenomenon: the condition number, classically defined, scales
poorly with the dimension of the ambient space. In contrast, we here show that in
a variety of concrete circumstances, nonsmooth penalty formulations do not suffer
from the same type of ill-conditioning. Consequently, standard algorithms for nons-
mooth optimization, such as subgradient and prox-linear methods, converge at a rapid
dimension-independent rate when initialized within constant relative error of the so-
lution. Moreover, nonsmooth formulations are naturally robust against outliers. Our
framework subsumes such important computational tasks as phase retrieval, blind de-
convolution, quadratic sensing, matrix completion, and robust PCA. Numerical exper-
iments on these problems illustrate the benefits of the proposed approach.
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1 Introduction

Recovering a low-rank matrix from noisy linear measurements has become an increasingly
central task in data science. Important and well-studied examples include phase retrieval
[12,42,55], blind deconvolution [1,38,41,57], matrix completion [9,21,56], covariance matrix
estimation [18, 40], and robust principal component analysis [11, 15]. Optimization-based
approaches for low-rank matrix recovery naturally lead to nonconvex formulations, which
are NP hard in general. To overcome this issue, in the last two decades researchers have
developed convex relaxations that succeed with high probability under appropriate statis-
tical assumptions. Convex techniques, however, have a well-documented limitation: the
parameter space describing the relaxations is usually much larger than that of the target
problem. Consequently, standard algorithms applied on convex relaxations may not scale
well to the large problems. Consequently, there has been a renewed interest in directly opti-
mizing nonconvex formulations with iterative methods within the original parameter space
of the problem. Aside from a few notable exceptions on specific problems [3, 32, 33], most
algorithms of this type proceed in two-stages. The first stage—initialization—yields a rough
estimate of an optimal solution, often using spectral techniques. The second stage—local
refinement—uses a local search algorithm that rapidly converges to an optimal solution,
when initialized at the output of the initialization stage.

This work focuses on developing provable low-rank matrix recovery algorithms based on
nonconvex problem formulations. We focus primarily on local refinement and describe a
set of unifying sufficient conditions leading to rapid local convergence of iterative methods.
In contrast to the current literature on the topic, which typically relies on smooth problem
formulations and gradient-based methods, our primary focus is on nonsmooth formulations
that exhibit sharp growth away from the solution set. Such formulations are well-known in
the nonlinear programming community to be amenable to rapidly convergent local-search
algorithms. Along the way, we will observe an apparent benefit of nonsmooth formulations
over their smooth counterparts. All nonsmooth formulations analyzed in this paper are
“well-conditioned,” resulting in fast “out-of-the-box” convergence guarantees. In contrast,
standard smooth formulations for the same recovery tasks can be poorly conditioned, in the
sense that classical convergence guarantees of nonlinear programming are overly pessimistic.
Overcoming the poor conditioning typically requires nuanced problem and algorithmic spe-
cific analysis (e.g. [17, 42, 46, 57]), which nonsmooth formulations manage to avoid for the
problems considered here.

Setting the stage, consider a rank r matrix M] ∈ Rd1×d2 and a linear map A : Rd1×d2 →
Rm from the space of matrices to the space of measurements. The goal of low-rank matrix
recovery is to recover M] from the image vector b = A(M]), possibly corrupted by noise.
Typical nonconvex approaches proceed by choosing some penalty function h(·) with which
to measure the residual A(M) − b for a trial solution M . Then, in the case that M] is
symmetric and positive semidefinite, one may focus on the formulation

min
X∈Rd×r

f(X) := h
(
A(XX>)− b

)
subject to X ∈ D, (1.1)

or when M] is rectangular, one may instead use the formulation

min
X∈Rd1×r, Y ∈Rr×d2

f(X, Y ) := h (A(XY )− b) subject to (X, Y ) ∈ D. (1.2)
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Here, D is a convex set that incorporates prior knowledge about M] and is often used to
enforce favorable structure on the decision variables. The penalty h is chosen specifically to
penalize measurement misfit and/or enforce structure on the residual errors.

Algorithms and conditioning for smooth formulations

Most widely-used penalties h(·) are smooth and convex. Indeed, the squared `2-norm h(z) =
1
2
‖z‖2

2 is ubiquitous in this context. With such penalties, problems (1.1) and (1.2) are
smooth and thus are amenable to gradient-based methods. The linear rate of convergence of
gradient descent is governed by the “local condition number” of f . Indeed, if the estimate,
µI � ∇2f(X) � LI, holds for all X in a neighborhood of the solution set, then gradient
descent converges to the solution set at the linear rate 1 − µ/L. It is known that for
several widely-studied problems including phase retrieval, blind deconvolution, and matrix
completion, the ratio µ/L scales inversely with the problem dimension. Consequently, generic
nonlinear programming guarantees yield efficiency estimates that are far too pessimistic.
Instead, near-dimension independent guarantees can be obtained by arguing that ∇2f is
well conditioned along the “relevant” directions or that ∇2f is well-conditioned within a
restricted region of space that the iterates never escape (e.g. [42,46,57]). Techniques of this
type have been elegantly and successfully used over the past few years to obtain algorithms
with near-optimal sample complexity. One byproduct of such techniques, however, is that
the underlying arguments are finely tailored to each particular problem and algorithm at
hand. We refer the reader to the recent surveys [20] for details.

Algorithms and conditioning for nonsmooth formulations

The goal of our work is to justify the following principle:

Statistical assumptions for common recovery problems guarantee that (1.1) and
(1.2) are well-conditioned when h is an appropriate nonsmooth convex penalty.

To explain what we mean by “good conditioning,” let us treat (1.1) and (1.2) within the
broader convex composite problem class:

min
x∈X

f(x) := h(F (x)), (1.3)

where F (·) is a smooth map on the space of matrices and X is a closed convex set. Indeed,
in the symmetric and positive semidefinite case, we identify x with matrices X and define
F (X) = A(XX>) − b, while in the asymmetric case, we identify x with pairs of matrices
(X, Y ) and define F (X, Y ) = A(XY )− b. Though compositional problems (1.3) have been
well-studied in nonlinear programming [6,7,31], their computational promise in data science
has only begun recently to emerge. For example, the papers [22,26,28] discuss stochastic and
inexact algorithms on composite problems, while the papers [24,27], [16], and [39] investigate
applications to phase retrieval, blind deconvolution, and matrix sensing, respectively.
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A number of algorithms are available for problems of the form (1.3), and hence for (1.1)
and (1.2). Two most notable ones are the projected subgradient1 method [23,34]

xt+1 = projX (xt − αtvt) with vt ∈ ∂f(xt),

and the prox-linear algorithm [6,25,37]

xt+1 = argmin
x∈X

h
(
F (xt) +∇F (xt)(x− xt)

)
+
β

2
‖x− xt‖2

2.

Notice that each iteration of the subgradient method is relatively cheap, requiring access only
to the subgradients of f and the nearest-point projection onto X . The prox-linear method in
contrast requires solving a strongly convex problem in each iteration. That being said, the
prox-linear method has much stronger convergence guarantees than the subgradient method,
as we will review shortly.

The local convergence guarantees of both methods are straightforward to describe, and
underlie what we mean by “good conditioning”. Define X ∗ := argminX f , and for any x ∈ X
define the convex model fx(y) = h(F (x) + ∇F (x)(y − x)). Suppose there exist constants
ρ, µ > 0 satisfying the two properties:

• (approximation) |f(y)− fx(y)| ≤ ρ
2
‖y − x‖2

2 for all x, y ∈ X ,

• (sharpness) f(x)− inf f ≥ µ · dist(x,X ∗) for all x ∈ X .

The approximation and sharpness properties have intuitive meanings. The former says that
the nonconvex function f(y) is well approximated by the convex model fx(y), with quality
that degrades quadratically as y deviates from x. In particular, this property guarantees
that the quadratically perturbed function x 7→ f(x) + ρ

2
‖x‖2

2 is convex on X . Yet another
consequence of the approximation property is that the epigraph of f admits a supporting
concave quadratic with amplitute ρ at each of its points. Sharpness, in turn, asserts that
f must grow at least linearly as x moves away from the solution set. In other words, the
function values should robustly distinguish between optimal and suboptimal solutions. In
statistical contexts, one can interpret sharpness as strong identifiability of the statistical
model. The three figures below illustrate the approximation and sharpness properties for
idealized objectives in phase retrieval, blind deconvolution, and robust PCA problems.

Approximation and sharpness, taken together, guarantee rapid convergence of numerical
methods when initialized within the tube:

T =
{
x ∈ X : dist(x,X ∗) ≤ µ

ρ

}
.

For common low-rank recovery problems, T has an intuitive interpretation: it consists of
those matrices that are within constant relative error of the solution. We note that standard
spectral initialization techniques, in turn, can generate such matrices with nearly optimal
sample complexity. We refer the reader to the survey [20], and references therein, for details.

1Here, the subdifferential is formally obtained through the chain rule ∂f(x) = ∇F (x)∗∂h(F (x)), where
∂h(·) is the subdifferential in the sense of convex analysis.
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(c) f(x) = ‖xx> − 11>‖1
(robust PCA)

Guiding strategy. The following is the guiding algorithmic principle of this work:

When initialized at x0 ∈ T , the prox-linear algorithm converges quadratically to
the solution set X ∗; the subgradient method, in turn, converges linearly with a
rate governed by ratio µ

L
∈ (0, 1), where L is the Lipschitz constant of f on T .2

In light of this observation, our strategy can be succinctly summarized as follows. We will
show that for a variety of low-rank recovery problems, the parameters µ, L, ρ > 0 (or vari-
ants) are dimension independent under standard statistical assumptions. Consequently, the
formulations (1.1) and (1.2) are “well-conditioned”, and subgradient and prox-linear methods
converge rapidly when initialized within constant relative error of the optimal solution.

Approximation and sharpness via the Restricted Isometry Property

We begin verifying our thesis by showing that the composite problems, (1.1) and (1.2), are
well-conditioned under the following Restricted Isometry Property (RIP): there exists a norm
|||·||| and numerical constants κ1, κ2 > 0 so that

κ1‖W‖F ≤ |||A(W )||| ≤ κ2‖W‖F , (1.4)

for all matrices W ∈ Rd1×d2 of rank at most 2r. We argue that under RIP,

the nonsmooth norm h = |||·||| is a natural penalty function to use.

Indeed, as we will show, the composite loss h(F (x)) in the symmetric setting admits constants
µ, ρ, L that depend only on the RIP parameters and the extremal singular values of M]:

µ = 0.9κ1

√
σr(M]), ρ = κ2, L = 0.9κ1

√
σr(M]) + 2κ2

√
σ1(M]).

2Both the parameters αt and β must be properly chosen for these guarantees to take hold.
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In particular, the initialization ratio scales as µ
ρ
� κ1

κ2

√
σr(M]) and the condition number

scales as L
µ
� 1+ κ2

κ1

√
σ1(M])

σr(M])
. Consequently, the rapid local convergence guarantees previously

described immediately take-hold. The asymmetric setting is slightly more nuanced since
the objective function is sharp only on bounded sets. Nonetheless, it can be analyzed in
a similar way leading to analogous rapid convergence guarantees. Incidentally, we show
that the prox-linear method converges rapidly without any modification; this is in contrast
to smooth methods, which typically require incorporating an auxiliary regularization term
into the objective (e.g. [57]). We note that similar results in the symmetric setting were
independently obtained in the complimentary work [39], albeit with a looser estimate of L;
the two treatments of the asymmetric setting are distinct, however.3

After establishing basic properties of the composite loss, we turn our attention to verifying
RIP in several concrete scenarios. We note that the seminal works [13, 50] showed that if
A(·) arises from a Gaussian ensemble, then in the regime m & r(d1 + d2) RIP holds with
high probability for the scaled `2 norm |||z||| = m−1/2‖z‖2. More generally when A is highly
structured, RIP may be most naturally measured in a non-Euclidean norm. For example,
RIP with respect to the scaled `1 norm |||z||| = m−1‖z‖1 holds for phase retrieval [27, 29],
blind deconvolution [16], and quadratic sensing [18]; in contrast, RIP relative to the scaled `2

norm fails for all three problems. In particular, specializing our results to the aforementioned
recovery tasks yields solution methodologies with best known sample and computational
complexity guarantees. Notice that while one may “smooth-out” the `2 norm by squaring
it, we argue that it may be more natural to optimize the `1 norm directly as a nonsmooth
penalty. Moreover, we show that `1 penalization enables exact recovery even if a constant
fraction of measurements is corrupted by outliers.

Beyond RIP: matrix completion and robust PCA

The RIP assumption provides a nice vantage point for analyzing the problem parameters
µ, ρ, L > 0. There are, however, a number of important problems, which do not satisfy RIP.
Nonetheless, the general paradigm based on the interplay of sharpness and approximation
is still powerful. We consider two such settings, matrix completion and robust principal
component analysis (PCA), leveraging some intermediate results from [19].

The goal of the matrix completion problem [9] is to recover a low rank matrix M] from
its partially observed entries. We focus on the formulation

argmin
X∈X

f(X) = ‖ΠΩ(XX>)− ΠΩ(M])‖2,

where ΠΩ is the projection onto the index set of observed entries Ω and

X =

{
X ∈ Rd×r : ‖X‖2,∞ ≤

√
νr‖M]‖op

d

}
3The authors of [39] provide a bound on L that scales with the Frobenius norm

√
‖M]‖F . We instead

derive a sharper bound that scales as
√
‖M]‖op. As a byproduct, the linear rate of convergence for the

subgradient method scales only with the condition number σ1(M])/σr(M]) instead of ‖M]‖F /σr(M]).
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is the set of incoherent matrices. To analyze the conditioning of this formulation, we assume
that the indices in Ω are chosen as i.i.d. Bernoulli with parameter p ∈ (0, 1) and that all
nonzero singular values of M] are equal to one. Using results of [19], we quickly deduce
sharpness with high probability. The error in approximation, however, takes the following
nonstandard form. In the regime p ≥ c

ε2
(ν

2r2

d
+ log d

d
) for some constants c > 0 and ε ∈ (0, 1),

the estimate holds with high probability:

|f(Y )− fX(Y )| ≤
√

1 + ε‖Y −X‖2
2 +
√
ε‖X − Y ‖F for all X, Y ∈ X .

The following modification of the prox-linear method therefore arises naturally:

Xk+1 = argmin
X∈X

fXk(X) +
√

1 + ε‖X −Xk‖2
F +
√
ε‖X −Xk‖F .

We show that subgradient methods and the prox-linear method, thus modified, both converge
at a dimension independent linear rate when initialized near the solution. Namely, as long
as ε and dist(X0,X ∗) are below some constant thresholds, both the subgradient and the
modified prox-linear methods converge linearly with high probability:

dist(Xk,X ∗) .
{(

1− c
νr

)k/2
subgradient

2−k prox-linear
.

Here c > 0 is a numerical constant. Notice that the prox-linear method enjoys a much faster
rate of convergence that is independent of any unknown constants or problem parameters—
an observation fully supported by our numerical experiments.

As the final example, we consider the problem of robust PCA [11, 15], which aims to
decompose a given matrix W into a sum of a low-rank and a sparse matrix. We consider
two different problem formulations:

min
(X,S)∈D1

F ((X,S)) = ‖XX> + S −W‖F , (1.5)

and
min
X∈D2

f(X) = ‖XX> −W‖1, (1.6)

where D1 and D2 are appropriately defined convex regions. Under standard incoherence as-
sumptions, we show that the formulation (1.5) is well-conditioned, and therefore subgradient
and prox-linear methods are applicable. Still, formulation (1.5) has a major drawback in that
one must know properties of the optimal sparse matrix S] in order to define the constraint
set D1, in order to ensure good conditioning. Consequently, we analyze formulation (1.6) as
a more practical alternative.

The analysis of (1.6) is more challenging than that of (1.5). Indeed, it appears that
we must replace the Frobenius norm ‖X‖F in the approximation/sharpness conditions with
the sum of the row norms ‖X‖2,1. With this set-up, we verify the convex approximation
property in general:

|f(Y )− fX(Y )| ≤ ‖Y −X‖2
2,1 for all X, Y
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and sharpness only when r = 1. We conjecture, however, that an analogous sharpness
bound holds for all r. It is easy to see that the quadratic convergence guarantees for the
prox-linear method do not rely on the Euclidean nature of the norm, and the algorithm
becomes applicable. To the best of our knowledge, it is not yet known how to adapt linearly
convergent subgradient methods to the non-Euclidean setting.

Robust recovery with sparse outliers and dense noise

The aforementioned guarantees lead to exact recovery of M] under noiseless or sparsely
corrupted measurements b. A more realistic noise model allows for further corruption by a
dense noise vector e of small norm. Exact recovery is no longer possible with such errors.
Instead, we should only expect to recover M] up to a tolerance proportional to the size of e.
Indeed, we show that appropriately modified subgradient and prox-linear algorithms converge
linearly and quadratically, respectively, up to the tolerance δ = O(|||e|||/µ) for an appropriate
norm |||·|||. Finally, we discuss in detail the case of recovering a low rank PSD matrix M]

from the corrupted measurements A(M]) + ∆ + e, where ∆ represents sparse outliers and
e represents small dense noise. To the best of our knowledge, theoretical guarantees for
this error model have not been previously established in the nonconvex low-rank recovery
literature. Surprisingly, we show it is possible to recover the matrix M] up to a tolerance
independent of the norm or location of the outliers ∆.

Numerical experiments

We conclude with an experimental evaluation of our theoretical findings on quadratic and
bilinear matrix sensing, matrix completion, and robust PCA problems. In the first set of
experiments, we test the robustness of the proposed methods against varying combinations
of rank/corruption level by reporting the empirical recovery rate across independent runs
of synthetic problem instances. All the aforementioned model problems exhibit sharp phase
transitions, yet our methods succeed for more than moderate levels of corruption (or unob-
served entries in the case of matrix completion). For example, in the case of matrix sensing,
we can corrupt almost half of the measurements Ai(M) and still retain perfect recovery
rates. Interestingly, our experimental findings indicate that the prox-linear method can tol-
erate slightly higher levels of corruption compared to the subgradient method, making it the
method of choice for small-to-moderate dimensions.

We then demonstrate that the convergence rate analysis is fully supported by empiri-
cal evidence. In particular, we test the subgradient and prox-linear methods for different
rank/corruption configurations. In the case of quadratic/bilinear sensing and robust PCA,
we observe that the subgradient method converges linearly and the prox-linear method con-
verges quadratically, as expected. In particular, our numerical experiments appear to support
our sharpness conjecture for the robust PCA problem. In the case of matrix completion,
both algorithms converge linearly. The prox-linear method in particular, converges extremely
quickly, reaching high accuracy solutions in under 25 iterations for reasonable values of p.

In the noiseless setting, we compare against gradient descent with constant step-size on
smooth formulations of each problem (except for robust PCA). We notice that the Polyak
subgradient method outperforms gradient descent in all cases. That being said, one can
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heuristically equip gradient descent with the Polyak step-size as well. To the best of our
knowledge, the gradient method with Polyak step-size has has not been investigated on
smooth problem formulations we consider here. Experimentally, we see that the Polyak
(sub)gradient methods on smooth and nonsmooth formulations perform comparably in the
noiseless setting.

Outline of the paper

The outline of the paper is as follows. Section 2 records some basic notation we will use.
Section 3 informally discusses the sharpness and approximation properties, and their impact
on convergence of the subgradient and prox-linear methods. Section 4 analyzes the param-
eters µ, ρ, L under RIP. Section 5 rigorously discusses convergence guarantees of numerical
methods under regularity conditions. Section 6 reviews examples of problems satisfying RIP
and deduces convergence guarantees for subgradient and prox-linear algorithms. Sections 7
and 8 discuss the matrix completion and robust PCA problems, respectively. Section 9 dis-
cusses robust recovery up to a noise tolerance. The final Section 10 illustrates the developed
theory and algorithms with numerical experiments on quadratic/bi-linear sensing, matrix
completion, and robust PCA problems.

2 Preliminaries

In this section, we summarize the basic notation we will use throughout the paper. Hence-
forth, the symbol E will denote a Euclidean space with inner product 〈·, ·〉 and the induced
norm ‖x‖2 =

√
〈x, x〉. The closed unit ball in E will be denoted by B, while a closed ball

of radius ε > 0 around a point x will be written as Bε(x). For any point x ∈ E and a set
Q ⊂ E, the distance and the nearest-point projection in `2-norm are defined by

dist(x;Q) = inf
y∈Q
‖x− y‖2 and projQ(x) = argmin

y∈Q
‖x− y‖2,

respectively. For any pair of functions f and g on E, the notation f . g will mean that
there exists a numerical constant C such that f(x) ≤ Cg(x) for all x ∈ E. Given a linear
map between Euclidean spaces, A : E→ Y, the adjoint map will be written as A∗ : Y → E.
We will use Id for the d-dimensional identity matrix and 0 for the zero matrix with variable
sizes. The symbol [m] will be shorthand for the set {1, . . . ,m}.

We will always endow the Euclidean space of vectors Rd with the usual dot-product
〈x, y〉 = x>y and the induced `2-norm. More generally, the `p norm of a vector x will be
denoted by ‖x‖p = (

∑
i |xi|p)1/p. Similarly, we will equip the space of rectangular matrices

Rd1×d2 with the trace product 〈X, Y 〉 = Tr(X>Y ) and the induced Frobenius norm ‖X‖F =√
Tr(X>X). The operator norm of a matrix X ∈ Rd1×d2 will be written as ‖X‖op. The

symbol σ(X) will denote the vector of singular values of a matrix X in nonincreasing order.
We also define the row-wise matrix norms ‖X‖b,a = ‖(‖X1·‖b, ‖X2·‖b . . . , ‖Xd1·‖b)‖a. The
symbols Sd, Sd+, O(d), and GL(d) will denote the sets of symmetric, positive semidefinite,
orthogonal, and invertible matrices, respectively.
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Nonsmooth functions will play a central role in this work. Consequently, we will require
some basic constructions of generalized differentiation, as described for example in the mono-
graphs [4, 45, 52]. Consider a function f : E → R ∪ {+∞} and a point x, with f(x) finite.
The subdifferential of f at x, denoted by ∂f(x), is the set of all vectors ξ ∈ E satisfying

f(y) ≥ f(x) + 〈ξ, y − x〉+ o(‖y − x‖2) as y → x. (2.1)

Here o(r) denotes any function satisfying o(r)/r → 0 as r → 0. Thus, a vector ξ lies in
the subdifferential ∂f(x) precisely when the linear function y 7→ f(x) + 〈ξ, y − x〉 lower-
bounds f up to first-order around x. Standard results show that for a convex function f the
subdifferential ∂f(x) reduces to the subdifferential in the sense of convex analysis, while for
a differentiable function it consists only of the gradient: ∂f(x) = {∇f(x)}. For any closed
convex functions h : Y → R and g : E → R ∪ {+∞} and C1-smooth map F : E → Y, the
chain rule holds [52, Theorem 10.6]:

∂(h ◦ F + g)(x) = ∇F (x)∗∂h(F (x)) + ∂g(x).

