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Goals

Identi�able sets are central for algorithms and sensitivity
analysis.

Existence, calculus, properties.

Connection to critical cones (Generalized Reduction Lemma).

Illustration: Spectral functions.

Generic existence (semi-algebraic setting).



Motivation (Algorithms)

Many algorithms for minimizing f : Rn → R,

Subgradient (Gradient) projection methods,

Newton-like methods,

Proximal Point Algorithms,

produce iterates xk → x̄ , along with criticality certi�cates:

vk → 0 with vk ∈ ∂f (xk).

What if we knew that for some setM, have

xi ∈M eventually?

Then the problems

min
x∈Rn

f (x) and min
x∈M

f (x).

are �equivalent� for the algorithm.

Foreshadowing: these problems are equivalent in a much
stronger sense!
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Finite identi�cation

De�nition (Identi�able sets)

A setM⊂ Rn is identi�able at (x̄ , v̄) ∈ gph ∂f if

xi → x̄ , vi → v̄
vi ∈ ∂f (xi )

}
=⇒ xi ∈M for all large i ,

Example (Normal cone map)

Let f (x) = δQ(x)− 〈v̄ , x〉.

In this caseM = x̄ + KQ(x̄ , v̄).
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Example

The �nicest� situation:

Figure: f (x , y) = x2 + |y |, M = {(t, 0) : −1 < t < 1}

BothM and f
∣∣
M are smooth!

So nonsmoothness is extrinsic to the problem!

�Finite identi�cation� considered implicitly by a number of
authors: Bertsekas '76, Rockafellar '76, Calamai '87, Burke
and Moré '88, Dunn '87, Ferris '91, Wright '93, Lewis and
Hare '07. . .



Example

The �nicest� situation:

Figure: f (x , y) = x2 + |y |, M = {(t, 0) : −1 < t < 1}

BothM and f
∣∣
M are smooth!

So nonsmoothness is extrinsic to the problem!

�Finite identi�cation� considered implicitly by a number of
authors: Bertsekas '76, Rockafellar '76, Calamai '87, Burke
and Moré '88, Dunn '87, Ferris '91, Wright '93, Lewis and
Hare '07. . .



Example

The �nicest� situation:

Figure: f (x , y) = x2 + |y |, M = {(t, 0) : −1 < t < 1}

BothM and f
∣∣
M are smooth!

So nonsmoothness is extrinsic to the problem!

�Finite identi�cation� considered implicitly by a number of
authors: Bertsekas '76, Rockafellar '76, Calamai '87, Burke
and Moré '88, Dunn '87, Ferris '91, Wright '93, Lewis and
Hare '07. . .



Example

The �nicest� situation:

Figure: f (x , y) = x2 + |y |, M = {(t, 0) : −1 < t < 1}

BothM and f
∣∣
M are smooth!

So nonsmoothness is extrinsic to the problem!

�Finite identi�cation� considered implicitly by a number of
authors: Bertsekas '76, Rockafellar '76, Calamai '87, Burke
and Moré '88, Dunn '87, Ferris '91, Wright '93, Lewis and
Hare '07. . .



Sensitivity Analysis

Why are identi�able sets interesting?

Proposition (D, Lewis)

SupposeM is an identi�able set at (x̄ , 0) ∈ gph ∂f .

x̄ is a (strict) local minimizer of f ⇐⇒ x̄ is a (strict) local
minimizer of f

∣∣
M .

f grows quadratically near x̄ ⇐⇒ f
∣∣
M grows quadratically

near x̄ .

f is tilt-stable at x̄ ⇐⇒ f
∣∣
M is tilt-stable at x̄ .
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Locally minimal identi�able sets

Clearly all of Rn is identi�able at (x̄ , v̄) ∈ gph ∂f (not interesting).
So. . .

Question: What are the smallest possible identi�able sets?

De�nition
An identi�able setM at (x̄ , v̄) ∈ gph ∂f is locally minimal if

M′ identi�able at (x̄ , v̄) =⇒M⊂M′, locally near x̄ .

Locally minimal identi�able sets may fail to exist in general (e.g.
f (x , y) =

√
x4 + y2).
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Existence and calculus

Locally minimal identi�able sets exist for

fully amenable functions: f (x) = g(F (x)) where
1 F is C2-smooth,
2 g is (convex) piecewise quadratic,
3 quali�cation condition holds.

E.g. convex polyhedra, max-type functions, standard problems of
nonlinear math programming.
A strong chain rule is available for composite functions

f (x) = g(F (x)).
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Dimension Reduction

The critical cone of a convex set Q at x̄ for v̄ ∈ NQ(x̄) is

KQ(x̄ , v̄) := TQ(x̄) ∩ v̄⊥.

Important for analysing polyhedral variational inequalities

0 ∈ F (x , p) + NQ(x),

where Q is a convex polyhedron, because of
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Dimension Reduction

Proposition (Reduction Lemma due to Robinson)

If Q is polyhedral, then

gphNQ = gphNx̄+KQ(x̄ ,v̄) locally near (x̄ , v̄).