We say that a point x is stationary for f whenever the inclusion 0 ∈ ∂f(x) holds. Equiva-
lently, stationary points are precisely those that satisfy first-order necessary conditions for
minimality: the directional derivative is nonnegative in every direction.

We say a that a random vector X in Rd is η-sub-gaussian whenever E exp
(
〈u,X〉2
η2

)
≤ 2

for all unit vectors u ∈ Rd. The sub-gaussian norm of a real-valued random variable X

is defined to be ‖X‖ψ2 = inf{t > 0 : E exp
(
X2

t2

)
≤ 2}, while the sub-exponential norm is

defined by ‖X‖ψ1 = inf{t > 0 : E exp
(
|X|
t

)
≤ 2}.

3 Regularity conditions and algorithms (informal)

As outlined in Section 1, we consider the low-rank matrix recovery problem within the
framework of compositional optimization:

min
x∈X

f(x) := h(F (x)), (3.1)

where X ⊂ E is a closed convex set, h : Y → R is a finite convex function and F : E→ Y is
a C1-smooth map. We depart from previous work on low-rank matrix recovery by allowing
h to be nonsmooth. We primary focus on those algorithms for (3.1) that converge rapidly
(linearly or faster) when initialized sufficiently close to the solution set.

Such rapid convergence guarantees rely on some regularity of the optimization problem.
In the compositional setting, regularity conditions take the following appealing form.

Assumption A. Suppose that the following properties hold for the composite optimization
problem (3.1) for some real numbers µ, ρ, L > 0.

1. (Approximation accuracy) The convex models fx(y) := h(F (x) + ∇F (x)(y − x))
satisfy the estimate

|f(y)− fx(y)| ≤ ρ

2
‖y − x‖2

2 ∀x, y ∈ X .
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2. (Sharpness) The set of minimizers X ∗ := argmin
x∈X

f(x) is nonempty and we have

f(x)− inf
X
f ≥ µ · dist (x,X ∗) ∀x ∈ X .

3. (Subgradient bound) The bound, supζ∈∂f(x) ‖ζ‖2 ≤ L, holds for any x in the tube

T :=

{
x ∈ X : dist(x,X ) ≤ µ

ρ

}
.

As pointed out in the introduction, these three properties are quite intuitive: The ap-
proximation accuracy guarantees that the objective function f is well approximated by the
convex model fx, up to a quadratic error relative to the basepoint x. Sharpness stipulates
that the objective function should grow at least linearly as one moves away from the solution
set. The subgradient bound, in turn, asserts that the subgradients of f are bounded in norm
by L on the tube T . In particular, this property is implied by Lipschitz continuity on T .

Lemma 3.1 (Subgradient bound and Lipschitz continuity [52, Theorem 9.13]).
Suppose a function f : E → R is L-Lipschitz on an open set U ⊂ E. Then the estimate
supζ∈∂f(x) ‖ζ‖2 ≤ L holds for all x ∈ U .

The definition of the tube T might look unintuitive at first. Some thought, however,
shows that it arises naturally since it provably contains no extraneous stationary points
of the problem. In particular, T will serve as a basin of attraction of numerical meth-
ods; see the forthcoming Section 5 for details. The following general principle has recently
emerged [16,23,24,27]. Under Assumption A, basic numerical methods converge rapidly when
initialized within the tube T . Let us consider three such procedures and briefly describe their
convergence properties. Detailed convergence guarantees are deferred to Section 5.

Algorithm 1: Polyak Subgradient Method

Data: x0 ∈ Rd

Step k: (k ≥ 0)
Choose ζk ∈ ∂f(xk). If ζk = 0, then exit algorithm.

Set xk+1 = projX

(
xk −

f(xk)−minX f

‖ζk‖2
2

ζk

)
.

Algorithm 2: Subgradient method with geometrically decreasing stepsize

Data: Real λ > 0 and q ∈ (0, 1).
Step k: (k ≥ 0)

Choose ζk ∈ ∂g(xk). If ζk = 0, then exit algorithm.
Set stepsize αk = λ · qk.
Update iterate xk+1 = projX

(
xk − αk ζk

‖ζk‖2

)
.

Algorithm 3: Prox-linear algorithm

Data: Initial point x0 ∈ Rd, proximal parameter β > 0.
Step k: (k ≥ 0)

Set xk+1 ← argmin
x∈X

{
h (F (xk) +∇F (xk)(x− xk)) +

β

2
‖x− xk‖2

2

}
.

12



Algorithm 1 is the so-called Polyak subgradient method. In each iteration k, the method
travels in the negative direction of a subgradient ζk ∈ ∂f(xk), followed by a nearest-point
projection onto X . The step-length is governed by the current functional gap f(xk) −
minX f . In particular, one must have the value minX f explicitly available to implement the
procedure. This value is sometimes known; case in point, the minimal value of the penalty
formulations (1.1) and (1.2) for low-rank recovery is zero when the linear measurements are
exact. When the minimal value minX f is not known, one can instead use Algorithm 2,
which replaces the step-length (f(xk)−minX f)/‖ζk‖2 with a preset geometrically decaying
sequence. Notice that the per iteration cost of both subgradient methods is dominated
by a single subgradient evaluation and a projection onto X . Under appropriate parameter
settings, Assumption A guarantees that both methods converge at a linear rate governed by
the ratio µ

L
, when initialized within T . The prox-linear algorithm (Algorithm 2), in contrast,

converges quadratically to the optimal solution, when initialized within T . The caveat is
that each iteration of the prox-linear method requires solving a strongly convex subproblem.
Note that for low-rank recovery problems (1.1) and (1.2), the size of the subproblems is
proportional to the size of the factors and not the size of the matrices.

In the subsequent sections, we show that Assumption A (or a close variant) holds with
favorable parameters ρ, µ, L > 0 for common low-rank matrix recovery problems.

4 Regularity under RIP

In this section, we consider the low-rank recovery problems (1.1) and (1.2), and show that
restricted isometry properties of the map A(·) naturally yield well-conditioned compositional
formulations.4 The arguments are short and elementary, and yet apply to such important
problems as phase retrieval, blind deconvolution, and covariance matrix estimation.

Setting the stage, consider a linear map A : Rd1×d2 → Rm, an arbitrary rank r matrix
M] ∈ Rd1×d2 , and a vector b ∈ Rm modeling a corrupted estimate of the measurements
A(M]). Recall that the goal of low-rank matrix recovery is to determine M] given A and
b. By the term symmetric setting, we mean that M] is symmetric and positive semidefinite,
whereas by asymmetric setting we mean that M] is an arbitrary rank r matrix. We will treat
the two settings in parallel. In the symmetric setting, we use X] to denote any fixed d × r
matrix for which the factorization M] = X]X

>
] holds. Similarly, in the asymmetric case, X]

and Y] denote any fixed d1 × r and r × d2 matrices, respectively, satisfying M] = X]Y].
We are interested in the set of all possible factorization of M]. Consequently, we will

often appeal to the following representations:

{X ∈ Rd1×r : XX> = M]} = {X]R : R ∈ O(r)}, (4.1)

{(X, Y ) ∈ Rd1×r ×Rr×d2 : XY = M]} = {(X]A,A
−1Y]) : A ∈ GL(r)}. (4.2)

4The guarantees we develop in the symmetric setting are similar to those in the recent preprint [39],
albeit we obtain a sharper bound on L; the two sets of results were obtained independently. The guarantees
for the asymmetric setting are different and are complementary to each other: we analyze the conditioning
of the basic problem formulation (1.2), while [39] introduces a regularization term ‖X>X − Y Y >‖F that
improves the basin of attraction for the subgradient method by a factor of the condition number of M].
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Throughout, we will let D∗(M]) refer to the set (4.1) in the symmetric case and to (4.2) in
the asymmetric setting.

Henceforth, fix an arbitrary norm |||·||| on Rm. The following property, widely used in
the literature on low-rank recovery, will play a central role in this section.

Assumption B (Restricted Isometry Property (RIP)). There exist constants κ1, κ2 > 0
such that for all matrices W ∈ Rd1×d2 of rank at most 2r the following bound holds:

κ1‖W‖F ≤ |||A(W )||| ≤ κ2‖W‖F .

Assumption B is classical and is satisfied in various important problems with the rescaled
`2-norm |||·||| = 1√

m
‖ · ‖2 and `1-norm |||·||| = 1

m
‖ · ‖1.5 In Section 6 we discuss a number of

such examples including matrix sensing under (sub-)Gaussian design, phase retrieval, blind
deconvolution, and quadratic/bilinear sensing. We summarize the RIP properties for these
examples in Table 1 and refer the reader to Section 6 for the precise statements.

Problem Measurement A(M)i (κ1, κ2) Regime

(sub-)Gaussian sensing 〈Pi,M〉 (c, C) m % rd
(1−2pfail)2

ln(1 + 1
1−2pfail

)

Quadratic sensing I p>i Mpi (c, C
√
r) m % r2d

(1−2pfail)2
ln(1 +

√
r

1−2pfail
)

Quadratic sensing II p>i Mpi − p̃>i Mp̃i (c, C) m % rd
(1−2pfail)2

ln
(

1 + 1
1−2pfail

)
Bilinear sensing p>i Mqi (c, C) m % rd

(1−2pfail)2
ln
(

1 + 1
1−2pfail

)
Table 1: Common problems satisfying `1/`2 RIP in Assumption B. The table summarizes the
`1/`2 RIP for (sub-)Gaussian sensing, quadratic sensing (e.g., phase retrieval), and bilinear
sensing (e.g., blind deconvolution) under standard (sub-)Gaussian assumptions on the data
generating mechanism. In all cases, we set |||·||| = 1

m
‖ · ‖1 and assume for simplicity d1 =

d2 = d. The symbols c and C refer to numerical constants, pfail refers to the proportion of
corrupted measurements, κ3 is a constant multiple of (1− 2pfail). See Section 6 for details.

In light of Assumption B, it it natural to take the norm |||·||| as the penalty h(·) in (1.1)
and (1.2) . Then the symmetric problem (1.1) becomes

min
X∈Rd×r

f(X) := |||A(XX>)− b|||, (4.3)

while the asymmetric formulation (1.2) becomes

min
X∈Rd1×r, Y ∈Rr×d2

f(X, Y ) := |||A(XY )− b|||. (4.4)

Our immediate goal is to show that under Assumption B, the problems (4.3) and (4.4) are
well-conditioned in the sense of Assumption A. We note that the asymmetric setting is more
nuanced that its symmetric counterpart because Assumption A can only be guaranteed
to hold on bounded sets. Nonetheless, as we discuss in Section 5, a localized version of

5In the latter case, RIP also goes by the name of Restricted Uniform Boundedness (RUB) [8].
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Assumption A suffices to guarantee rapid local convergence of subgradient and prox-linear
methods. In particular, our analysis of the local sharpness in the asymmetric setting is new
and illuminating; it shows that the regularization technique suggested in [39] is not needed
at all for the prox-linear method. This conclusion contrasts with known techniques in the
smooth setting, where regularization is often used.

4.1 Approximation and Lipschitz continuity

We begin with the following elementary proposition, which estimates the subgradient bound
L and the approximation modulus ρ in the symmetric setting. In what follows, we will use
the expressions

fX(Z) = |||A(XX> +X(Z −X)> + (Z −X)X>)− b|||,
f(X,Y )(X̂, Ŷ ) = |||A(XY +X(Ŷ − Y ) + (X̂ −X)Y )− b|||.

Proposition 4.1 (Approximation accuracy and Lipschitz continuity (symmetric)).
Suppose Assumption B holds. Then for all X,Z ∈ Rd×r the following estimates hold:

|f(Z)− fX(Z)| ≤ κ2‖Z −X‖2
F ,

|f(X)− f(Z)| ≤ κ2‖X + Z‖op‖X − Z‖F .

Proof. To see the first estimate, observe that

|f(Z)− fX(Z)| = |||A(ZZ>)− b||| − |||A(XX> +X(Z −X)> + (Z −X)X>)− b|||
≤ |||A(ZZ> −XX> −X(Z −X)> − (Z −X)X>||| (4.5)

= |||A
(
(Z −X)(Z −X)>

)
|||

≤ κ2

∥∥(Z −X)(Z −X)>
∥∥
F

(4.6)

≤ κ2‖Z −X‖2
F ,

where (4.5) follows from the reverse triangle inequality and (4.6) uses Assumption B. Next,
for any X,Z ∈ X we successively compute:

|f(X)− f(Z)| =
∣∣|||A(XX>)− b||| − |||A(ZZ>)− b|||

∣∣
≤
∣∣∣∣∣∣A(XX> − ZZ>)

∣∣∣∣∣∣ (4.7)

≤ κ2‖XX> − ZZ>‖F (4.8)

=
κ2

2
‖(X + Z)(X − Z)> + (X − Z)(X + Z)>‖F

≤ κ2‖(X + Z)(X − Z)‖F
≤ κ2‖X + Z‖op‖X − Z‖F ,

where (4.7) follows from the reverse triangle inequality and (4.8) uses Assumption B. The
proof is complete.

The estimates of L and ρ in the asymmetric setting are completely analogous; we record
them in the following proposition.
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Proposition 4.2 (Approximation accuracy and Lipschitz continuity (asymmetric)).

Suppose Assumption B holds. Then for all X, X̂ ∈ Rd1×r and Y, Ŷ ∈ Rr×d2 the following
estimates hold:

|f(X̂, Ŷ )− f(X,Y )(X̂, Ŷ )| ≤ κ2

2
· ‖(X, Y )− (X̂, Ŷ )‖2

F ,

|f(X, Y )− f(X̂, Ŷ )| ≤ κ2 max{‖X+X̂‖op,‖Y+Ŷ ‖op}√
2

· ‖(X, Y )− (X̂, Ŷ )‖F .
Proof. To see the first estimate, observe that

|f(X̂, Ŷ )− f(X,Y )(X̂, Ŷ )| =
∣∣∣|||A(X̂Ŷ )− b||| − |||A(XY +X(Ŷ − Y ) + (X̂ −X)Y )− b|||

∣∣∣
≤ |||A(X̂Ŷ −XY −X(Ŷ − Y )− (X̂ −X)Y )|||
= |||A

(
(X − X̂)(Y − Ŷ )

)
|||

≤ κ2

∥∥∥(X − X̂)(Y − Ŷ )
∥∥∥
F

≤ κ2

2

(
‖X − X̂‖2

F + ‖Y − Ŷ ‖2
F

)
,

where the last estimate follows from Young’s inequality 2ab ≤ a2 + b2. Next, we successively
compute:

|f(X, Y )− f(X̂, Ŷ )| ≤ |||A(XY − X̂Ŷ )||| ≤ κ2‖XY − X̂Ŷ ‖F
=
κ2

2
‖(X + X̂)(Y − Ŷ )> + (X − X̂)(Y + Ŷ )>‖F

≤ κ2 max{‖X + X̂‖op, ‖Y + Ŷ ‖op}
2

(‖Y − Ŷ ‖F + ‖X − X̂‖F ).

The result follows by noting that a+ b ≤
√

2(a2 + b2) for all a, b ∈ R.

4.2 Sharpness

We next move on to estimates of the sharpness constant µ. We first deal with the noise-
less setting b = A(M]) in Section 4.2.1, and then move on to the general case when the
measurements are corrupted by outliers in Section 4.2.2.

4.2.1 Sharpness in the noiseless regime

We begin with with the symmetric setting in the noiseless case b = A(M]). By Assumption B,
we have the estimate

f(X) = |||A(XX>)− b||| = |||A(XX> −X]X
>
] )||| ≥ κ1‖XX> −X]X

>
] ‖F . (4.9)

It follows that the set of minimizers argminX∈Rd×r f(X) coincides with the set of minimizers
of the function X 7→ ‖XX> −X]X

>
] ‖F , namely

D∗(M]) := {X]R : R ∈ O(r)}.
Thus to argue sharpness of f it suffices to estimate the sharpness constant of the function
X 7→ ‖XX> −X]X

>
] ‖F . Fortunately, this calculation was already done in [57, Lemma 5.4].
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Proposition 4.3 ([57, Lemma 5.4]). For any matrices X,Z ∈ Rd×r, we have the bound

‖XX> − ZZ>‖F ≥
√

2(
√

2− 1)σr(Z) · min
R∈O(r)

‖X − ZR‖F .

Consequently if Assumption B holds in the noiseless setting b = A(M]), then the bound holds:

f(X) ≥ κ1

√
2(
√

2− 1)σr(M]) · dist(X,D∗(M])) for all X ∈ Rd×r.

We next consider the asymmetric case. By exactly the same reasoning as before, the
set of minimizers of f(X, Y ) coincides with the set of minimizers of the function (X, Y ) 7→
‖XY −X]Y]‖F , namely

D∗(M]) := {(X]A,A
−1Y]) : A ∈ GL(r)}.

Thus to argue sharpness of f it suffices to estimate the sharpness constant of the function
(X, Y ) 7→ ‖XY − X]Y]‖F . Such a sharpness guarantee in the rank one case was recently
shown in [16, Proposition 4.2].

Proposition 4.4 ([16, Proposition 4.2]). Fix a rank 1 matrix M] ∈ Rd1×d2 and a constant
ν ≥ 1. Then for any x ∈ Rd1 and w ∈ Rd2 satisfying

‖w‖2, ‖x‖2 ≤ ν
√
σ1(M]),

the following estimate holds:

‖xw> −M]‖F ≥
√
σ1(M])

2
√

2(ν + 1)
· dist

(
(x,w),D∗(M])

)
.

Notice that in contrast to the symmetric setting, the sharpness estimate is only valid on
bounded sets. Indeed, this is unavoidable even in the setting d1 = d2 = 2. To see this, define
M] = e2e

>
2 and for any α > 0 set x = αe1 and w = 1

α
e1. It is routine to compute

‖xw> −M]‖F
dist((x,w),D∗(M]))

=

√
2

2 + α2 + 1
α2

.

Therefore letting α tend to zero (or infinity) the quotient tends to zero.
The following corollary is a higher rank extension of Proposition 4.4.

Theorem 4.5 (Sharpness (asymmetric and noiseless)). Fix a constant ν > 0 and define
X] := U

√
Λ and Y] =

√
ΛV >, where M] = UΛV > is any compact singular value decomposi-

tion of M]. Then for all X ∈ Rd1×r and Y ∈ Rr×d2 satisfying

max{‖X −X]‖F , ‖Y − Y]‖F} ≤ ν
√
σr(M])

dist((X, Y ),D∗(M])) ≤
√
σr(M])

1 + 2(1 +
√

2)ν

, (4.10)

the estimate holds:

‖XY −M]‖F ≥
√
σr(M])

2 + 4(1 +
√

2)ν
· dist((X, Y ),D∗(M])).
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Proof. Define δ := 1
1+2(1+

√
2)ν

and consider a pair of matrices X and Y satisfying (4.10). Let

A ∈ GL(r) be an invertible matrix satisfying

A ∈ argmin
A∈GL(r)

{
‖X −X]A‖2

F + ‖Y − A−1Y]‖2
F

}
. (4.11)

As a first step, we successively compute

‖XY −X]Y]‖F
= ‖(X −X]A)(A−1Y]) +X]A(Y − A−1Y]) + (X −X]A)(Y − A−1Y])‖F
≥ ‖(X −X]A)(A−1Y]) +X]A(Y − A−1Y])‖F − ‖(X −X]A)(Y − A−1Y])‖F
≥ ‖(X −X]A)(A−1Y]) +X]A(Y − A−1Y])‖F − ‖X −X]A‖F · ‖Y − A−1Y]‖F
≥ ‖(X −X]A)(A−1Y]) +X]A(Y − A−1Y])‖F −

1

2
(‖X −X]A‖2

F + ‖Y − A−1Y]‖2
F )

= ‖(X −X]A)(A−1Y]) +X]A(Y − A−1Y])‖F −
1

2
dist2((X, Y ),D∗(M]))

≥ ‖(X −X]A)(A−1Y]) +X]A(Y − A−1Y])‖F −
δ
√
σr(M])

2
· dist((X, Y ),D∗(M])).

(4.12)

We next aim to lower bound the first term on the right. To this end, observe

‖(X −X]A)(A−1Y]) +X]A(Y − A−1Y])‖2
F

= ‖(X −X]A)(A−1Y])‖2
F + ‖X]A(Y − A−1Y])‖2

F

+ 2Tr((X −X]A)(A−1Y])(Y − A−1Y])
>(X]A)>).

(4.13)

We claim that the cross-term is non-negative. To see this, observe that first order optimality
conditions in (4.11) directly imply that A satisfies the equality

A>X>] (X −X]A) = (Y − A−1Y])Y
>
] A

−>.

Thus we obtain

Tr((X −X]A)(A−1Y])(Y − A−1Y])
>(X]A)>) = Tr(A>X>] (X −X]A)(A−1Y])(Y − A−1Y])

>)

= Tr((Y − A−1Y])Y
>
] A

−T (A−1Y])(Y − A−1Y])
>)

= ‖(A−1Y])(Y − A−1Y])‖2
F .

Therefore, returning to (4.13) we conclude that

‖(X −X]A)(A−1Y]) +X]A(Y − A−1Y])‖F
≥
√
‖(X −X]A)(A−1Y])‖2

F + ‖X]A(Y − A−1Y])‖2
F

≥
√
σr(M]) ·min{σr(A−1), σr(A)} · dist((X, Y ),D∗(M])).

(4.14)

Combining (4.12) and (4.14), we obtain

‖XY −M]‖F ≥
√
σr(M]) ·

(
min{σr(A−1), σr(A)} − δ

2

)
· dist((X, Y ),D∗(M])) (4.15)
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Finally, we estimate min{σr(A−1), σr(A)}. To this end, first note that

‖X] −X]A‖F + ‖Y] − A−1Y]‖F ≤ ‖X] −X‖F + ‖Y] − Y ‖F +
√

2 · dist((X, Y ),D∗(M]))

≤ 2ν
√
σr(M]) · (1 +

√
2).

(4.16)
We now aim to lower bound the left-hand-side in terms of min{σr(A−1), σr(A)}. Observe

‖X] −X]A‖F ≥ ‖X] −X]A‖op ≥
√
σr(M]) · ‖I − A‖op ≥

√
σr(M]) · (σ1(A)− 1).

Similarly, we have

‖Y] − A−1Y]‖F ≥ ‖Y] − A−1Y]‖op ≥
√
σr(M]) · ‖I − A−1‖op ≥

√
σr(M]) · (σ1(A−1)− 1).

Hence using (4.16), we obtain the estimate

min{σr(A−1), σr(A)} ≥
(

1 + 2ν · (1 +
√

2)
)−1

= δ.

Using this estimate in (4.15) completes the proof.

4.2.2 Sharpness in presence of outliers

The most important example of the norm |||·||| for us is the scaled `1-norm |||·||| = 1
m
‖ · ‖1.

Indeed, all the examples in the forthcoming Section 6 will satisfy RIP relative to this norm.
In this section, we will show that the `1-norm has an added advantage. Under reasonable
RIP-type conditions, sharpness will hold even if up to a half of the measurements are grossly
corrupted.

Henceforth, for any set I, define the restricted map AI := (A(X))i∈I . We interpret
the set I as corresponding to (arbitrarily) outlying measurements, while its complement
corresponds to exact measurements. Motivated by the work [27] on robust phase retrieval,
we make the following assumption.

Assumption C (I-outlier bounds). There exists a set I ⊂ {1, . . . ,m} and a constant κ3 > 0
such that the following hold.

(C1) Equality holds bi = A(M])i for all i /∈ I.

(C2) For all matrices W of rank at most 2r, we have

κ3‖W‖F ≤
1

m
‖AIc(W )‖1 −

1

m
‖AI(W )‖1. (4.17)

The assumption is simple to interpret. To elucidate the bound (4.17), let us suppose that
the restricted maps AI and AIc satisfy Assumption B (RIP) with constants κ̂1, κ̂2 and κ1,
κ2, respectively. Then for any rank 2r matrix X we immediately deduce the estimate

1

m
‖AIc(W )‖1 −

1

m
‖AI(W )‖1 ≥ ((1− pfail)κ1 − pfailκ̂2) ‖W‖F ,
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where pfail = |I|
m

denotes the corruption frequency. In particular, the right-hand side is
positive as long as the corruption frequency is below the threshold pfail <

κ1
κ1+κ̂2

.
Combining Assumption C with Proposition 4.3 quickly yields sharpness of the objective

even in the noisy setting.

Proposition 4.6 (Sharpness with outliers (symmetric)). Suppose that Assumption C holds.
Then

f(X)− f(X]) ≥ κ3

(√
2(
√

2− 1)σr(X])

)
dist
(
X,D∗(M])

)
for all X ∈ Rd×r.

Proof. Defining ∆ := A(X]X
>
] )− b, we have the following bound:

m · (f(X)− f(X])) = ‖A
(
XX> −X]X

>
]

)
+ ∆‖1 − ‖∆‖1

= ‖AIc(XX> −X]X
>
] )‖1 +

∑
i∈I

(
|
(
A(XX> −X]X

>
] )
)
i
+ ∆i| − |∆i|

)
≥ ‖AIc(XX> −X]X

>
] )‖1 − ‖AI(XX> −X]X

>
] )‖1

≥ κ3m‖XX> −X]X
>
] ‖F ≥ κ3m

(√
2(
√

2− 1)σr(X])

)
dist
(
X,D∗(M])

)
,

where the first inequality follows by the reverse triangle inequality, the second inequality
follows by Assumption (C2), and the final inequality follows from Proposition 4.3. The
proof is complete.

The argument in the asymmetric setting is completely analogous.

Proposition 4.7 (Sharpness with outliers (asymmetric)). Suppose that Assumption C holds.
Fix a constant ν > 0 and define X] := U

√
Λ and Y] =

√
ΛV >, where M] = UΛV > is any

compact singular value decomposition of M]. Then for all X ∈ Rd1×r and Y ∈ Rr×d2

satisfying

max{‖X −X]‖F , ‖Y − Y]‖F} ≤ ν
√
σr(M])

dist((X, Y ),D∗(M])) ≤
√
σr(M])

1 + 2(1 +
√

2)ν

The estimate holds:

f(X, Y )− f(X], Y]) ≥
κ3

√
σr(M])

2 + 4(1 +
√

2)ν
· dist((X, Y ),D∗(M])).

5 General convergence guarantees for subgradient &

prox-linear methods

In this section, we formally develop convergence guarantees for Algorithms 1, 2, and 3 under
Assumption A, and deduce performance guarantees in the RIP setting. To this end, it will be
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useful to first consider a broader class than the compositional problems (3.1). We say that a
function f : E→ R∪{+∞} is ρ-weakly convex6 if the perturbed function x 7→ f(x)+ ρ

2
‖x‖2

2 is
convex. In particular, a composite function f = h◦F satisfying the approximation guarantee

|fx(y)− f(y)| ≤ ρ

2
‖y − x‖2

2 ∀x, y

is automatically ρ-weakly convex [26, Lemma 4.2]. Subgradients of weakly convex functions
are very well-behaved. Indeed, notice that in general the little-o term in the expression (2.1)
may depend on the basepoint x, and may therefore be nonuniform. The subgradients of
weakly convex functions, on the other hand, automatically satisfy a uniform type of lower-
approximation property. Indeed, a lower-semicontinuous function f is ρ-weakly convex if
and only if it satisfies:

f(y) ≥ f(x) + 〈ξ, y − x〉 − ρ

2
‖y − x‖2

2 ∀x, y ∈ E, ξ ∈ ∂f(x).

Setting the stage, we introduce the following assumption.

Assumption D. Consider the optimization problem,

min
x∈X

f(x). (5.1)

Suppose that the following properties hold for some real numbers µ, ρ > 0.

1. (Weak convexity) The set X is closed and convex, while the function f : E → R is
ρ-weakly convex.

2. (Sharpness) The set of minimizers X ∗ := argmin
x∈X

f(x) is nonempty and the following

inequality holds:
f(x)− inf

X
f ≥ µ · dist (x,X ∗) ∀x ∈ X .

In particular, notice that Assumption A implies Assumption D. Taken together, weak
convexity and sharpness provide an appealing framework for deriving local rapid conver-
gence guarantees for numerical methods. In this section, we specifically focus on two such
procedures: the subgradient and prox-linear algorithms. We aim to estimate both the radius
of rapid converge around the solution set and the rate of convergence. Note that both of
the algorithms, when initialized at a stationary point could stay there for all subsequent
iterations. Since we are interested in finding global minima, we therefore estimate the neigh-
borhood of the solution set that has no extraneous stationary points. This is the content of
the following simple lemma.

Lemma 5.1 ([23, Lemma 3.1]). Suppose that Assumption D holds. Then the problem (5.1)
has no stationary points x satisfying

0 < dist(x;X ∗) < 2µ

ρ
.

6Weakly convex functions also go by other names such as lower-C2, uniformly prox-regularity, paraconvex,
and semiconvex. We refer the reader to the seminal works on the topic [2, 47,49,51,53].
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It is worthwhile to note that the estimate 2µ
ρ

of the radius in Lemma 5.1 is tight [16,

Section 3]. Hence, let us define for any γ > 0 the tube

Tγ :=

{
z ∈ X : dist(z,X ∗) ≤ γ · µ

ρ

}
. (5.2)

Thus we would like to search for algorithms whose basin of attraction is a tube Tγ for some
numerical constant γ > 0. Such a basin of attraction is in essence optimal.

The rate of convergence of the subgradient methods (Algorithms 1 and 2) relies on the
subgradient bound and the condition measure:

L := sup{‖ζ‖2 : ζ ∈ ∂f(x), x ∈ T1} and τ :=
µ

L
.

A straightforward argument [23, Lemma 3.2] shows τ ∈ [0, 1]. The following theorem appears
as [23, Theorem 4.1], while its application to phase retrieval was investigated in [24].

Theorem 5.2 (Polyak subgradient method). Suppose that Assumption D holds and fix a
real number γ ∈ (0, 1). Then Algorithm 1 initialized at any point x0 ∈ Tγ produces iterates
that converge Q-linearly to X ∗, that is

dist2(xk+1,X ∗) ≤
(
1− (1− γ)τ 2

)
dist2(xk,X ∗) ∀k ≥ 0.

The following theorem appears as [23, Theorem 6.1]. The convex version of the result
dates back to Goffin [34].

Theorem 5.3 (Geometrically decaying subgradient method). Suppose that Assumption D

holds, fix a real number γ ∈ (0, 1), and suppose τ ≤
√

1
2−γ . Set λ := γµ2

ρL
and q :=√

1− (1− γ)τ 2 in Algorithm 2. Then the iterates xk generated by Algorithm 2, initialized
at any point x0 ∈ Tγ, satisfy:

dist2(xk;X ∗) ≤
γ2µ2

ρ2

(
1− (1− γ)τ 2

)k ∀k ≥ 0.

Let us now specialize to the composite setting under Assumption A. Since Assumption A
implies Assumption D, both subgradient Algorithms 1 and 2 will enjoy a linear rate of
convergence when initialized sufficiently close the solution set. The following theorem, on
the other hand, shows that the prox-linear method will enjoy a quadratic rate of convergence
(at the price of a higher per-iteration cost). Guarantees of this type have appeared, for
example, in [7, 25,27].

Theorem 5.4 (Prox-linear algorithm). Suppose Assumption A holds. Choose any β ≥ ρ in
Algorithm 3 and set γ := ρ/β. Then Algorithm 3 initialized at any point x0 ∈ Tγ converges
quadratically:

dist(xk+1,X ∗) ≤ β
µ
· dist2(xk,X ∗) ∀k ≥ 0.

We now apply the results above to the low-rank matrix factorization problem under RIP,
whose regularity properties were verified in Section 4. In particular, we have the following
efficiency guarantees of the subgradient and prox-linear methods applied to this problem.
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Corollary 5.5 (Convergence guarantees under RIP (symmetric)). Suppose Assumptions B
and C are valid with |||·||| = 1

m
‖ · ‖1 and consider the optimization problem

min
X∈Rd×r

f(X) =
1

m
‖A(XX>)− b‖1.

Choose any matrix X0 satisfying

dist(X0,D∗(M]))√
σr(M])

≤ 0.2 · κ3

κ2

.

Define the condition number χ := σ1(M])/σr(M]). Then the following are true.

1. (Polyak subgradient) Algorithm 1 initialized at X0 produces iterates that converge
linearly to D∗(M]), that is

dist2(Xk,D∗(M]))

σr(M])
≤

1− 0.2

1 +
4κ22χ

κ23

k

· κ2
3

100κ2
2

∀k ≥ 0.

2. (geometric subgradient) Algorithm 2 with λ =
0.81κ23

√
σr(M])

2κ2(κ3+2κ2
√
χ)

, q =
√

1− 0.2
1+4κ22χ/κ

2
3

and initialized at X0 converges linearly:

dist2(Xk,D∗(M]))

σr(M])
≤

1− 0.2

1 +
4κ22χ

κ23

k

· κ2
3

100κ2
2

∀k ≥ 0.

3. (prox-linear) Algorithm 3 with β = ρ and initialized at X0 converges quadratically:

dist(Xk,D∗(M])))√
σr(M])

≤ 2−2k · 0.45κ3

κ2

∀k ≥ 0.

5.1 Guarantees under local regularity

As explained in Section 4, Assumptions A and D are reasonable in the symmetric setting
under RIP. The asymmetric setting is more nuanced. Indeed, the solution set is unbounded,
while uniform bounds on the sharpness and subgradient norms are only valid on bounded
sets. One remedy, discussed in [39], is to modify the optimization formulation by introducing
a form of regularization:

min
X,Y
|||A(XY )− y|||+ λ‖X>X − Y Y >‖F .

In this section, we take a different approach that requires no modification to the optimization
problem nor the algorithms. The key idea is to show that if the problem is well-conditioned
only on a neighborhood of a particular solution, then the iterates will remain in the neighbor-
hood provided the initial point is sufficiently close to the solution. In fact, we will see that the
iterates themselves must converge. The proofs of the results in this section (Theorems 5.6,
5.7, and 5.8) are deferred to Appendix A.

We begin with the following localized version of Assumption D.
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Assumption E. Consider the optimization problem,

min
x∈X

f(x). (5.3)

Fix an arbitrary point x̄ ∈ X ∗ and suppose that the following properties hold for some real
numbers ε, µ, ρ > 0.

1. (Local weak convexity) The set X is closed and convex, and the bound holds:

f(y) ≥ f(x) + 〈ζ, y − x〉 − ρ

2
‖y − x‖2

2 ∀x, y ∈ X ∩Bε(x̄), ζ ∈ ∂f(x).

2. (Local sharpness) The inequality holds:

f(x)− inf
X
f ≥ µ · dist (x,X ∗) ∀x ∈ X ∩Bε(x̄).

The following two theorems establish convergence guarantees of the two subgradient
methods under Assumption E. Abusing notation slightly, we define the local quantities:

L := sup
ζ∈∂f(x)

{‖ζ‖2 : x ∈ X ∩Bε(x̄)} and τ :=
µ

L
.

Theorem 5.6 (Polyak subgradient method (local regularity)). Suppose Assumption E holds
and fix an arbitrary point x0 ∈ Bε/4(x̄) satisfying

dist(x0,X ∗) ≤ min

{
3εµ2

64L2
,
µ

2ρ

}
.

Then Algorithm 1 initialized at x0 produces iterates xk that always lie in Bε(x̄) and satisfy

dist2(xk+1,X ∗) ≤
(
1− 1

2
τ 2
)

dist2(xk,X ∗), for all k ≥ 0. (5.4)

Moreover the iterates converge to some point x∞ ∈ X ∗ at the R-linear rate

‖xk − x∞‖2 ≤
16L3 · dist(x0,X ∗)

3µ3
·
(
1− 1

2
τ 2
) k

2 for all k ≥ 0.

Theorem 5.7 (Geometrically decaying subgradient method (local regularity)). Suppose that

Assumption E holds and that τ ≤ 1√
2
. Define γ = ερ

4L+ερ
, λ = γµ2

ρL
, and q =

√
1− (1− γ)τ 2.

Then Algorithm 2 initialized at any point x0 ∈ Bε/4(x̄)∩Tγ generates iterates xk that always
lie in Bε(x̄) and satisfy

dist2(xk;X ∗) ≤
γ2µ2

ρ2

(
1− (1− γ)τ 2

)k
for all k ≥ 0. (5.5)

Moreover, the iterates converge to some point x∞ ∈ X ∗ at the R-linear rate

‖xk − x∞‖2 ≤ λ
1−q · qk for all k ≥ 0.
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We end the section by specializing to the composite setting and analyzing the prox-linear
method. The following is the localized version of Assumption A.

Assumption F. Consider the optimization problem,

min
x∈X

f(x) := h(F (x)),

where the function h(·) and the set X are convex and F (·) is differentiable. Fix a point
x̄ ∈ X ∗ and suppose that the following properties holds for some real numbers ε, µ, ρ > 0.

1. (Approximation accuracy) The convex models fx(y) := h(F (x) + ∇F (x)(y − x))
satisfy the estimate:

|f(y)− fx(y)| ≤ ρ

2
‖y − x‖2

2 ∀x ∈ X ∩Bε(x̄), y ∈ X .

2. (Sharpness) The inequality holds:

f(x)− inf
X
f ≥ µ · dist (x,X ∗) ∀x ∈ X ∩Bε(x̄).

The following theorem provides convergence guarantees for the prox-linear method under
Assumption F.

Theorem 5.8 (Prox-linear (local)). Suppose Assumption F holds, choose any β ≥ ρ, and
fix an arbitrary point x0 ∈ Bε/2(x̄) satisfying

f(x0)−min
X

f ≤ min

{
βε2

25
,
µ2

2β

}
.

Then Algorithm 3 initialized at x0 generates iterates xk that always lie in Bε(x̄) and satisfy

dist(xk+1,X ∗) ≤
β

µ
· dist2(xk,X ∗),

f(xk+1)−min
X

f ≤ β

µ2

(
f(xk)−min

X
f
)2

.

Moreover the iterates converge to some point x∞ ∈ X ∗ at the quadratic rate

‖xk − x∞‖2 ≤
2
√

2µ

β
·
(

1

2

)2k−1

for all k ≥ 0.

With the above generic results in hand, we can now derive the convergence guarantees for
the subgradient and prox-linear methods for asymmetric low-rank matrix recovery problems.
To summarize, the prox-linear method converges quadratically, as long as it is initialized
within constant relative error of the solution. The guarantees for the subgradient methods
are less satisfactory: the size of the region of the linear convergence scales with the condition
number of M]. The reason is that the proof estimates the region of convergence using the
length of the iterate path, which scales with the condition number. The dependence on
the condition number in general can be eliminated by introducing regularization ‖X>X −
Y Y >‖F , as suggested in the work [39]. Still the results we present here are notable even
for the subgradient method. For example, we see that for rank r = 1 instances satisfying
RIP (e.g. blind deconvolution), the condition number of M] is always one and therefore
regularization is not required at all for subgradient and prox-linear methods.
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Corollary 5.9 (Convergence guarantees under RIP (asymmetric)). Suppose Assumptions B
and C are valid7 and consider the optimization problem

min
X∈Rd1×r, Y ∈Rr×d2

f(X) =
1

m
‖A(XY )− b‖1.

Define X] := U
√

Λ and Y] =
√

ΛV >, where M] = UΛV > is any compact singular value
decomposition of M]. Define also the condition number χ := σ1(M])/σr(M]). Then there
exists η > 0 depending only on κ2, κ3, and σ(M]) such that the following are true.

1. (Polyak subgradient) Algorithm 1 initialized at (X0, Y0) satisfying
‖(X0,Y0)−(X],Y])‖F√

σr(M])
.

min{1, κ23
κ22χ

, κ3
κ2
}, will generate an iterate sequence that converges at the linear rate:

dist((Xk, Yk),D∗(M]))√
σr(M])

≤ δ after k &
κ2

2χ
2

κ2
3

· ln
(η
δ

)
iterations.

2. (geometric subgradient) Algorithm 2 initialized at (X0, Y0) satisfying
‖(X0,Y0)−(X],Y])‖F√

σr(M])
.

min{1, κ3
κ2χ
}, will generate an iterate sequence that converges at the linear rate:

dist((Xk, Yk),D∗(M]))√
σr(M])

≤ δ after k &
κ2

2χ
2

κ2
3

· ln
(η
δ

)
iterations.

3. (prox-linear) Algorithm 3 initialized at (X0, Y0) satisfying f(x0)−minX f
σr(M])

. min{κ2, κ
2
3/κ2}

and
‖(X0,Y0)−(X],Y])‖F√

σr(M])
. 1, will generate an iterate sequence that converges at the

quadratic rate:

dist((Xk, Yk),D∗(M]))√
σr(M])

.
κ3

κ2

· 2−2k for all k ≥ 0.

6 Examples of `1/`2 RIP

In this section, we survey three matrix recovery problems from different fields, including
physics, signal processing, control theory, wireless communications, and machine learning,
among others. In all cases, the problems satisfy `1/`2 RIP and the I-outlier bounds and
consequently, the convergence results in Corollaries 5.5 and 5.9 immediately apply. Most of
the RIP results in this section were previously known (albeit under more restrictive assump-
tions); we provide self-contained arguments in the Appendix B for the sake of completeness.
On the other hand, using nonsmooth optimization in these problems and the corresponding
convergence guarantees based on RIP are, for the most part, new.

For the rest of this section we will assume the following data-generating mechanism.

7 with |||·||| = 1
m‖ · ‖1

26



Definition 6.1 (Data-generating mechanism). A random linear map A : Rd1×d2 → Rm

and a random index set I ⊂ [m] are drawn independently of each other. We assume moreover
that the outlier frequency pfail := |I|/m satisfies pfail ∈ [0, 1/2) almost surely. We then
observe the corrupted measurements

bi =

{
A(M]) if i /∈ I, and

ηi if i ∈ I, (6.1)

where η is an arbitrary vector. In particular, η could be correlated with A.

Throughout this section, we consider four distinct linear operators A.

Matrix Sensing. In this scenario, measurements are generated as follows:

A(M])i := 〈Pi,M]〉 for i = 1, . . . ,m (6.2)

where Pi ∈ Rd1×d2 are fixed matrices.

Quadratic Sensing I . In this scenario, M] ∈ Rd×d is assumed to be a PSD rank r matrix
with factorization M] = X]X

>
] and measurements are generated as follows:

A(M])i = p>i M]pi = ‖X>] pi‖2
2 for i = 1, . . . ,m, (6.3)

where pi ∈ Rd are fixed vectors.

Quadratic Sensing II . In this scenario, M] ∈ Rd×d is assumed to be a PSD rank r
matrix with factorization M] = X]X

>
] and measurements are generated as follows:

A(M])i = p>i M]pi − p̃>i M]p̃i = ‖X>] pi‖2
2 − ‖X>] p̃i‖2

2 for i = 1, . . . ,m, (6.4)

where pi, p̃i ∈ Rd are fixed vectors.

Bilinear Sensing. In this scenario, M] ∈ Rd1×d2 is assumed to be a r matrix with factor-
ization M] = XY and measurements are generated as follows:

A(M])i = p>i M]qi for i = 1, . . . ,m, (6.5)

where pi ∈ Rd1 and qi ∈ Rd2 are fixed vectors.

The matrix, quadratic, and bilinear sensing problems have been considered in a number
of papers and in a variety of applications. The first theoretical properties for matrix sensing
were discussed in [13, 30, 50]. Quadratic sensing in its full generality appeared in [18] and
is a higher-rank generalization of the much older (real) phase retrieval problem [10, 14, 35].
Besides phase retrieval, quadratic sensing has applications to covariance sketching, shallow
neural networks, and quantum state tomography; see for example [40] for a discussion. Bilin-
ear sensing is a natural modification of quadratic sensing and is a higher-rank generalization
of the blind deconvolution problem [1]; it was first proposed and studied in [8].
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The reader is reminded that once `1/`2 RIP guarantees, in particular Assumptions B
and C, are established for the above four operators, the guarantees of Corollaries 5.5 and
Corollary 5.9 immediately take hold for the problems

min
X∈Rd×r

f(X) =
1

m
‖A(XX>)− b‖1

and

min
X∈Rd1×r, Y ∈Rr×d2

f(X) =
1

m
‖A(XY )− b‖1,

respectively. Thus, we turn our attention to establishing such guarantees.

6.1 Warm-up: `2/`2 RIP for matrix sensing with Gaussian design

In this section, we are primarily interested in the `1/`2 RIP for the above four linear operators.
However, as a warm-up, we first consider the `2/`2-RIP property for matrix sensing with
Gaussian Pi. The following result appears in [13,50].

Theorem 6.2 (`2/`2-RIP for matrix sensing). For any δ ∈ (0, 1) there exist constants
c, C > 0 depending only on δ such that if the entries of Pi are i.i.d. standard Gaussian and
m ≥ cr(d1 + d2) log(d1d2), then with probability at least 1− exp (−Cm), the estimate

(1− δ)‖M‖F ≤
1√
m
‖A(M)‖2 ≤ (1 + δ)‖M‖F ,

holds simultaneously for all M ∈ Rd1×d2 of rank at most 2r. Consequently, Assumption B is
satisfied.

Following the general recipe of the paper, we see that the nonsmooth formulation

min
X∈Rd1×r, Y ∈Rr×d2

1√
m
‖A(XY )− b‖2 =

√√√√ 1

m

m∑
i=1

(
Tr(Y P>i X)− bi

)2
(6.6)

is immediately amenable to subgradient and prox-linear algorithms in the noiseless setting
I = ∅. In particular, a direct analogue of Corollary 5.9, which was stated for the penalty
function h = 1

m
‖ · ‖1, holds; we omit the straightforward details.

6.2 The `1/`2 RIP and I-outlier bounds: quadratic and bilinear
sensing

We now turn our attention to the `1/`2 RIP for more general classes of linear maps than the
i.i.d. Gaussian matrices considered in Theorem 6.2. To establish such guarantees, one must
ensure that the linear maps A have light tails and are robustly injective on certain spaces of
matrices. The first property leads to tight concentration results, while the second yields the
existence of a lower RIP constant κ1.
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Assumption G (Matrix Sensing). The matrices {Pi} are i.i.d. realizations of an η-sub-
Gaussian random matrix8 P ∈ Rd1×d2 . Furthermore, there exists a numerical constant α > 0
such that

inf
M : Rank M≤2r
‖M‖F=1

E|〈P,M〉| ≥ α. (6.7)

Assumption H (Quadratic Sensing I). The vectors {pi} are i.i.d. realizations of a η-sub-
Gaussian random variable p ∈ Rd. Furthermore, there exists a numerical constant α > 0
such that

inf
M∈Sd: Rank M≤2r

‖M‖F=1

E|p>Mp| ≥ α. (6.8)

Assumption I (Quadratic Sensing II). The vectors {pi}, {p̃i} are i.i.d. realizations of a η-
sub-Gaussian random variable p ∈ Rd. Furthermore, there exists a numerical constant α > 0
such that

inf
M∈Sd: Rank M≤2r

‖M‖F=1

E|p>Mp− p̃>Mp̃| ≥ α. (6.9)

Assumption J (Bilinear Sensing). The vectors {pi} and {qi} are i.i.d. realizations of η-sub-
Gaussian random vectors p ∈ Rd1 and q ∈ Rd2 , respectively. Furthermore, there exists a
numerical constant α > 0 such that

inf
M : Rank M≤2r
‖M‖F=1

E|p>Mq| ≥ α. (6.10)

The Assumptions G-J are all valid for i.i.d. Gaussian realizations with independent identity
covariance, as the following lemma shows. We defer its proof to Appendix B.1.

Lemma 6.3. Assumption G holds for matrices P with i.i.d. standard Gaussian entries.
Assumptions H and I hold for vectors p, p̃ with i.i.d. standard Gaussian entries. Assumption J
holds for vectors p and q with i.i.d. standard Gaussian entries.

We can now state the main RIP guarantees under the above assumptions. Throughout
all the results, we fix the data generating mechanism as in Definition 6.1. Then, we wish to
establish the inequalities

κ1‖M‖F ≤
1

m
‖A(M)‖1 ≤ κ2‖M‖F (6.11)

and

κ3‖M‖F ≤
1

m

(
‖AIc(M)‖1 − ‖AI(M)‖1

)
, (6.12)

and, hence, Assumptions B and C, respectively, for certain constants κ1, κ2, and κ3. We
defer the proof of this theorem to Appendix B.2.

Theorem 6.4 (`1/`2 RIP and I-outlier bounds). There exist numerical constants c1, . . . , c6 >
0 depending only on α, η such that the following hold for the corresponding measurement op-
erators described in Equations (6.2), (6.3), (6.4), and (6.5), respectively

8By this we mean that the vectorized matrix vec(P ) is a η-sub-gaussian random vector.

29



1. (Matrix sensing) Suppose Assumption G holds. Then provided m ≥ c1
(1−2pfail)2

r(d1 +

d2 + 1) ln
(
c2 + c2

1−2pfail

)
, we have with probability at least 1− 4 exp (−c3(1− 2pfail)

2m)

that every matrix M ∈ Rd1×d2 of rank at most 2r satisfies (6.11) and (6.12) with
constants κ1 = c4, κ2 = c5 and κ3 = c6(1− 2pfail).

2. (Quadratic sensing I) Suppose Assumption H holds. Then provided m ≥ c1
(1−2pfail)2

r2(2d+

1) ln
(
c2 + c2

1−2pfail

√
r
)

, we have with probability at least 1− 4 exp (−c3(1− 2pfail)
2m/r)

that every matrix M ∈ Rd×d of rank at most 2r satisfies (6.11) and (6.12) with con-
stants κ1 = c4, κ2 = c5 ·

√
r and κ3 = c6(1− 2pfail).

3. (Quadratic sensing II) Suppose Assumption I holds. Then provided m ≥ c1
(1−2pfail)2

r(2d+

1) ln
(
c2 + c2

1−2pfail

)
, we have with probability at least 1− 4 exp (−c3(1− 2pfail)

2m) that

every matrix M ∈ Rd×d of rank at most 2r satisfies (6.11) and (6.12) with constants
κ1 = c4, κ2 = c5 and κ3 = c6(1− 2pfail).

4. (Bilinear sensing) Suppose Assumption J holds. Then provided m ≥ c1
(1−2pfail)2

r(d1 +

d2 + 1) ln
(
c2 + c2

1−2pfail

)
, we have with probability at least 1− 4 exp (−c3(1− 2pfail)

2m)

that every matrix M ∈ Rd1×d2 of rank at most 2r satisfies (6.11) and (6.12) with
constants κ1 = c4, κ2 = c5 and κ3 = c6(1− 2pfail).

The guarantees of Theorem 6.4 were previously known under stronger assumptions. In
particular, item (1) generalizes the results in [39] for the pure Gaussian setting. The case
r = 1 of item (2) can be found, in a sightly different form, in [27, 29]. Item (3) sharpens
slightly the analogous guarantee in [18] by weakening the assumptions on the moments of
the measuring vectors to the uniform lower bound (6.9). Special cases of item (4) were
established in [16], for the case r = 1, and [8], for Gaussian measurement vectors.

We note that all linear mappings require the same number of measurements in order to
satisfy RIP and I outlier bounds, except for quadratic sensing I operator, which incurs an
extra r-factor. This reveals the utility of the quadratic sensing II operator, which achieves
optimal sample complexity. For larger scale problems, a shortcoming of matrix sensing
operator (6.2) is that md1d2 scalars are required to represent the map A. In contrast, all
other measurement operators may be represented with only m(d1 + d2) scalars.

7 Matrix Completion

In the previous sections, we saw that low-rank recovery problems satisfying RIP lead to
well-conditioned nonsmooth formulations. We claim, however, that the general framework
of sharpness and approximation is applicable even for problems without RIP. We consider
two such problems, namely matrix completion in this section and robust PCA in Section 8,
to follow. Both problems will be considered in the symmetric setting.

The goal of matrix completion problem is to recover a PSD rank r matrix M] ∈ Sd given
access only to a subset of its entries. Henceforth, let X] ∈ Rd×r be a matrix satisfying
M] = X]X

>
] . Throughout, we assume incoherence condition, ‖X]‖2,∞ ≤

√
νr
d

, for some
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ν > 0. We also make the fairly strong assumption that the singular values of X] are all
equal σ1(X]) = σ2(X]) = . . . = σr(X]) = 1. This assumption is needed for our theoretical
results. We let Ω ⊆ [d] × [d] be an index set generated by the Bernoulli model, that is,
P((i, j), (j, i) ∈ Ω) = p independently for all 1 ≤ i ≤ j ≤ d. Let ΠΩ : Sd → R|Ω| be the
projection onto the entries indexed by Ω. We consider the following optimization formulation
of the problem

min
X∈X

f(X) = ‖ΠΩ(XX>)− ΠΩ(M])‖2 where X =

{
X ∈ Rd×r : ‖X‖2,∞ ≤

√
νr

d

}
.

We will show that both the Polyak subgradient method and an appropriately modified prox-
linear algorithm converge linearly to the solution set under reasonable initialization. More-
over, we will see that the linear rate of convergence for the prox-linear method is much better
than that for the subgradient method.

To simplify notation, we set

D∗ := D∗(M]) = {X ∈ Rd1×r : XX> = M]}.

We begin by estimating the sharpness constant µ of the objective function. Fortunately,
this estimate follows directly from inequalities (58) and (59a) in [19].

Lemma 7.1 (Sharpness [19]). There are numerical constant c1, c2 > 0 such that the following
holds. If p ≥ c2(ν

2r2

d
+ log d

d
), then with probability 1− c1d

−2, the estimate

1

p
‖ΠΩ(XX> −X]X

>
] )‖2

F ≥ c1‖XX> −X]X
>
] ‖2

F

holds uniformly for all X ∈ X with dist(X,D∗) ≤ c1.

Let us next estimate the approximation accuracy |f(Z)− fX(Z)|, where

fX(Z) = ‖ΠΩ(XX −M] +X(Z −X)> + (Z −X)X>)‖F .

To this end, we will require the following result.

Lemma 7.2 (Lemma 5 in [19]). There is a numerical constant c > 0 such that the following
holds. If p ≥ c

ε2
(ν

2r2

d
+ log d

d
) for some ε ∈ (0, 1), then with probability at least 1 − 2d−4, the

estimates

1. 1√
p
‖ΠΩ(HH>)‖F ≤

√
(1 + ε)‖H‖2

F +
√
ε‖H‖F ; and

2. 1√
p
‖ΠΩ(GH>)‖F ≤

√
νr‖G‖F

hold uniformly for all matrices H with ‖H‖2,∞ ≤ 6
√

νr
d

and G ∈ Rd×r.

An estimate of the approximation error |f(Z)− fX(Z)| is now immediate.
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Lemma 7.3 (Approximation accuracy and Lipschitz continuity). There is a numerical con-
stant c > 0 such that the following holds. If p ≥ c

ε2
(ν

2r2

d
+ log d

d
) for some ε ∈ (0, 1), then with

probability at least 1− 2d−4, the estimates

1√
p
|f(X)− fY (X)| ≤

√
(1 + ε)‖X − Y ‖2

F +
√
ε‖X − Y ‖F ,

|f(X)− f(Y )| ≤ √pνr‖X − Y ‖F ,

holds uniformly for all X, Y ∈ X .

Proof. The first inequality follows immediately by observing the estimate

|f(X)− fY (X)| ≤ ‖ΠΩ((X − Y )(X − Y )>)‖F ,

and using Lemma 7.2. To see the second inequality, observe

|f(X)− f(Y )| ≤ ‖ΠΩ(XX> − Y Y >)‖F
=

1

2
‖ΠΩ((X − Y )(X + Y )> − (X + Y )(X − Y )>)‖F

≤ ‖ΠΩ((X − Y )(X + Y )>)‖F
≤ √pνr‖X − Y ‖F ,

where the last inequality follows by Part 2 of Lemma 7.2.

Note that the approximation bound in Lemma 7.2 is not in terms of the square Euclidean
norm. Therefore the results in Section 5 do not apply directly. Nonetheless, it is straightfor-
ward to modify the prox-linear method to take into account the new approximation bound.
The proof of the following lemma appears in the appendix.

Lemma 7.4. Suppose that Assumption A holds with the approximation property replaced by

|f(y)− fx(y)| ≤ a‖y − x‖2
2 + b‖y − x‖2 ∀x, y ∈ X ,

for some real a, b ≥ 0. Consider the iterates generated by the process:

xk+1 = argmin
x∈X

{
fxk(x) + a‖x− xk‖2

2 + b‖x− xk‖2

}
.

Then as long as x0 satisfies dist(x0,X ∗) ≤ µ−2b
2a

, the iterates converge linearly:

dist(xk+1,X ∗) ≤
2(b+ adist(x,X ∗))

µ
· dist(xk,X ∗) ∀k ≥ 0.

Combining Lemma 7.4 with our estimates of the sharpness and approximation accuracy,
we deduce the following convergence guarantee for matrix completion.
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Corollary 7.5 (Prox-linear method for matrix completion). There are numerical constants
c0, c, C > 0 such that the following holds. If p ≥ c

ε2
(ν

2r2

d
+ log d

d
) for some ε ∈ (0, 1), then with

probability at least 1− c0d
−2, the iterates generated by the modified prox-linear algorithm

Xk+1 = argmin
X∈X

{
fXk(X) +

√
p(1 + ε) · ‖X −Xk‖2

2 +
√
pε‖X −Xk‖2

}
(7.1)

satisfy

dist(Xk+1,D∗) ≤
√
ε+
√

1 + ε · dist(Xk,D∗)
C

· dist(Xk,D∗) ∀k ≥ 0.

In particular, the iterates converge linearly as long as dist(X0,D∗) < C−2
√
ε

2
√

(1+ε)
.

Proof. By invoking Proposition 4.3 and Lemmas 7.1 and 7.3 we may appeal to Lemma 7.4

with a =
√
p(1 + ε), b =

√
pε, and µ =

√
2c1p(

√
2− 1). The result follows immediately.

To summarize, there exist numerical constants c0, c1, c2, c3 > 0 such that the following is
true with probability at least 1− c0d

−2. In the regime

p ≥ c2

ε2

(
ν2r2

d
+

log d

d

)
for some ε ∈ (0, c1),

the prox-linear method will converge at the rapid linear rate,

dist(Xk,D∗) ≤
c2

2k
,

when initialized at X0 ∈ X satisfying dist(X0,D∗) < c2.
As for the prox-linear method, the results of Section 5 do not immediately yield con-

vergence guarantees for the Polyak subgradient method. Nonetheless, it straightforward to
show that the standard Polyak subgradient method still enjoys local linear convergence guar-
antees. The proof is a straightforward modification of the argument in [23, Theorem 3.1],
and appears in the appendix.

Theorem 7.6. Suppose that Assumption A holds with the approximation property replaced
by

|f(y)− fx(y)| ≤ a‖y − x‖2
2 + b‖y − x‖2 ∀x, y ∈ X ,

for some real a, b ≥ 0. Consider the iterates {xk} generated by the Polyak subgradient
method in Algorithm 1. Then as long as the sharpness constant satisfies µ > 2b and x0

satisfies dist(x0,X ∗) ≤ γ · µ−2b
2a

for some γ < 1, the iterates converge linearly

dist2(xk+1,X ∗) ≤
(

1− (1− γ)µ(µ− 2b)

L2

)
· dist2(xk,X ∗) ∀k ≥ 0.

Finally, combining Theorem 7.6 with our estimates of the sharpness and approximation
accuracy, we deduce the following convergence guarantee for matrix completion.
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Corollary 7.7 (Subgradient method for matrix completion). There are numerical constants
c0, c, C > 0 such that the following holds. If p ≥ c

ε2
(ν

2r2

d
+ log d

d
) for some ε ∈ (0, 1), then

with probability at least 1 − c0d
−2, the iterates generated by the iterates {Xk} generated by

the Polyak Subgradient method in Algorithm 1 satisfy

dist(Xk+1,D∗)2 ≤
(

1− C(C − 2
√
ε)

2νr

)
· dist2(Xk,D∗) ∀k ≥ 0.

In particular, the iterates converge linearly as long as dist(X0,D∗) < C−2
√
ε

4
√

(1+ε)
.

Proof. First, observe that we have the bound L ≤ √pνr by Lemma 7.3. By invoking
Proposition 4.3 and Lemmas 7.1 and 7.3 we may appeal to Theorem 7.6 with γ = 1/2,

a =
√
p(1 + ε), b =

√
pε, and µ =

√
2c1p(

√
2− 1). The result follows immediately.

To summarize, there exist numerical constants c0, c1, c2, c3 > 0 such that the following is
true with probability at least 1− c0d

−2. In the regime

p ≥ c2

ε2

(
ν2r2

d
+

log d

d

)
for some ε ∈ (0, c1),

the Polyak subgradient method will converge at the linear rate,

dist(Xk,D∗) ≤
(

1− c3

νr

) k
2
c2,

when initialized at X0 ∈ X satisfying dist(X0,D∗) < c2. Notice that the prox-linear method
enjoys a much faster linear rate of convergence than the subgradient method—an observation
fully supported by numerical experiments in Section 10. The caveat is that the per iteration
cost of the prox-linear method is significantly higher than that of the subgradient method.

8 Robust PCA

The goal of robust PCA is to decompose a given matrix W into a sum of a low-rank matrix
M] and a sparse matrix S], where M] represents the principal components, S] the corrup-
tion, and W the observed data [11,15,59]. In this section, we explore methods of nonsmooth
optimization for recovering such a decomposition, focusing on two different problem formu-
lations. We only consider the symmetric version of the problem.

8.1 The Euclidean formulation

Setting the stage, we assume that the matrix W ∈ Rd×d admits a decomposition W =
M] + S], where the matrices M] and S] satisfy the following for some parameters ν > 0 and
k ∈ N:

1. The matrix M] ∈ Rd×d has rank r and can be factored as M] = X]X
>
] for some matrix

X] ∈ Rd×r satisfying ‖X]‖op ≤ 1 and ‖X]‖2,∞ ≤
√

νr
d

.9

9Recall that ‖X‖2,∞ = maxi∈[d] ‖Xi·‖2 is the maximum row norm.
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2. The matrix S] is sparse in the sense that it has at most k nonzero entries per col-
umn/row.

The goal is to recover M] and S] given W . The first formulation we consider is the following:

min
X∈X ,S∈S

F
(
(X,S)

)
= ‖XX> + S −W‖F , (8.1)

where the constraint sets are defined by

S :=
{
S ∈ Rd×d : ‖Sei‖1 ≤ ‖S]ei‖1 ∀i

}
, X =

{
X ∈ Rd×r : ‖X‖2,∞ ≤

√
νr

d

}
.

Note that the problem formulation requires knowing the `1 norms of the rows of S]. The
same assumption was also made in [19, 32]. While admittedly unrealistic, this formulation
provides a nice illustration of the paradigm we advocate here. The following technical lemma
will be useful in proving the regularity conditions needed for rapid convergence. The proof
is given in Appendix D.1.

Lemma 8.1. For all X ∈ X and S ∈ S, the estimate holds:

|〈S − S], XX> −X]X
>
] 〉| ≤ 10

√
νrk

d
· ‖S − S]‖F · ‖X −X]‖F .

Equipped with the above lemma, we can estimate the sharpness and approximation
parameters µ, ρ for the formulation (8.1).

Lemma 8.2 (Regularity constants). For all X ∈ X and S ∈ S, the estimates hold:

F ((X,S))2 ≥
(

1

2
σ2
r(X])− 10

√
νrk

d

)
·
(
dist(X,D∗(M]))

2 + ‖S − S]‖2
F

)
(8.2)

and
|F ((X,S))− FY ((X,S))| ≤ ‖X − Y ‖2

F . (8.3)

Moreover, for any X1, X2 ∈ X and S1, S2 ∈ S, the Lipschitz bounds holds:

|F ((X1, S1))− F ((X2, S2))| ≤ 2
√
νr‖X1 −X2‖F + ‖S1 − S2‖F .

Proof. Let X] ∈ projD∗(M])
(X). To establish the bound (8.2), we observe that

‖XX> + S −W‖2
F = ‖XX> −M]‖2

F + 2〈S − S], XX> −M]〉+ ‖S − S]‖2
F

≥ 1

2
σ2
r(X])‖X −X]‖2

F − 20

√
νrk

d
‖S − S]‖F‖X −X]‖F + ‖S − S]‖2

F ,

where the first inequality follows from Proposition 4.3 and Lemma 8.1. Now set

a := 10

√
νrk

d
, b := ‖X −X]‖F , c := ‖S − S]‖F ,
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and s := 1
2
σ2
r(X]). With this notation, we apply the Fenchel-Young inequality to show that

for any ε > 0, we have
2abc ≤ aεb2 + (a/ε)c2.

Thus, for any ε > 0, we have

‖XX> + S −W‖2
F ≥ sb2 − 2abc+ c2 ≥ (s− aε)b2 + (1− a/ε)c2.

Now, let us choose ε > 0 so that s− aε = 1− a/ε. Namely set ε =
−(1−s)+

√
(1−s)2+4a2

2a
. With

this choice of ε and the bound s − aε ≥ 1
2
σ2
r(X]) − 10

√
νrk/d, the claimed bound (8.2)

follows immediately. The bound (8.3) follows from the reverse triangle inequality:

|F ((X,S))− FY ((X,S))| ≤ ‖XX> − Y Y > − (X − Y )Y > − Y >(X − Y )‖F
= ‖XX> −XY > − Y X> + Y Y >‖F
= ‖(X − Y )(X − Y )>‖F
≤ ‖X − Y ‖2

F .

Finally observe

|F ((X1, S1))− F ((X2, S2))| ≤ ‖X1X
>
1 −X2X

>
2 ‖F + ‖S1 − S2‖F

≤ ‖X1 +X2‖op‖X1 −X2‖F + ‖S1 − S2‖F
≤ 2
√
νr‖X1 −X2‖F + ‖S1 − S2‖F ,

where we use the bound ‖Xi‖op ≤
√
d‖Xi‖2,∞ ≤

√
νr in the final inequality. The proof is

complete.

To summarize, there exist numerical constants c0, c1, c2 > 0 such that the following is
true. In the regime √

νrk

d
≤ c0σ

2
r(X]),

the Polyak subgradient method will converge at the linear rate,

dist(Xk,D∗(M])) ≤
(

1− c1σ
2
r(X])

νr

) k
2

· c2µ,

and the prox-linear method will converge quadratically when initialized at X0 ∈ X satisfying
dist(X0,D∗(M])) < c2σr(X]).

8.2 The non-Euclidean formulation

We next turn to a different formulation for robust PCA that does not require knowledge of
`1 row norms of S]. In particular, we consider the formulation

min
X∈X

f(X) = ‖XX> −W‖1 where X = {X ∈ Rd×r | ‖X‖2,∞ ≤ C‖X]‖2,∞}, (8.4)

for a constant C > 1. Unlike Section 8.1, here we consider a randomized model for the sparse
matrix S]. We assume that there are real ν, τ > 0 such that
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1. M] ∈ Rd×d can be factored as M] = X]X
>
] for some matrix X] ∈ Rd×r satisfying

‖X]‖2,∞ ≤
√

νr
d
‖X]‖op.

2. We assume the random corruption model

(S])ij = δijŜij ∀i, j

where δij are i.i.d. Bernoulli random variables with τ = P(δij = 1) and Ŝ is an arbitrary
and fixed d× d symmetric matrix.

In this setting, the approximation function at X is given by

fX(Z) = ‖XX −W +X(Z −X)> + (Z −X)X>‖1.

We begin by computing an estimate of the approximation accuracy |f(Z)− fX(Z)|.

Lemma 8.3 (Approximation accuracy). The estimate holds:

|f(Z)− fX(Z)| ≤ ‖Z −X‖2
2,1 for all X,Z ∈ Rd×r.

Proof. As in the proof of Proposition 4.1, we compute

|f(Z)− fX(Z)| =
∣∣∣‖ZZ> −W‖1 − ‖XX −W +X(Z −X)> + (Z −X)X>‖1

∣∣∣
≤ ‖(Z −X)(Z −X)>‖1 =

∑
i,j

|e>i (Z −X)(e>j (Z −X))>|

≤
∑
i,j

‖e>i (Z −X)‖2 · ‖e>j (Z −X)‖2 = ‖Z −X‖2
2,1,

thereby completing the argument.

Notice that the error |f(Z) − fX(Z)| is bounded in terms of the non-Euclidean norm
‖Z−X‖2,1. Thus, although in principle one may apply subgradient methods to the formula-
tion (8.4), their convergence guarantees, which fundamentally relied on the Euclidean norm,
would yield potentially overly pessimistic performance predictions. On the other hand, the
convergence guarantees for the prox-linear method do not require the norm to be Euclidean.
Indeed, the following is true, with a proof that is nearly identical as that of Theorem 5.8.

Theorem 8.4. Suppose that Assumption A holds where ‖·‖ is replaced by an arbitrary norm
|||·|||. Choose any β ≥ ρ and set γ := ρ/β in Algorithm 3. Then Algorithm 3 initialized at
any point x0 satisfying dist|||·|||(x0,X ∗) < µ

ρ
converges quadratically:

dist|||·|||(xk+1,X ∗) ≤ ρ
µ
· dist2

|||·|||(xk,X ∗) ∀k ≥ 0.

To apply the above generic convergence guarantees for the prox-linear method, it remains
to show that the objective function f in (8.4) is sharp relative to the norm ‖ · ‖1,2. A key
step in showing such a result is to prove that

‖XX> −X]X
>
] ‖1 ≥ c · inf

R>R=I
‖X −X]R‖2,1
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for a quantity c depending only on X]. One may prove this inequality using Proposition 4.3
together with the equivalence of the norms ‖ · ‖F and ‖ · ‖1,2. Doing so however leads to
a dimension-dependent c, resulting in a poor rate of convergence and region of attraction.
We instead seek to directly establish sharpness relative to the norm ‖ · ‖2,1. In the rank one
setting, this can be done using the following theorem.

Theorem 8.5 (Sharpness (rank one)). Consider two vectors x, x̄ ∈ Rd satisfying

dist‖·‖1(x, {±x̄}) ≤ (
√

2− 1)‖x̄‖1.

Then the estimate holds:

‖xx> − x̄x̄>‖1 ≥ (
√

2− 1) · ‖x̄‖1 · dist‖·‖1(x, {±x̄}).

The proof of this result appears in Appendix D.2. We leave as an intriguing open question
to determine if an analogous result holds in the higher rank setting.

Conjecture 8.6 (Sharpness (general rank)). Fix a rank r matrix X] ∈ Rd×r and set D∗ :=
{X ∈ X : XX> = X]X

>
] }. Then there exist constants c, γ > 0 depending only on X] such

that the estimate holds:

‖XX> −M‖1 ≥ c · dist‖·‖2,1(X,D∗),

for all X ∈ X satisfying dist‖·‖2,1(X,D∗) ≤ γ.

Assuming this conjecture, we can then show that the loss function f is sharp under the
randomized corruption model. We first state the following technical lemma, whose proof is
deferred to Appendix D.3. In what what follows, given a matrix X ∈ Rd×r, the notation Xi

always refers to the ith row of X.

Lemma 8.7. Assume Conjecture 8.6. Then there exist constants c1, c2, c3 > 0 so that for
all d satisfying d ≥ c1 log d

τ
, we have that with probability 1− d−c2, the following bound holds:

d∑
i,j=1

δij|〈Xi, Xj〉 − 〈(X])i, (X])j〉| ≤
(
τ +

c3C
√
τνr log d

c
‖X]‖op

)
‖XX> −X]X

>
] ‖1

for all X ∈ X satisfying dist‖·‖2,1(X,D∗) ≤ γ.

We remark that we expect c to scale with ‖X]‖op in the above bound, yielding a ratio
‖X]‖op/c dependent on the conditioning of X]. Given the above lemma, sharpness of f
quickly follows.

Lemma 8.8 (Sharpness of Non-Euclidean Robust PCA). Assume Conjecture 8.6. Then
there exists a constants c1, c2, c3 > 0 so that for all d satisfying d ≥ c1 log d

τ
, we have that with

probability 1− d−c2, the following bound holds:

f(X)− f(X]) ≥ c ·
(

1− 2τ − 2c3C
√
τνr log d

c
‖X]‖op

)
· dist‖·‖2,1(X,D∗(M]))

for all X ∈ X satisfying and dist‖·‖2,1(X,D∗(M])) ≤ γ.
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Proof. The reverse triangle inequality implies that

f(X)− f(X])

= ‖XX> −W‖1 − f(X])

= ‖XX> −X]X
>
] ‖1

+
d∑

i,j=1

δij (|〈Xi, Xj〉 − 〈(X])i, (X])j〉 − (S])ij| − |〈Xi, Xj〉 − 〈(X])i, (X])j〉|)− f(X])

= ‖XX> −X]X
>
] ‖1

+
d∑

i,j=1

δij (|〈Xi, Xj〉 − 〈(X])i, (X])j〉 − (S])ij| − |〈Xi, Xj〉 − 〈(X])i, (X])j〉| − |(S])ij|)

≥ ‖XX> −X]X
>
] ‖1 − 2

d∑
i,j=1

δij|〈Xi, Xj〉 − 〈(X])i, (X])j〉|.

The result them follows from the the sharpness of the function ‖XX> − X]X
>
] ‖1 together

with Lemma 8.7.

Combining Lemma 8.8 and Theorem 8.4, we deduce the following convergence guarantee.

Theorem 8.9 (Convergence for non-Euclidean Robust PCA). Assume Conjecture 8.6. Then
there exist constants c1, c2, c3 > 0 so that for all τ satisfying 1−2τ−2c3C

√
τνr log d‖X]‖op/c >

0 and d satisfying d ≥ c1 log d
τ

, we have that with probability 1 − d−c2, the iterates generated
by the prox-linear algorithm

Xk+1 = argmin
x∈X

{
fXk(X) +

1

2γ
‖X −Xk‖2

2,1

}
(8.5)

satisfy

dist‖·‖2,1(Xk+1,D∗(M])) ≤
2

c ·
(

1− 2τ − 2c3C
√
τνr log d
c

‖X]‖op
) ·dist2

‖·‖2,1(Xk,D∗(M])), ∀k ≥ 0.

In particular, the iterates converge quadratically as long as the initial iterate X0 ∈ X satisfies

dist‖·‖2,1(X0,D∗(M])) < min

{
(1/2)c ·

(
1− 2τ − 2c3C

√
τνr log d

c
‖X]‖op

)
, γ

}
.

9 Recovery up to a Tolerance

Thus far, we have developed exact recovery guarantees under noiseless or sparsely corrupted
measurements. We showed that sharpness together with weak convexity imply rapid local
convergence of numerical methods under these settings. In practical scenarios, however,
it might be unlikely that any, let alone a constant fraction of measurements, are perfectly
observed. Instead, a more realistic model incorporates additive errors that are the sum of a
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sparse, but otherwise arbitrary vector and a dense vector with relatively small norm. Exact
recovery is in general not possible under this noise model. Instead, we should only expect
to recover the signal up to an error.

To develop algorithms for this scenario, we need only observe that the previously devel-
oped sharpness results all yield a corresponding “sharpness up to a tolerance” result. Indeed,
all problems considered thus far, are convex composite and sharp:

min
x∈X

f(x) := h(F (x)) and f(x)− inf
X
f ≥ µ · dist(x,X ∗),

where h is convex and η-Lipschitz with respect to some norm |||·|||, F is a smooth map, and
µ > 0. Now consider a fixed additive error vector e, and the perturbed problem

min
x∈X

f̃(x) := h(F (x) + e). (9.1)

The triangle inequality immediately implies that the perturbed problem is sharp up to tol-
erance 2η|||e|||:

f̃(x)− inf
X
f̃ ≥ µ · dist(x,X ∗)− 2η|||e||| ∀x ∈ X .

In particular, any minimizer x∗ of f̃ satisfies

dist(x∗,X ∗) ≤ (2η/µ)|||e|||, (9.2)

where as before we set X ∗ = argminX f . In this section, we show that subgradient and
prox-linear algorithms applied to the perturbed problem (9.1) converge rapidly up to a
tolerance on the order of η|||e|||/µ. To see the generality of the above approach, we note that
even the robust recovery problems considered in Section 4.2.2, in which a constant fraction
of measurements are already corrupted, may be further corrupted through additive error
vector e. We will study this problem in detail in Section 9.1.

Throughout the rest of the section, let us define the noise level:

ε := η|||e|||.

Mirroring the discussion in Section 5, define the annulus:

T̃γ :=

{
z ∈ X :

14ε

µ
< dist(z,X ∗) < γµ

4ρ

}
, (9.3)

for some γ > 0. Note that for the annulus T̃γ to be nonempty, we must ensure ε < µ2γ
56ρ

. We

will see that T̃γ serves as a region of rapid convergence for some numerical constant γ. As
before, we also define subgradient bound and the condition measure:

L̃ := sup{‖ζ‖2 : ζ ∈ ∂f̃(x), x ∈ T̃1} and τ̃ := µ/L̃.

In all examples considered in the paper, it is possible to show directly that L̃ ≤ L as defined
in Assumption D. A similar result is true in the general case, as well. Indeed, the following
Lemma provides a bound for L̃ in terms of the subgradients of f on a slight expansion of
the tube T1 from (5.2); the proof appears in the appendix.
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Lemma 9.1. Suppose ε < µ2

56ρ
so that T̃1 is nonempty. Then the following bound holds:

L̃ ≤ sup

{
‖ζ‖2 : ζ ∈ ∂f(x), dist(x,X ∗) ≤ µ

ρ
, dist(x,X ) ≤ 2

√
ε

ρ

}
+ 2
√

8ρε.

We will now design algorithms whose basin of attraction is the annulus T̃γ for some γ.
To that end, the following modified sharpness bound will be useful for us. The reader should
be careful to note the appearance of infX f , not infX f̃ in the following bound.

Lemma 9.2 (Approximate sharpness). We have the following bound:

f̃(x)− inf
X
f ≥ µ · dist(x,X ∗)− ε ∀x ∈ X . (9.4)

Proof. For any x ∈ X , observe f̃(x) − inf f ≥ f(x) − inf f − ε ≥ µ · dist(x,X ∗) − ε, as
claimed.

Next, we show that f̃ satisfies the following approximate subgradient inequality.

Lemma 9.3 (Approximate subgradient inequality). The following bound holds:

f(y) ≥ f̃(x) + 〈ζ, y − x〉 − ρ

2
‖x− y‖2 − 3ε ∀x, y and ζ ∈ ∂f̃(x).

Proof. First notice that |fx(y) − f̃x(y)| ≤ ε for all x, y. Furthermore, we have ∂f̃(x) =
∇F (x)∗∂h(F (x) + e) = ∂f̃x(x). Therefore, it follows that for any ζ ∈ ∂f̃x(x) we have

〈ζ, y − x〉 ≤ f̃x(y)− f̃x(x)

≤ fx(y)− fx(x) + 2η|||e|||
≤ f(y)− f(x) +

ρ

2
‖x− y‖2 + 2ε

≤ f(y)− f̃(x) +
ρ

2
‖x− y‖2 + 3ε,

as desired.

Now consider the following modified Polyak method. It is important to note that the
stepsize assumes knowledge of minX f rather than minX f̃ . This distinction is important
because it often happens that minX f = 0, whereas minX f̃ is in general unknown; for
example, consider any noiseless problem analyzed thus far. We note that the standard
Polyak subgradient method may also be applied to f̃ without any changes and has similar
theoretical guarantees. The proof appears in the appendix.

Algorithm 4: Modified Polyak Subgradient Method

Data: x0 ∈ Rd

Step k: (k ≥ 0)
Choose ζk ∈ ∂f̃(xk). If ζk = 0, then exit algorithm.

Set xk+1 = projX

(
xk −

f̃(xk)−minX f

‖ζk‖2
ζk

)
.
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Theorem 9.4 (Polyak subgradient method). Suppose that Assumption D holds and suppose

that ε ≤ µ2/14ρ. Then Algorithm 4 initialized at any point x0 ∈ T̃1 produces iterates that
converge Q-linearly to X ∗ up to tolerance 14ε/µ, that is

dist2(xk+1,X ∗) ≤
(

1− 13τ̃ 2

56

)
dist2(xk,X ∗) ∀k ≥ 0 with dist(xk,X ∗) ≥ 14ε/µ.

Next we provide theoretical guarantees for Algorithm 5.3, where one does not know the
optimal value minX f . The proof of this result is a straightforward modification of [23,
Theorem 6.1] based on the Lemmas 9.2 and 9.3, and therefore we omit it.

Theorem 9.5 (Geometrically decaying subgradient method). Suppose that Assumption D

holds, fix a real number γ ∈ (0, 1), and suppose τ̃ ≤ 14
11

√
1

2−γ . Suppose also ε < µ2γ
56ρ

so that

T̃γ is nonempty. Set λ := γµ2

4ρL̃
and q :=

√
1− (1− γ)τ̃ 2 in Algorithm 2. Then the iterates

xk generated by Algorithm 2 on the perturbed problem (9.1), initialized at a point x0 ∈ T̃γ,
satisfy:

dist2(xk;X ∗) ≤
γ2µ2

16ρ2

(
1− (1− γ)τ̃ 2

)k ∀k ≥ 0 with dist(xk,X ∗) ≥ 14ε/µ.

Finally, we analyze the prox-linear algorithm applied to the problem minX f̃ . In contrast
to the Polyak method, one does not need to know the optimal value minX f . The proof
appears in the appendix.

Theorem 9.6 (Prox-linear algorithm). Suppose Assumptions A holds. Choose any β ≥ ρ
in Algorithm 3 applied to the perturbed problem (9.1) and set γ := ρ/β. Suppose moreover

ε < µ2γ
56ρ

so that T̃γ is nonempty. Then Algorithm 3 initialized at any point x0 ∈ T̃γ converges

quadratically up to tolerance 14ε/µ:

dist(xk+1,X ∗) ≤ 7β
6µ
· dist2(xk,X ∗) ∀k ≥ 0 with dist(xk+1,X ∗) ≥ 14ε/µ.

9.1 Example: sparse outliers and dense noise under `1/`2 RIP

To further illustrate the ideas of this section, we now generalize the results of Section 4.2.2,
in particular Assumption C, to the following observation model.

Assumption K (I-outlier bounds). There exists vectors e,∆ ∈ Rm, a set I ⊂ {1, . . . ,m},
and a constant κ3 > 0 such that the following hold.

(C1) b = A(M]) + ∆ + e.

(C2) Equality holds ∆i = 0 for all i /∈ I.

(C3) For all matrices W of rank at most 2r, we have

κ3‖W‖F ≤
1

m
‖AIc(W )‖1 −

1

m
‖AI(W )‖1.
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Given these assumptions we follow the notation of the previous section and let

f(X) :=
1

m
‖A(XX> −M])−∆‖1 and f̃(X) =

1

m
‖A(XX> −M])−∆− e‖1.

Then we have the following proposition:

Proposition 9.7. Suppose Assumption B and K are valid. Then the following hold:

1. (Sharpness) We have

f(X)− f(X]) ≥ µ · dist
(
X,D∗(M])

)
for all X ∈ Rd×r and µ := κ3

√
2(
√

2− 1)σr(X]),

2. (Weak Convexity) The function f is ρ := 2κ2-weakly convex.

3. (Minimizers) All minimizers of f̃ satisfy

dist(X∗,X ∗) ≤ 2 1
m
‖e‖1

κ3

√
2(
√

2− 1)σr(X])
∀X∗ ∈ argmin

X
f̃ .

4. (Lipschitz Bound) We have the bound

L̃ ≤ 2κ2 ·

κ3

√
2(
√

2− 1)σr(X])

8κ2

+ σ1(X])

 .

Proof. Sharpness follows from Proposition 4.6, while weak convexity follows from Proposi-
tion 4.1. The minimizer bound follows from (9.2). Finally, due to Lemma 3.1, the argument
given in Proposition (4.1), but applied instead to f̃ , guarantees that

L̃ ≤ 2κ2 · sup

‖X‖op : dist(X,D∗(M])) ≤
κ3

√
2(
√

2− 1)σr(X])

8κ2

 .

In turn the supremum may be bounded as follows: Let X? = X]R denote the closest point
to X in D∗(M). Then

‖X‖op ≤ ‖X −X]R‖op + ‖X]R‖op ≤
κ3

√
2(
√

2− 1)σr(X])

8κ2

+ σ1(X]),

as desired.

In particular, combining Proposition 9.7 with the previous results in this section, we
deduce the following. As long as the noise satisfies

1

m
‖e‖1 ≤

c0κ
2
3σr(M])

κ2
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for a sufficiently small constant c0 > 0, the subgradient and prox-linear methods converge
rapidly to within tolerance

δ ≈
1
m
‖e‖1

κ3σr(X])
,

when initialized at a matrix X0 satisfying

dist(X0,D∗(M]))√
σr(M])

≤ c1 ·
κ3

κ2

,

for some small constant c1. The formal statement is summarized in the following corollary.

Corollary 9.8 (Convergence guarantees under RIP with sparse outliers and dense noise
(symmetric)). Suppose Assumptions B is and K are valid with |||·||| = 1

m
‖ · ‖1 and de-

fine the condition number χ = σ1(M])/σr(M]). Then there exists numerical constants
c0, c1, c2, c3, c4, c5, c6 > 0 such that the following hold. Suppose the noise level satisfies

1

m
‖e‖1 ≤

2(
√

2− 1)c0κ
2
3σr(M])

28κ2

and define the tolerance

δ =
14
m
‖e‖1

κ3

√
2(
√

2− 1)σr(M])
.

Then as long as the matrix X0 satisfies

dist(X0,D∗(M]))√
σr(M])

≤ c1 ·
κ3

κ2

,

the following are true.

1. (Polyak subgradient) Algorithm 1 initialized at X0 produces iterates that converge
linearly to D∗(M]), that is

dist2(Xk,D∗(M]))

σr(M])
≤

1− c2

1 +
c3κ22χ

κ23

k

· c4κ
2
3

κ2
2

∀k ≥ 0 with dist(Xk,X ∗) ≥ δ.

2. (geometric subgradient) Algorithm 2 with λ =
c5κ23

√
σr(M])

κ2(κ3+2κ2
√
χ)

, q =
√

1− c2
1+c3κ22χ/κ

2
3

and initialized at X0 converges linearly:

dist2(Xk,D∗(M]))

σr(M])
≤

1− c2

1 +
c3κ22χ

κ23

k

· c4κ
2
3

κ2
2

∀k ≥ 0 with dist(Xk,X ∗) ≥ δ.

3. (prox-linear) Algorithm 3 with β = ρ and initialized at X0 converges quadratically:

dist(Xk,D∗(M])))√
σr(M])

≤ 2−2k · c6κ3

κ2

∀k ≥ 0 with dist(Xk,X ∗) ≥ δ.
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10 Numerical Experiments

In this section, we demonstrate the theory and algorithms developed in the previous sections
on a number of low-rank matrix recovery problems, namely quadratic and bilinear sensing,
low rank matrix completion, and robust PCA.

10.1 Robustness to outliers

In our first set of experiments, we empirically test the robustness of our optimization methods
to outlying measurements. We generate phase transition plots, where each pixel corresponds
to the empirical probability of successful recovery over 50 test runs using randomly generated
problem instances. Brighter pixels represent higher recovery rates. All generated instances
obey the following:

1. The initial estimate is specified reasonably close to the ground truth. In particular,
given a target symmetric positive semidefinite matrix X], we set

X0 := X] + δ · ‖X]‖F ·∆, where ∆ =
G

‖G‖F
, Gij ∼i.i.d. N(0, I).

Here, δ is a scalar that controls the quality of initialization and ∆ is a random unit
“direction”. The asymmetric setting is completely analogous.

2. When using the subgradient method with geometrically decreasing step-size, we set
λ = 1.0, q = 0.98.

3. For the quadratic sensing, bilinear sensing, and matrix completion problems, we mark
a test run as a success when the normalized distance ‖M −M]‖F/‖M]‖F is less than
10−5. Here we set M = XX> in the symmetric setting and M = XY in the asymmetric
setting. For the robust PCA problem, we stop when ‖M −M]‖1/‖M]‖1 < 10−5.

Moreover, we set the seed of the random number generator at the beginning of each batch
of experiments to enable reproducibility.

Quadratic and Bilinear sensing. Figures 2 and 3 depict the phase transition plots for
bilinear (6.5) and symmetrized quadratic (6.4) sensing formulations using Gaussian mea-
surement vectors. In the experiments, we corrupt a fraction of measurements with additive
Gaussian noise of unit entrywise variance. Empirically, we observe that increasing the vari-
ance of the additive noise does not affect recovery rates. Both problems exhibit a sharp phase
transition at very similar scales. Moreover, increasing the rank of the generating signal does
not seem to dramatically affect the recovery rate for either problem. Under additive noise,
we can recover the true signal (up to natural ambiguity) even if we corrupt as much as half
of the measurements.
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Figure 2: Bilinear sensing with d1 = d2 = d = 100 using Algorithm 2.

Robust PCA. We generate robust PCA instances for d = 80 and r ∈ {1, 2, 4, 8, 16}. The
corruption matrix S] follows the assumptions in Section 8.2, where for simplicity we set

Ŝij ∼ N(0, σ2). We observed that increasing or decreasing the variance σ2 did not affect the
probability of successful recovery, so our experiments use σ = 1. We use the subgradient
method, Algorithm 3, and the prox-linear algorithm (8.5). Notice that we have not presented
any guarantees for the subgradient method on this problem, in contrast to the prox-linear
method. The subproblems for the prox-linear method are solved by ADMM with graph
splitting as in [48]. We set tolerance εk = 10−4

2k
for the proximal subproblems, which we

continue solve for at most 500 iterations. We choose γ = 10 in all subproblems. The phase
transition plots are shown in Figure 4. It appears that the prox-linear method is more robust
to additive sparse corruption, since the empirical recovery rate for the subgradient method
decays faster as the rank increases.

Matrix completion. We next perform experiments on the low-rank matrix completion
problem that test successful recovery against the sampling frequency. We generate random
instances of the problem, where we let the probability of observing an entry, P(δij = 1), range
in [0.02, 0.6] with increments of 0.02. Figure 5 depicts the empirical recovery rate using
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Figure 3: Quadratic sensing with symmetrized measurements using Algorithm 2.

the Polyak subgradient method and the modified prox-linear algorithm (7.1). Similarly
to the quadratic/bilinear sensing problems, low-rank matrix completion exhibits a sharp
phase transition. As predicted in Section 7, the ratio r2

d
appears to be driving the required

observation probability for successful recovery. Finally, we empirically observe that the
prox-linear method can “tolerate” slightly smaller sampling frequencies.

10.2 Convergence behavior

We empirically validate the rapid convergence guarantees of the subgradient and prox-linear
methods, given a proper initialization. Moreover, we compare the subgradient method with
gradient descent, i.e. gradient descent applied to a smooth formulation of each problem,
using the same initial estimate in the noiseless setting. In all the cases below, the step sizes
for the gradient method were tuned for best performance. Moreover, we noticed that the
gradient descent method, equipped with the Polyak step size η := τ ∇f

‖∇f‖2 performed at least

as well as gradient descent with constant step size. That being said, we were unable to locate
any theoretical guarantees in the literature for gradient descent with the Polyak step-size for
the problems we consider here.

47



0.0 0.35 0.75
P(δij = 1)

1

2

4

8

16

R
an

k
r

d = 80

0.0 0.35 0.75
P(δij = 1)

1

2

4

8

16

R
an

k
r

d = 80

Figure 4: Robust PCA using the subgradient method, Algorithm 2, (top) and the modified
prox-linear method (8.5) (bottom).
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Figure 5: Low-rank matrix completion using the subgradient method, Algorithm 1 (top),
and the modified prox-linear method (7.1) (bottom).

Quadratic and Bilinear sensing. For the quadratic and bilinear sensing problems, we
apply gradient descent on the smooth formulations

1

m

∥∥A(XX>)− b
∥∥2

2
and

1

m
‖A(XY )− b‖2

2 .

In Figure 6, we plot the performance of Algorithm 2 for matrix sensing problems with dif-
ferent rank / corruption level; remarkably, the level of noise does not significantly affect the
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rate of convergence. Additionally, the convergence behavior is almost identical for the two
problems for similar rank/noise configurations. Figure 7 depicts the behavior of Algorithm 1
versus gradient descent with empirically tuned step sizes. The subgradient method signifi-
cantly outperforms gradient descent. For completeness, we also depict the convergence rate
of Algorithm 3 for both problems in Figure 8, where we solve the proximal subproblems
approximately.
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Figure 6: Quadratic (left) and bilinear (right) matrix sensing with d = 200,m = 8 · rd, using
the subgradient method, Algorithm 2.
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Figure 7: Algorithm 1 (solid lines) against gradient descent (dashed lines) with step size η.
Left: quadratic sensing, η = 10−4. Right: bilinear sensing, η = 10−3.

Matrix completion. In our comparison with smooth methods, we apply gradient descent
on the following minimization problem:

min
X∈Rd×r:‖X‖2,∞≤C

∥∥ΠΩ(XX>)− ΠΩ(M)
∥∥2

F
. (10.1)
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Figure 8: Quadratic (left) and bilinear (right) matrix sensing with d = 100,m = 8 · rd, using
the prox-linear method, Algorithm 3.

Figure 9 depicts the convergence behavior of Algorithm 1 (solid lines) versus gradient descent
applied to Problem (10.1) with a tuned step size η = 0.004 (dashed lines), initialized under
the same conditions for low-rank matrix completion instances. As the theory suggests, higher
sampling frequency implies better convergence rates. The subgradient method outperforms
gradient descent in all regimes.
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Figure 9: Low rank matrix completion with d = 100. Left: r = 4, right: r = 8. Solid lines
use Algorithm 1, dashed lines use gradient descent with step η = 0.004.

Figure 10 depicts the performance of the modified prox-linear method (7.1) in the same
setting as Figure 9. In most cases, the prox-linear algorithm converges within just 15 itera-
tions, at what appears to be a rapid linear rate of convergence. Each convex subproblem is
solved using a variant of the graph-splitting ADMM algorithm [48].

Robust PCA. For the robust PCA problem, we consider different rank/corruption level
configurations to better understand how they affect convergence for the subgradient and
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Figure 10: Low rank matrix completion with d = 100 using the modified prox-linear Algo-
rithm (7.1). Left: r = 4, right: r = 8.

prox-linear methods, using the non-Euclidean formulation of Section 8.2. We depict all
configurations in the same plot for a fixed optimization algorithm to better demonstrate
the effect of each parameter, as shown in Figure 11. The parameters of the prox-linear
method are chosen in the same way reported in Section 10.1. In particular, our numerical
experiments appear to support our sharpness Conjecture 8.6 for the robust PCA problem.
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Figure 11: `1-robust PCA with d = 100 and p := P(δij = 1). Left: Algorithm 2, right:
Algorithm (7.1).

10.2.1 Recovery up to tolerance

In this last section, we test the performance of the prox-linear method and the modified
Polyak subgradient method (Algorithm 4) for the quadratic sensing and matrix completion
problems, under a dense noise model of Section 9. In the former setting, we set pfail = 0.25, so
1/4th of our measurements is corrupted with large magnitude noise. For matrix completion,
we observe p = 25% of the entries. In both settings, we add Gaussian noise e which is rescaled
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to satisfy ‖e‖F = δσr(X]), and test δ := 10−kσr(X]), k ∈ {1, . . . , 4}. The relevant plots can
be found in Figures 12 and 13. The numerical experiments fully support the developed
theory, with the iterates converging rapidly up to the tolerance that is proportional to the
noise level. Incidentally, we observe that the modified prox-linear method (7.1) is more
robust to additive noise for the matrix completion problem, with Algorithm 4 exhibiting
heavy fluctuations and failing to converge for the highest level of dense noise.
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Figure 12: Quadratic sensing with r = 5 (left) and matrix completion with r = 8 (right),
d = 100, using Algorithm 4.
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Figure 13: Quadratic sensing with r = 5 (left) and matrix completion with r = 8 (right),
d = 100, using Algorithm (7.1).
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A Proofs in Section 5

In this section, we prove rapid local convergence guarantees for the subgradient and prox-
linear algorithms under regularity conditions that hold only locally around a particular
solution. We will use the Euclidean norm throughout this section; therefore to simplify the
notation, we will drop the subscript two. Thus ‖ · ‖ denotes the `2 on a Euclidean space E
throughout.

We will need the following quantitative version of Lemma 5.1.

Lemma A.1. Suppose Assumption E holds and let γ ∈ (0, 2) be arbitrary. Then for any
point x ∈ Bε/2(x̄) ∩ Tγ\X ∗, the estimate holds:

dist (0, ∂f(x)) ≥
(
1− γ

2

)
µ.

Proof. Consider any point x ∈ Bε/2(x̄) satisfying dist(x,X ∗) ≤ γ µ
ρ
. Let x∗ ∈ projX ∗(x) be

arbitrary and note x∗ ∈ Bε(x̄). Thus for any ζ ∈ ∂f(x) we deduce

µ · dist(x,X ∗) ≤ f(x)− f(x∗) ≤ 〈ζ, x− x∗〉+
ρ

2
‖x− x∗‖2 ≤ ‖ζ‖dist(x,X ∗) +

ρ

2
dist2(x,X ∗).

Therefore we deduce the lower bound on the subgradients ‖ζ‖ ≥ µ − ρ
2
· dist(x,X ∗) ≥(

1− γ
2

)
µ, as claimed.

A.1 Proof of Theorem 5.6

Let k be the first index (possibly infinite) such that xk /∈ Bε/2(x̄). We claim that (5.4) holds
for all i < k. We show this by induction. To this end, suppose (5.4) holds for all indices up
to i− 1. In particular, we deduce dist(xi,X ∗) ≤ dist(x0,X ∗) ≤ µ

2ρ
. Let x∗ ∈ projX ∗(xi) and

note x∗ ∈ Bε(x̄), since

‖x∗ − x̄‖ ≤ ‖x∗ − xi‖+ ‖xi − x̄‖ ≤ 2‖xi − x̄‖ ≤ ε.
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Thus we deduce

‖xi+1 − x∗‖2 =
∥∥∥projX

(
xi − f(xi)−minX f

‖ζi‖2 ζi

)
− projX (x∗)

∥∥∥2

≤
∥∥∥(xi − x∗)− f(xi)−minX f

‖ζi‖2 ζi

∥∥∥2

(A.1)

= ‖xi − x∗‖2 +
2(f(xi)−minX f)

‖ζi‖2
· 〈ζi, x∗ − xi〉+

(f(xi)− f(x∗))2

‖ζi‖2

≤ ‖xi − x∗‖2 +
2(f(xi)−min f)

‖ζi‖2

(
f(x∗)− f(xi) +

ρ

2
‖xi − x∗‖2

)
+

(f(xi)− f(x∗))2

‖ζi‖2
(A.2)

= ‖xi − x∗‖2 +
f(xi)−min f

‖ζi‖2

(
ρ‖xi − x∗‖2 − (f(xi)− f(x∗))

)
≤ ‖xi − x∗‖2 +

f(xi)−min f

‖ζi‖2

(
ρ‖xi − x∗‖2 − µ‖xi − x∗‖

)
(A.3)

= ‖xi − x∗‖2 +
ρ(f(xi)−min f)

‖ζi‖2

(
‖xi − x∗‖ −

µ

ρ

)
‖xi − x∗‖

≤ ‖xi − x∗‖2 − µ(f(xi)−min f)

2‖ζi‖2
· ‖xi − x∗‖ (A.4)

≤
(

1− µ2

2‖ζi‖2

)
‖xi − x∗‖2. (A.5)

Here, the estimate (A.1) follows from the fact that the projection projQ(·) is nonexpansive,
(A.2) uses local weak convexity, (A.4) follow from the estimate dist(xi,X ∗) ≤ µ

2ρ
, while (A.3)

and (A.5) use local sharpness. We therefore deduce

dist2(xi+1;X ∗) ≤ ‖xi+1 − x∗‖2 ≤
(

1− µ2

2L2

)
dist2(xi,X ∗). (A.6)
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Thus (5.4) holds for all indices up to k − 1. We next show that k is infinite. To this end,
observe

‖xk − x0‖ ≤
k−1∑
i=0

‖xi+1 − xi‖ =
k−1∑
i=0

∥∥∥projX

(
xi − f(xi)−minX f

‖ζi‖2 ζi

)
− projX (xi)

∥∥∥
≤

k−1∑
i=0

f(xi)−minX f

‖ζi‖

≤
k−1∑
i=0

〈
ζi
‖ζi‖ , xi − projX ∗(xi)

〉
+

ρ

2‖ζi‖
‖xi − projX ∗(xi)‖2

≤
k−1∑
i=0

dist(xi,X ∗) +
2ρ

3µ
dist2(xi,X ∗) (A.7)

≤ 4

3
·
k−1∑
i=0

dist(xi,X ∗) (A.8)

≤ 4

3
· dist(x0,X ∗) ·

k−1∑
i=0

(
1− µ2

2L2

) i
2

(A.9)

≤ 16L2

3µ2
· dist(x0,X ∗) ≤

ε

4
,

where (A.7) follows by Lemma A.1 with γ = 1/2, the bound in (A.8) follows by (A.6) and the
assumption on dist(x0,X ∗), finally (A.9) holds thanks to (A.6). Thus applying the triangle
inequality we get the contradiction ‖xk − x̄‖ ≤ ε/2. Consequently all the iterates xk for
k = 0, 1, . . . ,∞ lie in Bε/2(x̄) and satisfy (5.4).

Finally, let x∞ be any limit point of the sequence {xi}. We then successively compute

‖xk − x∞‖ ≤
∞∑
i=k

‖xi+1 − xi‖ ≤
∞∑
i=k

f(xi)−min f

‖ζi‖

≤ 4L

3µ
·
∞∑
i=k

dist(xi,X ∗)

≤ 4L

3µ
· dist(x0,X ∗) ·

∞∑
i=k

(
1− µ2

2L2

) i
2

≤ 16L3

3µ3
· dist(x0,X ∗) ·

(
1− µ2

2L2

) k
2

.

This completes the proof.

A.2 Proof of Theorem 5.7

Fix an arbitrary index k and observe

‖xk+1 − xk‖ =

∥∥∥∥projQ(xk)− projQ

(
xk − αk

ξk
‖ξk‖

)∥∥∥∥ ≤ αk = λ · qk.
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Hence, we conclude the uniform bound on the iterates:

‖xk − x0‖ ≤
∞∑
i=0

‖xi+1 − xi‖ ≤ λ
1−q

and the R-linear rate of convergence

‖xk − x∞‖ ≤
∞∑
i=k

‖xi+1 − xi‖ ≤ λ
1−qq

k,

where x∞ is any limit point of the iterate sequence.
Let us now show that the iterates do not escape Bε/2(x̄). To this end, observe

‖xk − x̄‖ ≤ ‖xk − x0‖+ ‖x0 − x̄‖ ≤ λ
1−q + ε

4
.

We must therefore verify the estimate λ
1−q ≤ ε

4
, or equivalently γ ≤ ερL(1−γ)τ2

4µ2(1+
√

1−(1−γ)τ2)
. Clearly,

it suffices to verify γ ≤ ερ(1−γ)
4L

, which holds by the definition of γ. Thus all the iterates

xk lie in Bε/2(x̄). Moreover τ ≤
√

1
2
≤
√

1
2−γ , the rest of the proof is identical to that

in [23, Theorem 5.1].

A.3 Proof of Theorem 5.8

Fix any index i such that xi ∈ Bε(x̄) and let x ∈ X be arbitrary. Since the function
z 7→ fxi(z) + β

2
‖z − xi‖2 is β-strongly convex and xi+1 is its minimizer, we deduce(

fxi(xi+1) +
β

2
‖xi+1 − xi‖2

)
+
β

2
‖xi+1 − x‖2 ≤ fxi(x) +

β

2
‖x− xi‖2. (A.10)

Setting x = xi and appealing to approximation accuracy, we obtain the descent guarantee

‖xi+1 − xi‖2 ≤ 2

β
(f(xi)− f(xi+1)). (A.11)

In particular, the function values are decreasing along the iterate sequence. Next choosing
any x∗ ∈ projX ∗(xi) and setting x = x∗ in (A.10) yields(

fxi(xi+1) +
β

2
‖xi+1 − xi‖2

)
+
β

2
‖xi+1 − x∗‖2 ≤ fxi(x

∗) +
β

2
‖x∗ − xi‖2.

Appealing to approximation accuracy and lower-bounding β
2
‖xi+1−x∗‖2 by zero, we conclude

f(xi+1) ≤ f(x∗) + β‖x∗ − xi‖2. (A.12)

Using sharpness we deduce the contraction guarantee

f(xi+1)− f(x∗) ≤ β · dist2(xi,X ∗)

≤ β

µ2
(f(xi)− f(x∗))2

≤ β(f(xi)− f(x∗))

µ2
· (f(xi)− f(x∗)) ≤ 1

2
· (f(xi)− f(x∗)),

(A.13)
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where the last inequality uses the assumption f(x0) −minX f ≤ µ2

2β
. Let k > 0 be the first

index satisfying xk /∈ Bε(x̄). We then deduce

‖xk − x0‖ ≤
k−1∑
i=0

‖xi+1 − xi‖ ≤
√

2

β
·
k−1∑
i=0

√
f(xi)− f(xi+1) (A.14)

≤
√

2

β
·
k−1∑
i=0

√
f(xi)− f(x∗)

≤
√

2

β
·
√
f(x0)− f(x∗) ·

k−1∑
i=0

(
1

2

) i
2

(A.15)

≤ 1√
2− 1

√
f(x0)− f(x∗)

β
≤ ε/2,

where (A.14) follows from (A.11) and (A.15) follows from (A.13). Thus we conclude ‖xk −
x̄‖ ≤ ε, which is a contradiction. Therefore all the iterates xk, for k = 0, 1, . . . ,∞, lie
in Bε(x̄). Combing this with (A.12) and sharpness yields the claimed quadratic converge
guarantee

µ · dist(xk+1,X ∗) ≤ f(xk+1)− f(x̄) ≤ β · dist2(xk,X ).

Finally, let x∞ be any limit point of the sequence {xi}. We then deduce

‖xk − x∞‖ ≤
∞∑
i=k

‖xi+1 − xi‖ ≤
√

2

β
·
∞∑
i=k

√
f(xi)− f(xi+1)

≤
√

2

β
·
∞∑
i=k

√
f(xi)−min

X
f

≤ µ
√

2

β
·
∞∑
i=k

(
β

µ2
(f(x0)−min f)

)2i−1

(A.16)

≤ µ
√

2

β
·
∞∑
i=k

(
1

2

)2i−1

≤ µ
√

2

β

∞∑
j=0

(
1

2

)2k−1+j

≤ 2
√

2µ

β
·
(

1

2

)2k−1

,

where (A.16) follows from (A.13). The theorem is proved.

B Proofs in Section 6

B.1 Proof of Lemma 6.3

In order to prove that the assumption in each case, we will prove a stronger “small-ball
condition” [43,44], which immediately implies the claimed lower bounds on the expectation
by Markov’s inequality. More precisely, we will show that there exist numerical constants
µ0, p0 > 0 such that
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1. (Matrix Sensing)
inf

M : Rank M≤2r
‖M‖F=1

P(|〈P,M〉| ≥ µ0) ≥ p0,

2. (Quadratic Sensing I)

inf
M∈Sd: Rank M≤2r

‖M‖F=1

P(|p>Mp| ≥ µ0) ≥ p0,

3. (Quadratic Sensing II)

inf
M∈Sd: Rank M≤2r

‖M‖F=1

P
(
|p>Mp− p̃>Mp̃| ≥ µ0

)
≥ p0,

4. (Bilinear Sensing)
inf

M : Rank M≤2r
‖M‖F=1

P(|p>Mq| ≥ µ0) ≥ p0.

These conditions immediately imply Assumptions G-J. Indeed, by Markov’s inequality,
in the case of matrix sensing we deduce

E|〈P,M〉| ≥ µ0P (|〈P,M〉| > µ0) ≥ µ0p0.

The same reasoning applies to all the other problems.

Matrix sensing. Consider any matrix M with ‖M‖F = 1. Then, since g := 〈P,M〉 follows
a standard normal distribution, we may set µ0 to be the median of |g| and p0 = 1/2 to obtain

inf
M : Rank M≤2r
‖M‖F=1

P(|〈P,M〉| ≥ µ0) = P(|g| ≥ µ0) ≥ p0.

Quadratic Sensing I. Fix a matrix M with Rank M ≤ 2r and ‖M‖F = 1. Let M =
UDU> be an eigenvalue decomposition of M . Using the rotational invariance of the Gaussian
distribution, we deduce

p>Mp
d
= p>Dp =

2r∑
k=1

λkp
2
k,

where
d
= denotes equality in distribution. Next, let z be a standard normal variable. We

will now invoke Proposition F.2. Let C > 0 be the numerical constant appearing in the
proposition. Notice that the function φ : R+ → R given by

φ(t) = sup
u∈R

P(|z2 − u| ≤ t)

is continuous and strictly increasing, and it satisfies φ(0) = 0 and limt→∞ φ(t) = 1. Hence
we may set µ0 = φ−1(min{1/2C, 1/2}). Proposition F.2 then yields

P(|p>Mp| ≤ µ0) = P

(∣∣∣∣∣
2r∑
k=1

λkp
2
k

∣∣∣∣∣ ≤ µ0

)
≤ sup

u∈R
P

(∣∣∣∣∣
2r∑
k=1

λkp
2
k − u

∣∣∣∣∣ ≤ µ0

)
≤ Cφ(µ0) ≤ 1

2
.

By taking the supremum of both sides of the inequality we conclude that Assumption H
holds with µ0 and p0 = 1/2.
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Quadratic sensing II. Let M = UDU> be an eigenvalue decomposition of M . Using the
rotational invariance of the Gaussian distribution, we deduce

p>Mp− p̃>Mp̃
d
= p>Dp− p̃>Dp̃ =

2r∑
k=1

λk
(
p2
k − p̃2

k

) d
= 2

2r∑
k=1

λkpkp̃k,

where the last relation follows since (pk − p̃k) , (pk + p̃k) are independent standard normal
random variables with mean zero and variance two. We will now invoke Proposition F.2. Let
C > 0 be the numerical constant appearing in the proposition. Let z and z̃ be independent
standard normal variables. Notice that the function φ : R+ → R given by

φ(t) = sup
u∈R

P(|2zz̃ − u| ≤ t)

is continuous, strictly increasing, satisfies φ(0) = 0 and approaches one at infinity. Defining
µ0 = φ−1(min{1/2C, 1/2}) and applying Proposition F.2, we get

P

(∣∣∣∣∣2
2r∑
k=1

σkpkp̃k

∣∣∣∣∣ ≤ µ0

)
≤ sup

u∈R
P

(∣∣∣∣∣2
2r∑
k=1

σkpkp̃k − u
∣∣∣∣∣ ≤ µ0

)
≤ Cφ(µ0) ≤ 1

2
.

By taking the supremum of both sides of the inequality we conclude that Assumption I holds
with µ0 and p0 = 1/2.

We omit the details for the bilinear case, which follow by similar arguments.

B.2 Proof of Theorem 6.4

The proofs in this section rely on the following proposition, which shows that that pointwise
concentration imply uniform concentration. We defer the proof to Appendix B.3.

Proposition B.1. Let A : Rd1×d2 → Rm be a random linear mapping with property that for
any fixed matrix M ∈ Rd1×d2 of rank at most 2r with norm ‖M‖F = 1 and any fixed subset
of indices I ⊆ {1, . . . ,m} satisfying |I| < m/2, the following hold:

(1) The measurements A(M)1, . . . ,A(M)m are i.i.d.

(2) RIP holds in expected value:

α ≤ E|A(M)i| ≤ β(r) for all i ∈ {1, . . . ,m} (B.1)

where α > 0 is a universal constant and β is a positive-valued function that could
potentially depend on the rank of M .

(3) There exist a universal constant K > 0 and a positive-valued function c(m, r) such that
for any t ∈ [0, K] the deviation bound

1

m

∣∣‖AIc(M)‖1 − ‖AI(M)‖1 − E
[
‖AIc(M)‖1 − ‖AI(M)‖1

]∣∣ ≤ t (B.2)

holds with probability at least 1− 2 exp(−t2c(m, r)).

63



Then, there exist universal constants c1, . . . , c6 > 0 depending only on α and K such that if
I ⊆ {1, . . . ,m} is a fixed subset of indices satisfying |I| < m/2 and

c(m, r) ≥ c1

(1− 2|I|/m)2
r(d1 + d2 + 1) ln

(
c2 +

c2β(r)

1− 2|I|/m

)
then with probability at least 1−4 exp (−c3(1− 2|I|/m)2c(m, r)) every matrix M ∈ Rd1×d2of
rank at most 2r satisfies

c4‖M‖F ≤
1

m
‖A(M)‖1 ≤ c5β(r)‖M‖F , (B.3)

and

c6

(
1− 2|I|

m

)
‖M‖F ≤

1

m
(‖AIc(M)‖1 − ‖AIM‖1) . (B.4)

Due to scale invariance of the above result, we need only verify its assumptions in the
case that ‖M‖F = 1. We implicitly use this observation below.

B.2.1 Part 1 of Theorem 6.4 (Matrix sensing)

Lemma B.2. The random variable |〈P,M〉| is sub-gaussian with parameter Cη. Conse-
quently,

α ≤ E|〈P,M〉| . η. (B.5)

Moreover, there exists a universal constant c > 0 such that for any t ∈ [0,∞) the deviation
bound

1

m

∣∣‖AIc(M)‖1 − ‖AI(M)‖1 − E
[
‖AIc(M)‖1 − ‖AI(M)‖1

]∣∣ ≤ t (B.6)

holds with probability at least 1− 2 exp
(
− ct2

η2
m
)
.

Proof. Assumption G immediately implies the lower bound in (B.5). To prove the upper
bound, first note that by assumption we have

‖〈P,M〉‖ψ2 . η.

This bound has two consequences, first 〈P,M〉 is a sub-gaussian random variable with pa-
rameter η and second E|〈P,M〉| . η [58, Proposition 2.5.2]. Thus, we have proved (B.5).

To prove the deviation bound (B.6) we introduce the random variables

Yi =

{
|〈Pi,M〉| − E|〈Pi,M〉| if i /∈ I, and

− (|〈Pi,M〉| − E|〈Pi,M〉|) otherwise.

Since |〈Pi,M〉| is sub-gaussian, we have ‖Yi‖ψ2 . η for all i, see [58, Lemma 2.6.8]. Hence,
Hoeffding’s inequality for sub-gaussian random variables [58, Theorem 2.6.2] gives the desired
upper bound on P

(
1
m
|∑m

i=1 Yi| ≥ t
)
.

Applying Proposition B.1 with β(r) � η and c(m, r) � m/η2 now yields the result.
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B.2.2 Part 2 of Theorem 6.4 (Quadratic sensing I)

Lemma B.3. The random variable |p>Mp| is sub-exponential with parameter
√

2rη2. Con-
sequently,

α ≤ E|p>Mp| .
√

2rη2. (B.7)

Moreover, there exists a universal constant c > 0 such that for any t ∈ [0,
√

2rη] the deviation
bound

1

m

∣∣‖AIc(M)‖1 − ‖AI(M)‖1 − E
[
‖AIc(M)‖1 − ‖AI(M)‖1

]∣∣ ≤ t (B.8)

holds with probability at least 1− 2 exp
(
− ct2

η4
m/r

)
.

Proof. Assumption H gives the lower bound in (B.7). To prove the upper bound, first note
that M =

∑2r
k=1 σkuku

>
k where σk and uk are the kth singular values and vectors of M ,

respectively. Hence

‖p>Mp‖ψ1 =

∥∥∥∥∥p>
(

2r∑
k=1

σkuku
>
k

)
p

∥∥∥∥∥
ψ1

=

∥∥∥∥∥
2r∑
k=1

σk〈p, uk〉2
∥∥∥∥∥
ψ1

≤
2r∑
k=1

σk
∥∥〈p, uk〉2∥∥ψ1

≤
2r∑
k=1

σk ‖〈p, uk〉‖2
ψ2

= η2

2r∑
k=1

σk ≤
√

2rη2,

where the first inequality follows since ‖·‖ψ1 is a norm, the second one follows since ‖XY ‖ψ1 ≤
‖X‖ψ2‖Y ‖ψ2 [58, Lemma 2.7.7], and the third inequality holds since ‖σ‖1 ≤

√
2r‖σ‖2. This

bound has two consequences, first p>Mp is a sub-exponential random variable with param-
eter
√
rη2 and second Ep>Mp ≤

√
2rη2 [58, Exercise 2.7.2]. Thus, we have proved (B.7).

To prove the deviation bound (B.8) we introduce the random variables

Yi =

{
p>i Mpi − Ep>i Mpi if i /∈ I, and

−
(
p>i Mpi − Ep>i Mpi

)
otherwise.

Since p>Mp is sub-exponential, we have ‖Yi‖ψ1 .
√
rη2 for all i, see [58, Exercise 2.7.10].

Hence, Bernstein inequality for sub-exponential random variables [58, Theorem 2.8.2] gives
the desired upper bound on P

(
1
m
|∑m

i=1 Yi| ≥ t
)
.

Applying Proposition B.1 with with β(r) � √rη2 and c(m, r) � m/η4r now yields the
result.

B.2.3 Part 3 of Theorem 6.4 (Quadratic sensing II)

Lemma B.4. The random variable |p>Mp− p̃>Mp̃| is sub-exponential with parameter Cη2.
Consequently,

α ≤ E|p>Mp− p̃>Mp̃| . η2. (B.9)

Moreover, there exists a universal constant c > 0 such that for any t ∈ [0, η2] the deviation
bound

1

m

∣∣‖AIc(M)‖1 − ‖AI(M)‖1 − E
[
‖AIc(M)‖1 − ‖AI(M)‖1

]∣∣ ≤ t (B.10)

holds with probability at least 1− 2 exp
(
− ct2

η4
m
)
.
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Proof. Assumption I implies the lower bound in (B.9). To prove the upper bound, we will
show that ‖|p>Mp− p̃>Mp̃>|‖ψ1 ≤ η2. By definition of the Orlicz norm ‖|X|‖ψ1 = ‖X‖ψ1 for
any random variable X, hence without loss of generality we may remove the absolute value.
Recall that M =

∑2r
k=1 σkuku

>
k where σk and uk are the kth singular values and vectors of

M , respectively. Hence, the random variable of interest can be rewritten as

p>Mp− p̃>Mp̃>
d
=

2r∑
k=1

σk
(
〈uk, p〉2 − 〈uk, p̃〉2

)
. (B.11)

By assumption the random variables 〈uk, p〉 are η-sub-gaussian, this implies that 〈uk, p〉2 are
η2-sub-exponential, since ‖〈uk, p〉2‖ψ1 ≤ ‖〈uk, p〉‖2

ψ2
.

Recall the following characterization of the Orlicz norm for mean-zero random variables

‖X‖ψ1 ≤ Q ⇐⇒ E exp(λX) ≤ exp(Q̃2λ2) for all λ satisfying |λ| ≤ 1/Q̃2 (B.12)

where the Q � Q̃, see [58, Proposition 2.7.1]. To prove that the random variable (B.11)
is sub-exponential we will exploit this characterization. Since each inner product squared
〈uk, p〉2 is sub-exponential, the equivalence implies the existence of a constant c > 0 for
which the uniform bound

E exp(λ〈uk, p〉2) ≤ exp
(
cη4λ2

)
for all k ∈ [2r] and |λ| ≤ 1/cη4 (B.13)

holds. Let λ be an arbitrary scalar with |λ| ≤ 1/cη4, then by expanding the moment
generating function of (B.11) we get

E exp

(
λ

2r∑
k=1

σk
(
〈uk, p〉2 − 〈uk, p̃〉2

))
= E

2r∏
k=1

exp
(
λσk〈uk, p〉2

)
exp

(
−λσk〈uk, p̃〉2

)
=

2r∏
k=1

E exp
(
λσk〈uk, p〉2

)
E exp

(
−λσk〈uk, p̃〉2

)
≤

2r∏
k=1

exp
(
(cη)2λ2σ2

k

)
exp

(
cη4λ2σ2

k

)
= exp

(
2cη4λ2

2r∑
k=1

σ2
k

)
= exp

(
2cη4λ2

)
.

where the inequality follows by (B.13) and the last relation follows since σ is unit norm.
Combining this with (B.12) gives

‖|p>Mp− p̃>Mp̃>|‖ψ1 . η2.

This bound has two consequences, first |p>Mp− p̃>Mp̃>| is a sub-exponential random vari-
able with parameter Cη2 and second E|p>Mp − p̃>Mp̃>| ≤ Cη2 [58, Exercise 2.7.2]. Thus,
we have proved (B.9).

To prove the deviation bound (B.10) we introduce the random variables

Yi =

{
A(M)i − EA(M)i if i /∈ I, and

− (A(M)i − EA(M)i) otherwise.
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The sub-exponentiality of A(M)i implies ‖Yi‖ψ1 . η2 for all i, see [58, Exercise 2.7.10].
Hence, Bernstein inequality for sub-exponential random variables [58, Theorem 2.8.2] gives
the desired upper bound on P

(
1
m
|∑m

i=1 Yi| ≥ t
)
.

Applying Proposition B.1 with β(r) � η2 and c(m, r) � m/η4 now yields the result.

B.2.4 Part 4 of Theorem 6.4 (Bilinear sensing)

Lemma B.5. The random variable |p>Mq| is sub-exponential with parameter Cη2. Conse-
quently,

α ≤ E|p>Mq| . η2. (B.14)

Moreover, there exists a universal constant c > 0 such that for any t ∈ [0, η2] the deviation
bound

1

m

∣∣‖AIc(M)‖1 − ‖AI(M)‖1 − E
[
‖AIc(M)‖1 − ‖AI(M)‖1

]∣∣ ≤ t (B.15)

holds with probability at least 1− 2 exp
(
− ct2

η4
m
)
.

Proof. As before the lower bound in (B.14) is implied by Assumption J. To prove the upper
bound, we will show that ‖|p>Mq|‖ψ1 ≤ η2. By definition of the Orlicz norm ‖|X|‖ψ1 =
‖X‖ψ1 for any random variable X, hence we may remove the absolute value. Recall that
M =

∑2r
k=1 σkukv

>
k where σk and (uk, vk) are the kth singular values and vectors of M ,

respectively. Hence, the random variable of interest can be rewritten as

p>Mq
d
=

2r∑
k=1

σk〈p, uk〉〈vk, q〉. (B.16)

By assumption the random variables 〈p, uk〉 and 〈vk, q〉 are η-sub-gaussian, this implies that
〈p, uk〉〈vk, q〉 are η2-sub-exponential.

To prove that the random variable (B.16) is sub-exponential we will again use (B.12).
Since each random variable 〈p, uk〉〈vk, q〉 is sub-exponential, the equivalence implies the
existence of a constant c > 0 for which the uniform bound

E exp(λ〈p, uk〉〈vk, q〉) ≤ exp
(
cη4λ2

)
for all k ∈ [2r] and |λ| ≤ 1/cη4 (B.17)

holds. Let λ be an arbitrary scalar with |λ| ≤ 1/cη4, then by expanding the moment
generating function of (B.16) we get

E exp

(
λ

2r∑
k=1

σk〈p, uk〉〈vk, q〉
)

=
2r∏
k=1

E exp (λσk〈p, uk〉〈vk, q〉)

≤ exp

(
2cη4λ2

r∑
k=1

σ2
k

)
= exp

(
2cη4λ2

)
.

where the inequality follows by (B.17) and the last relation follows since σ is unitary. Com-
bining this with (B.12) gives

‖|p>Mq|‖ψ1 . η2.
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Thus, we have proved (B.14).
Once again, to show the deviation bound (B.15) we introduce the random variables

Yi =

{
|p>i Mqi| − E|p>i Mqi| if i /∈ I, and

−
(
|p>i Mqi| − E|p>i Mqi|

)
otherwise.

and apply Bernstein’s inequality for sub-exponential random variables [58, Theorem 2.8.2]
to get the stated upper bound on P

(
1
m
|∑m

i=1 Yi| ≥ t
)
.

Applying Proposition B.1 with β(r) � η2 and c(m, r) � m/η4 now yields the result.

B.3 Proof of Proposition B.1

Choose ε ∈ (0,
√

2) and let N be the (ε/
√

2)-net guaranteed by Lemma F.1. Pick some
t ∈ (0, K] so that (B.2) can hold, we will fix the value of this parameter later in the proof.
Let E denote the event that the following two estimates hold for all matrices in M ∈ N :

1

m

∣∣∣‖AIc(M)‖1 − ‖AI(M)‖1 − E [‖AIc(M)‖1 − ‖AI(M)‖1]
∣∣∣ ≤ t, (B.18)

1

m

∣∣∣‖A(M)‖1 − E [‖A(M)‖1]
∣∣∣ ≤ t. (B.19)

Throughout the proof, we will assume that the event E holds. We will estimate the proba-
bility of E at the end of the proof. Meanwhile, seeking to establish RIP, define the quantity

c2 := sup
M∈S2r

1

m
‖A(M)‖1.

We aim first to provide a high probability bound on c2.
Let M ∈ S2r be arbitrary and let M? be the closest point to M in N . Then we have

1

m
‖A(M)‖1 ≤

1

m
‖A(M?)‖1 +

1

m
‖A(M −M?)‖1

≤ 1

m
E‖A(M?)‖1 + t+

1

m
‖A(M −M?)‖1 (B.20)

≤ 1

m
E‖A(M)‖1 + t+

1

m
(E‖A(M −M?)‖1 + ‖A(M −M?)‖1) , (B.21)

where (B.20) follows from (B.19) and (B.21) follows from the triangle inequality. To simplify
the third term in (B.21), using SVD, we deduce that there exist two orthogonal matrices
M1,M2 of rank at most 2r satisfying M −M? = M1 +M2. With this decomposition in hand,
we compute

1

m
‖A(M −M?)‖1 ≤

1

m
‖A(M1)‖1 +

1

m
‖A(M2)‖1

≤ c2(‖M1‖F + ‖M2‖F ) ≤
√

2c2‖M −M?‖F ≤ c2ε, (B.22)
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where the second inequality follows from the definition of c2 and the estimate ‖M1‖F +
‖M2‖F ≤

√
2‖(M1,M2)‖F =

√
2‖M1 +M2‖F . Thus, we arrive at the bound

1

m
‖A(M)‖1 ≤

1

m
E‖A(M)‖1 + t+ 2c2ε. (B.23)

As M was arbitrary, we may take the supremum of both sides of the inequality, yielding
c2 ≤ 1

m
supM∈S2r

E‖A(M)‖1 + t+ 2c2ε. Rearranging yields the bound

c2 ≤
1
m

supM∈S2r
E‖A(M)‖1 + t

1− 2ε
.

Assuming that ε ≤ 1/4, we further deduce that

c2 ≤ σ̄ :=
2

m
sup
M∈S2r

E‖A(M)‖1 + 2t ≤ 2β(r) + 2t, (B.24)

establishing that the random variable c2 is bounded by σ̄ in the event E .
Now let Î denote either Î = ∅ or Î = I. We now provide a uniform lower bound on

1
m
‖AÎc(M)‖1 − 1

m
‖AÎ(M)‖1. Indeed,

1

m
‖AÎc(M)‖1 −

1

m
‖AÎ(M)‖1

=
1

m
‖AÎc(M?) +AÎc(M −M?)‖1 −

1

m
‖AÎ(M?) +AÎ(M −M?)‖1

≥ 1

m
‖AÎc(M?)‖1 −

1

m
‖AÎ(M?)‖1 −

1

m
‖A(M −M?)‖1 (B.25)

≥ 1

m
E [‖AÎc(M?)‖1 − ‖AÎ(M?)‖1]− t− 1

m
‖A(M −M?)‖1 (B.26)

≥ 1

m
E [‖AÎc(M)‖1 − ‖AÎ(M)‖1]− t− 1

m
(E‖A(M −M?)‖1 + ‖A(M −M?)‖1) (B.27)

≥ 1

m
E [|‖AÎc(M)‖1 − ‖AÎ(M)‖1]− t− 2σ̄ε, (B.28)

where (B.25) uses the forward and reverse triangle inequalities, (B.26) follows from (B.18),
the estimate (B.27) follows from the forward and reverse triangle inequalities, and (B.28)
follows from (B.22) and (B.24). Switching the roles of I and Ic in the above sequence of
inequalities, and choosing ε = t/4σ̄, we deduce

1

m
sup
M∈S2r

∣∣∣‖AÎc(M)‖1 − ‖AÎ(M)‖1 − E [‖AÎc(M)‖1 − ‖AÎ(M)‖1]
∣∣∣ ≤ 3t

2
.

In particular, setting Î = ∅, we deduce

1

m
sup
M∈S2r

∣∣∣‖A(M)‖1 − E [‖A(M)‖1]
∣∣∣ ≤ 3t

2

and therefore using (B.1), we conclude the RIP property

α− 3t

2
≤ 1

m
‖A(M)‖1 . β(r) +

3t

2
, ∀X ∈ S2r. (B.29)
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Next, let Î = I and note that

1

m
E [‖AÎc(M)‖1 − ‖AÎ(M)‖1] =

|Ic| − |I|
m

· E|A(M)i| ≥
(

1− 2|I|
m

)
α,

where the equality follows by assumption (1). Therefore every M ∈ S2r satisfies

1

m
[‖AÎc(M)‖1 − ‖AÎ(M)‖1] ≥

(
1− 2|I|

m

)
α− 3t

2
. (B.30)

Setting t = 2
3

min{α, α(1 − 2|I|/m)/2} = 1
3
α(1 − 2|I|/m) in (B.29) and (B.30), we deduce

the claimed estimates (B.3) and (B.4). Finally, let us estimate the probability of E . Using
the union bound and Lemma F.1 yields

P(Ec) ≤
∑
M∈N

P
{

(B.18) or (B.19) fails at M
}

≤ 4|N | exp
(
−t2c(m, r)

)
≤ 4

(
9

ε

)2(d1+d2+1)r

exp
(
−t2c(m, r)

)
= 4 exp

(
2(d1 + d2 + 1)r ln(9/ε)− t2c(m, r)

)
where c(m, r) is the function guaranteed by assumption (3).

By (B.1) we get 1/ε = 4σ̄/t . 2 + β(r)/(1− 2|I|/m). Then we deduce

P(Ec) ≤ 4 exp

(
c1(d2 + d2 + 1)r ln

(
c2 +

c2β(r)

1− 2|I|/m

)
− α2

9
(1− 2|I|

m
)2c(m, r)

)
.

Hence as long as c(m, r) ≥ 9c1(d1+d2+1)r2 ln
(
c2+

c2β(r)
1−2|I|/m

)
α2(1− 2|I|

m )
2 , we can be sure

P(Ec) ≤ 4 exp

(
−α

2

18

(
1− 2|I|

m

)2

c(m, r)

)
.

Proving the desired result.

C Proof in Section 7

C.1 Proof of Lemma 7.4

Define P (x, y) = a‖y − x‖2
2 + b‖y − x‖2. Fix an iteration k and choose x∗ ∈ projX ∗(xk).

Then the estimate holds:

f(xk+1) ≤ fxk(xk+1) + P (xk+1, xk) ≤ fxk(x
∗) + P (x∗, xk) ≤ f(x∗) + 2P (x∗, xk).

Rearranging and using the sharpness and approximation accuracy assumptions, we deduce

µ · dist(xk+1,X ∗) ≤ 2(a · dist2(x,X ∗) + b · dist(x,X ∗)) = 2(b+ adist(x,X ∗))dist(x,X ∗).
The result follows.
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C.2 Proof of Theorem 7.6

First notice that for any y, we have ∂f(y) = ∂fy(y). Therefore, since fy is a convex function,
we have that for all x, y ∈ X and v ∈ ∂f(y), the bound

f(y) + 〈v, x− y〉 = fy(y) + 〈v, x− y〉 ≤ fy(x) ≤ f(x) + a‖x− y‖2
F + b‖x− y‖F . (C.1)

Consequently, given that dist(xi,X ∗) ≤ γ · µ−2b
2a

, we have

‖xi+1 − x∗‖2 =
∥∥∥projX

(
xi − f(xi)−minX f

‖ζi‖2 ζi

)
− projX (x∗)

∥∥∥2

≤
∥∥∥(xi − x∗)− f(xi)−minX f

‖ζi‖2 ζi

∥∥∥2

(C.2)

= ‖xi − x∗‖2 +
2(f(xi)−minX f)

‖ζi‖2
· 〈ζi, x∗ − xi〉+

(f(xi)− f(x∗))2

‖ζi‖2

≤ ‖xi − x∗‖2 +
2(f(xi)−min f)

‖ζi‖2

(
f(x∗)− f(xi) + a‖xi − x∗‖2 + b‖xi − x∗‖

)
+

(f(xi)− f(x∗))2

‖ζi‖2
(C.3)

= ‖xi − x∗‖2 +
f(xi)−min f

‖ζi‖2

(
2a‖xi − x∗‖2 + 2b‖xi − x∗‖ − (f(xi)− f(x∗))

)
≤ ‖xi − x∗‖2 +

f(xi)−min f

‖ζi‖2

(
a‖xi − x∗‖2 − (µ− 2b)‖xi − x∗‖

)
(C.4)

= ‖xi − x∗‖2 +
2a(f(xi)−min f)

‖ζi‖2

(
‖xi − x∗‖ −

µ− 2b

2a

)
‖xi − x∗‖

≤ ‖xi − x∗‖2 − (1− γ)(µ− 2b)(f(xi)−min f)

‖ζi‖2
· ‖xi − x∗‖ (C.5)

≤
(

1− (1− γ)µ(µ− 2b)

‖ζi‖2

)
‖xi − x∗‖2. (C.6)

Here, the estimate (C.2) follows from the fact that the projection projX (·) is nonexpansive,
(C.3) uses the bound in (C.1), (C.5) follow from the estimate dist(xi,X ∗) ≤ γ · µ−2b

2a
, while

(C.4) and (C.6) use local sharpness. The result then follows by the upper bound ‖ζi‖ ≤ L.

D Proofs in Section 8

D.1 Proof of Lemma 8.1

The inequality can be established using an argument similar to that for bounding the T3

term in [19, Section 6.6]. We provide the proof below for completeness. Define the shorthand
∆S := S − S] and ∆X = X −X], and let ej ∈ Rd denote the j-th standard basis vector of
Rd. Simple algebra gives

|〈S − S], XX> −X]X
>
] 〉| = |2〈∆S,∆XX

>
] 〉+ 〈∆S,∆X∆>X〉|

≤
(

2‖X>] ∆S‖F + ‖∆>X∆S‖F
)
· ‖∆X‖F .
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We claim that ‖∆Sej‖1 ≤ 2
√
k‖∆Sej‖2 for each j ∈ [d]. To see this, fix any j ∈ [d] and let

v := Sej, v
∗ := S]ej, and T := support(v∗). We have

‖v∗T‖1 = ‖v∗‖1 ≥ ‖v‖1 S ∈ S
= ‖vT‖1 + ‖vT c‖1 decomposability of `1 norm

= ‖v∗T + (v − v∗)T‖1 + ‖(v − v∗)T c‖1

≥ ‖v∗T‖1 − ‖(v − v∗)T‖1 + ‖(v − v∗)T c‖1. reverse triangle inequality

Rearranging terms gives ‖(v − v∗)T c‖1 ≤ ‖(v − v∗)T‖1, whence

‖v − v∗‖1 = ‖(v − v∗)T‖1 + ‖(v − v∗)T c‖1 ≤ 2‖(v − v∗)T‖1

≤ 2
√
k‖(v − v∗)T‖2 ≤ 2

√
k‖v − v∗‖2,

where step the second inequality holds because |T | ≤ k by assumption. The claim follows
from noting that v − v∗ = ∆Sej.

Using the claim, we get that

‖X>] ∆S‖F =

√∑
j∈[d]

‖X>] ∆Sej‖2
2 ≤

√∑
j∈[d]

‖X]‖2
2,∞‖∆Sej‖2

1

≤ ‖X]‖2,∞

√∑
j∈[d]

4k‖∆Sej‖2
2 ≤ 2

√
νrk

d
‖∆S‖F .

Using a similar argument and the fact that ‖∆X‖2,∞ ≤ ‖X‖2,∞ + ‖X]‖2,∞ ≤ 3
√

νr
d

, we
obtain

‖∆>X∆S‖F ≤ 6

√
νrk

d
‖∆S‖F .

Putting everything together, we have

|〈S − S∗, XX> −X]X
>
] 〉| ≤

(
2 · 2

√
νrk

d
‖∆S‖F + 6

√
νrk

d
‖∆S‖F

)
· ‖∆X‖F .

The claim follows.
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D.2 Proof of Theorem 8.5

Without loss of generality, suppose that x is closer to x̄ than to −x̄. Consider the following
expression:

‖x̄(x− x̄)> + (x− x̄)x̄>‖1

= sup
‖V ‖∞=1,V >=V

Tr((x̄(x− x̄)> + (x− x̄)x̄>)V )

= sup
‖V ‖∞=1,V >=V

Tr(x̄x>V + xx̄>V − 2x̄x̄>V )

= sup
‖V ‖∞=1,V >=V

Tr(x>V x̄+ x̄>V x− 2x̄>V x̄)

= 2 sup
‖V ‖∞=1,V >=V

Tr(x>V x̄− x̄>V x̄)

= 2 sup
‖V ‖∞=1,V >=V

Tr((x− x̄)>V x̄)

= 2 sup
‖V ‖∞=1,V >=V

Tr(x̄(x− x̄)>V ).

We now produce a few different lower bounds by testing against different V . In what follows,
we set a =

√
2− 1, i.e., the positive solution of the equation 1− a2 = 2a.

Case 1: Suppose that
|(x− x̄)>sign(x̄)| ≥ a‖x− x̄‖1.

Then set V̄ = sign((x− x̄)>sign(x̄)) · sign(x̄)sign(x̄)>, to get

‖x̄(x− x̄)> + (x− x̄)x̄>‖1 ≥ 2Tr(x̄(x− x̄)>V̄ )

= 2sign((x− x̄)>sign(x̄)) · Tr((x− x̄)>sign(x̄)sign(x̄)>x̄)

= 2‖x̄‖1sign((x− x̄)>sign(x̄)) · (x− x̄)>sign(x̄)

≥ 2a‖x̄‖1‖x− x̄‖1

Case 2: Suppose that
|sign(x− x̄)>x̄| ≥ a‖x̄‖1.

Then set V̄ = sign(sign(x− x̄)>x̄) · sign(x− x̄)sign(x− x̄)>, to get

‖x̄(x− x̄)> + (x− x̄)x̄>‖1 ≥ 2Tr(x̄(x− x̄)>V̄ )

= 2sign(sign(x− x̄)>x̄) · Tr((x− x̄)>sign(x− x̄)sign(x− x̄)>x̄)

= 2‖x− x̄‖1sign(sign(x− x̄)>x̄) · sign(x− x̄)>x̄

≥ 2a‖x̄‖1‖x− x̄‖1

Case 3: Suppose that

|(x− x̄)>sign(x̄)| ≤ a‖x− x̄‖1 and |sign(x− x̄)>x̄| ≤ a‖x̄‖1
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Define V̄ = 1
2
(sign(x̄(x− x̄)>) + sign((x− x̄)x̄>)). Observe that

Tr(x̄(x− x̄)>sign(x̄(x− x̄)>)) = (x− x̄)>sign(x̄)sign(x− x̄)>x̄

≥ −a2‖x̄‖1‖x− x̄‖1

and

Tr(x̄(x− x̄)>sign((x− x̄)x̄>)) = Tr(x̄(x− x̄)>sign(x− x̄)sign(x̄>))

= ‖x̄‖1‖x− x̄‖1.

Putting these two bounds together, we find that

‖x̄(x− x̄)> + (x− x̄)x̄>‖1 ≥ 2Tr(x̄(x− x̄)>V̄ ) = (1− a2)‖x̄‖1‖x− x̄‖1.

Altogether, we find that

F (x) = ‖xx> − x̄x̄>‖1

= ‖x̄(x− x̄)> + (x− x̄)x̄> + (x− x̄)(x− x̄)>‖1

≥ ‖x̄(x− x̄)> + (x− x̄)x̄>‖1 − ‖(x− x̄)(x− x̄)>‖1

≥ 2a‖x̄‖1‖x− x̄‖1 − ‖(x− x̄)‖2
1

= 2a‖x̄‖1

(
1− ‖x− x̄‖1

2a‖x̄‖1

)
‖x− x̄‖1,

as desired.

D.3 Proof of Lemma 8.7

We start by stating a claim we will use to prove the lemma. Let us introduce some notation.
Consider the set

S =

{
(∆+,∆−) ∈ Rd×r ×Rd×r | ‖∆+‖2,∞ ≤ (1 + C)

√
νr

d
‖X]‖op, ‖∆−‖2,1 6= 0

}
.

Define the random variable

Z = sup
(∆+,∆−)∈S

∣∣∣∣ 1

‖∆−‖2,1

d∑
i,j=1

δij|〈∆−,i,∆+,j〉+ 〈∆+,i,∆−,j〉|

− E
1

‖∆−‖2,1

d∑
i,j=1

δij|〈∆−,i,∆+,j〉+ 〈∆+,i,∆−,j〉|
∣∣∣∣.

Claim 1. There exist constants c2, c3 > 0 such that with probability at least 1−exp(−c2 log d)

Z ≤ c3C
√
τνr log d ‖X]‖op .
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Before proving this claim, let us show how it implies the theorem. Let

R ∈ argmin
R̂>R̂=I

‖X −X]R̂‖2,1.

Set ∆− = X −X]R and ∆+ = X +X]R. Notice that

‖∆+‖2,∞ ≤ ‖X‖2,∞ + ‖X]‖2,∞ ≤ (1 + C)‖X]‖2,∞ ≤
√
νr

d
(1 + C)‖X]‖op.

Therefore, because (∆+,∆−) ∈ S and

1

‖∆−‖2,1

d∑
i,j=1

δij|〈Xi, Xj〉 − 〈(X])i, (X])j〉| =
1

‖∆−‖2,1

d∑
i,j=1

δij|〈∆−,i,∆+,j〉+ 〈∆+,i,∆−,j〉|,

we have that

d∑
i,j=1

δij|〈Xi, Xj〉 − 〈(X])i, (X])j〉| ≤ τ‖XX> −X]X
>
] ‖1 + c3C

√
τνr log d‖X]‖op‖X −X]R‖2,1

≤
(
τ +

c3C
√
τνr log d

c
‖X]‖op

)
‖XX> −X]X

>
] ‖1,

where the last line follows by Conjecture 8.6. This proves the desired result.

Proof of the Claim. Our goal is to show that the random variable Z is highly concentrated
around its mean. We may apply the standard symmetrization inequality [5, Lemma 11.4] to
bound the expectation EZ as follows:

EZ ≤ 2E sup
(∆+,∆−)∈S

∣∣∣∣∣ 1

‖∆−‖2,1

d∑
i,j=1

εijδij|〈∆−,i,∆+,j〉+ 〈∆+,i,∆−,j〉|
∣∣∣∣∣

≤ 2E sup
(∆+,∆−)∈S

∣∣∣∣∣ 1

‖∆−‖2,1

d∑
i,j=1

εijδij|〈∆−,i,∆+,j〉|
∣∣∣∣∣︸ ︷︷ ︸

T1

+ 2E sup
(∆+,∆−)∈S

∣∣∣∣∣ 1

‖∆−‖2,1

d∑
i,j=1

εijδij|〈∆+,i,∆−,j〉|
∣∣∣∣∣︸ ︷︷ ︸

T2

.

Observing that T1 and T2 can both be bounded by

max{T1, T2} ≤ 2 sup
(∆+,∆−)∈S

1

‖∆−‖2,1

‖∆+∆>−‖2,∞Emax
j

∣∣∣∣∣
d∑
i=1

εijδij

∣∣∣∣∣
≤ 2 sup

(∆+,∆−)∈S
‖∆+‖2,∞Emax

j

∣∣∣∣∣
d∑
i=1

εijδij

∣∣∣∣∣
≤ 2(1 + C)

√
νr

d
‖X]‖opEmax

j

∣∣∣∣∣
d∑
i=1

εijδij

∣∣∣∣∣
. C

√
νr

d
‖X]‖op(

√
τd log d+ log d),
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where the final inequality follows from Bernstein’s inequality and a union bound, we find
that

EZ . C

√
νr

d
‖X]‖op(

√
τd log d+ log d).

To prove that Z is well concentrated around EZ, we apply Theorem F.3. To apply this
theorem, we set S = S and define the collection (Zij,s)ij,s∈S , where s = (∆+,∆−) by

Zij,s =
1

‖∆−‖2,1

δij|〈∆−,i,∆+,j〉+ 〈∆+,i,∆−,j〉| − E
1

‖∆−‖2,1

δij|〈∆−,i,∆+,j〉+ 〈∆+,i,∆−,j〉|

=
(δij − τ)

‖∆−‖2,1

|〈∆−,i,∆+,j〉+ 〈∆+,i,∆−,j〉|.

We also bound

b = sup
ij,s∈S

|Zij,s| ≤ sup
ij,(∆+,∆−)∈S

∣∣∣∣(δij − τ)

‖∆−‖2,1

(‖∆−,i‖F‖∆+,j‖F + ‖∆+,i‖F‖∆−,j‖F )

∣∣∣∣
≤ (1 + C)

√
νr

d
‖X]‖op sup

ij,(∆+,∆−)∈S

∣∣∣∣ 1

‖∆−‖2,1

(‖∆−,i‖F + ‖∆−,j‖F )

∣∣∣∣ ≤ 2C

√
νr

d
‖X]‖op

and

σ2 = sup
(∆+,∆−)∈S

E
1

‖∆−‖2
2,1

d∑
ij=1

(δij − τ)2|〈∆−,i,∆+,j〉+ 〈∆+,i,∆−,j〉|2

≤ τ sup
(∆+,∆−)∈S

1

‖∆−‖2
2,1

d∑
ij=1

(‖∆−,i‖F‖∆+,j‖F + ‖∆+,i‖F‖∆−,j‖F )2

≤ τ sup
(∆+,∆−)∈S

4

‖∆−‖2
2,1

d∑
ij=1

‖∆−,i‖2
F‖∆+,j‖2

F

≤ τ
4(1 + C)2νr

d
‖X]‖2

op sup
(∆+,∆−)∈S

2

‖∆−‖2
2,1

d∑
ij=1

‖∆−,i‖2
F

≤ τ
4(1 + C)2νr

d
‖X]‖2

op sup
(∆+,∆−)∈S

2d‖∆−‖2
F

‖∆−‖2
2,1

≤ 16τC2νr‖X]‖2
op.

Therefore, due to Theorem F.3 there exists a constant c1, c2, c3 > 0 so that with t = c2 log d,
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we have that with probability 1− e−c2 log d, the bound

Z ≤ EZ +
√

8 (2bEZ + σ2) t+ 8bt

≤ c1C

√
νr

d
‖X]‖op(

√
τd log d+ log d)

+

√
8c2

(
c2

1C
2νr

d
‖X]‖2

op(
√
τd log d+ log d) + 16τC2νr‖X]‖2

op

)
log d+ 16c2C

√
νr

d
‖X]‖op log(d)

≤ C
√
νr log d‖X]‖op

c1

√
τ + c1

√
log d

d
+
√

8c2

√
c2

1

√
τ log d

d
+ c2

1

log d

d
+ 16τ + 16c2

√
log d

d


≤ c3C

√
τνr log d‖X]‖op.

where the last line follows since by assumption log d/d . τ.

E Proofs in Section 9

E.1 Proof of Lemma 9.1

The proof follows the same strategy as [24, Theorem 6.1]. Fix x ∈ T̃1 and let ζ ∈ ∂f̃(x).
Then for all y, we have, from Lemma 9.3, that

f(y) ≥ f̃(x) + 〈ζ, y − x〉 − ρ

2
‖x− y‖2

2 − 3ε.

Therefore, the function

g(y) := f(y)− 〈ζ, y − x〉+
ρ

2
‖x− y‖2

2 + 3ε

satisfies
g(x)− inf g ≤ f(x)− f̃(x) + 3ε ≤ 4ε.

Now, for some γ > 0 to be determined momentarily, define

x̂ = argmin

{
g(x) +

ε

γ2
‖x− y‖2

2

}
.

First order optimality conditions and the sum rule immediately imply that

2ε

γ2
(x− x̂) ∈ ∂g(x̂) = ∂f(x̂)− ζ + ρ(x̂− x).

Thus,

dist(ζ, ∂f(x̂)) ≤
(

2ε

γ2
+ ρ

)
‖x− x̂‖2.

Now we estimate ‖x− x̂‖2. Indeed, from the definition of x̂ we have

ε

γ2
‖x̂− x‖2 ≤ g(x)− g(x̂) ≤ g(x)− inf g ≤ 4ε.

77



Consequently, we have ‖x−x̂‖ ≤ 2γ. Thus, setting γ =
√

2ε/ρ and recalling that ε ≤ µ2/56ρ
we find that

dist(x̂,X ∗) ≤ ‖x− x̂‖+ dist(x,X ∗) ≤ 2

√
2ε

ρ
+

µ

4ρ
≤ µ

ρ
.

Likewise, we have

dist(x̂,X ) ≤ ‖x− x̂‖ ≤ 2

√
2ε

ρ
.

Therefore, setting L = sup

{
‖ζ‖2 : ζ ∈ ∂f(x), dist(x,X ∗) ≤ µ

ρ
, dist(x,X ) ≤ 2

√
ε
ρ

}
, we find

that

‖ζ‖ ≤ L+ dist(ζ, ∂f(x̂)) ≤ L+
4ε

γ
+ 2ργ = L+ 2

√
8ρε,

as desired.

E.2 Proof of Theorem 9.4

Let i ≥ 0, suppose xi ∈ T̃1, and let x∗ ∈ projX ∗(xi). Notice that Lemma 9.2 implies
f̃(xi)−minX f > 0. We successively compute

‖xi+1 − x∗‖2 =
∥∥∥projX

(
xi − f̃(xi)−minX f

‖ζi‖2 ζi

)
− projX (x∗)

∥∥∥2

≤
∥∥∥(xi − x∗)− f̃(xi)−minX f

‖ζi‖2 ζi

∥∥∥2

(E.1)

= ‖xi − x∗‖2 +
2(f̃(xi)−minX f)

‖ζi‖2
· 〈ζi, x∗ − xi〉+

(f̃(xi)−minX f)2

‖ζi‖2

≤ ‖xi − x∗‖2 +
2(f̃(xi)−minX f)

‖ζi‖2

(
min
X

f − f̃(xi) +
ρ

2
‖xi − x∗‖2 + 3ε

)
+

(f̃(xi)−minX f)2

‖ζi‖2
(E.2)

= ‖xi − x∗‖2 +
f̃(xi)−minX f

‖ζi‖2

(
ρ‖xi − x∗‖2 − (f̃(xi)−min

X
f) + 6ε

)
≤ ‖xi − x∗‖2 +

f̃(xi)−minX f

‖ζi‖2

(
ρ‖xi − x∗‖2 − µ‖xi − x∗‖+ 7ε

)
(E.3)

≤ ‖xi − x∗‖2 +
ρ(f̃(xi)−minX f)

‖ζi‖2

(
‖xi − x∗‖ −

µ

2ρ

)
‖xi − x∗‖ (E.4)

≤ ‖xi − x∗‖2 − µ(f̃(xi)−minX f)

4‖ζi‖2
· ‖xi − x∗‖ (E.5)

≤ ‖xi − x∗‖2 − µ(µ‖xi − x∗‖ − ε)
4‖ζi‖2

· ‖xi − x∗‖ (E.6)

≤
(

1− 13µ2

56‖ζi‖2

)
‖xi − x∗‖2.
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Here, the estimate (E.1) follows from the fact that the projection projQ(·) is nonexpansive,
(E.2) uses Lemma 9.3, the estimate (E.4) follows from the assumption ε < µ

14
‖xk − x∗‖, the

estimate (E.5) follows from the estimate ‖xi−x∗‖ ≤ µ
4ρ

, while (E.3) and (E.6) use Lemma 9.2.
We therefore deduce

dist2(xi+1;X ∗) ≤ ‖xi+1 − x∗‖2 ≤
(

1− 13µ2

56L2

)
dist2(xi,X ∗).

Consequently either we have dist(xi+1,X ∗) < 14ε
µ

or xi+1 ∈ T̃1. Therefore, by induction, the
proof is complete.

E.3 Proof of Theorem 9.6

Let i ≥ 0, suppose xi ∈ Tγ, and let x∗ ∈ projX ∗(xi). Then

µdist(xi+1,X ∗) ≤ f(xi+1)− inf
X
f ≤ fx(xi+1)− inf

X
f +

ρ

2
‖xi+1 − xi‖2

≤ f̃x(xi+1)− inf
X
f +

ρ

2
‖xi+1 − xi‖2 + ε

≤ f̃x(x
∗)− inf

X
f +

β

2
‖xi − x∗‖2 + ε

≤ fx(x
∗)− inf

X
f +

β

2
‖xi − x∗‖2 + 2ε

≤ f(x∗)− inf
X
f + β‖xi − x∗‖2 + 2ε

= βdist2(xi,X ∗) + 2ε.

Rearranging yields the result.

F Auxiliary lemmas

Lemma F.1 (Lemma 3.1 in [13]). Let Sr :=
{
X ∈ Rd1×d2 | Rank (X) ≤ r, ‖X‖F = 1

}
.

There exists an ε-net N (with respect to ‖ · ‖F ) of Sr obeying

|N | ≤
(

9

ε

)(d1+d2+1)r

.

Proposition F.2 (Corollary 1.4 in [54]). Consider X1, . . . , Xd real-valued random variables
and let σ ∈ Sd−1 be a unit vector. Let t, p > 0 such that

sup
u∈R

P (|Xi − u| ≤ t) ≤ p for all i = 1, . . . , d.

Then the following holds

sup
u∈R

P

(∣∣∣∣∣∑
k

σkXk − u
∣∣∣∣∣ ≤ t

)
≤ Cp,

where C > 0 is a universal constant.

79



Theorem F.3 (Talagrand’s Functional Bernstein for non-identically distributed variables
[36, Theorem 1.1(c)]). Let S be a countable index set. Let Z1, . . . , Zn be independent vector-
valued random variables of the form Zi = (Zi,s)s∈S . Let Z := sups∈S

∑n
i=1 Zi,s. Assume that

for all i ∈ [n] and s ∈ S, EZi,s = 0 and |Zi,s| ≤ b. Let

σ2 = sup
s∈S

n∑
i=1

EZ2
i,s.

Then for each t > 0, we have the tail bound

P
(
Z − EZ ≥

√
8 (2bEZ + σ2) t+ 8bt

)
≤ e−t.
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