Not true at all beyond polyhedral sets, but

Proposition (D, Lewis)

LetM be a (prox-regular) identi�able set at (x̄ , v̄) ∈ gphNQ(x̄).
Then

gphNQ = gphNM locally near (x̄ , v̄),

and ifM is also locally minimal, then

KQ(x̄ , v̄) = cl convTM(x̄).

May use this to study nonpolyhedral variational inequalities!



Dimension Reduction

Proposition (Reduction Lemma due to Robinson)

If Q is polyhedral, then

gphNQ = gphNx̄+KQ(x̄ ,v̄) locally near (x̄ , v̄).

Not true at all beyond polyhedral sets, but

Proposition (D, Lewis)

LetM be a (prox-regular) identi�able set at (x̄ , v̄) ∈ gphNQ(x̄).
Then

gphNQ = gphNM locally near (x̄ , v̄),

and ifM is also locally minimal, then

KQ(x̄ , v̄) = cl convTM(x̄).

May use this to study nonpolyhedral variational inequalities!



Dimension Reduction

Proposition (Reduction Lemma due to Robinson)

If Q is polyhedral, then

gphNQ = gphNx̄+KQ(x̄ ,v̄) locally near (x̄ , v̄).

Not true at all beyond polyhedral sets, but

Proposition (D, Lewis)

LetM be a (prox-regular) identi�able set at (x̄ , v̄) ∈ gphNQ(x̄).
Then

gphNQ = gphNM locally near (x̄ , v̄),

and ifM is also locally minimal, then

KQ(x̄ , v̄) = cl convTM(x̄).

May use this to study nonpolyhedral variational inequalities!



Dimension Reduction

Proposition (Reduction Lemma due to Robinson)

If Q is polyhedral, then

gphNQ = gphNx̄+KQ(x̄ ,v̄) locally near (x̄ , v̄).

Not true at all beyond polyhedral sets, but

Proposition (D, Lewis)

LetM be a (prox-regular) identi�able set at (x̄ , v̄) ∈ gphNQ(x̄).
Then

gphNQ = gphNM locally near (x̄ , v̄),

and ifM is also locally minimal, then

KQ(x̄ , v̄) = cl convTM(x̄).

May use this to study nonpolyhedral variational inequalities!



Dimension Reduction

Proposition (Reduction Lemma due to Robinson)

If Q is polyhedral, then

gphNQ = gphNx̄+KQ(x̄ ,v̄) locally near (x̄ , v̄).

Not true at all beyond polyhedral sets, but

Proposition (D, Lewis)

LetM be a (prox-regular) identi�able set at (x̄ , v̄) ∈ gphNQ(x̄).
Then

gphNQ = gphNM locally near (x̄ , v̄),

and ifM is also locally minimal, then

KQ(x̄ , v̄) = cl convTM(x̄).

May use this to study nonpolyhedral variational inequalities!



Identi�able manifolds

M is an identi�able manifold at (x̄ , v̄) ∈ gph ∂f ifM is
identi�able,M is a manifold, and f

∣∣
M is smooth.

Proposition (D-Lewis)

Identi�able manifoldsM⊂ dom f are automatically locally
minimal.

Identi�able manifolds provide a re�nement of partly smooth
manifolds Lewis '03 (and Wright '93 in the convex case).

Proposition (D-Lewis)

LetM be a C2-manifold. Then

M is identi�able at (x̄ , v̄)

if and only if

M is a partly smooth manifold at x̄ (for v̄ ),

v̄ ∈ ri ∂f (x̄),

f is prox-regular at x̄ for v̄ .
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Lifts of identi�able manifolds

Consider Sn := {n × n symmetric matrices} and the eigenvalue
map

A 7→ (λ1(A), . . . , λn(A)),

where
λ1(A) ≤ . . . ≤ λn(A).

For permutation-invariant f : Rn → R, form the spectral function

f ◦ λ : Sn → R.

(e.g. (f ◦ λ)(A) = λn(A) or (f ◦ λ)(A) =
∑
i

|λi (A)|).

Identi�able manifolds �lift�: (D, Lewis), (Daniilidis, Malick, Sendov)

M identi�able manifold at (x̄ , v̄) ∈ gph ∂f

=⇒ λ−1(M) identi�able manifold at (X̄ , V̄ ) ∈ gph ∂(f ◦ λ).
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Generic Properties
History: Rockafellar-Spingarn '79, considered problems

P(v , u) : min f (x)− 〈v , x〉,
s.t. gi (x) ≤ ui , for all i ∈ I := {1, . . . ,m},

for smooth f , gi .

Theorem (Rockafellar-Spingarn '79)

For almost all (v , u), at every minimizer of P(v , u):

Active manifold: active gradients are independent

Strict complementarity: multipliers are strictly positive and

Quadratic growth: objective function grows quadratically.
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Generic Properties
Goal: Eliminate representation dependence.

Cost: We consider the semi-algebraic setting.
f : Rn → R is semi-algebraic if epi f can be described by

�nitely many polynomial inequalities.

Theorem (D, Io�e, Lewis)

For semi-algebraic f : Rn → R, consider the perturbed functions

fv (x) := f (x)− 〈v , x〉,

Then for a �typical� v ∈ Rn, at every minimizer xv of fv ,

Active manifold: existence of an identi�able manifold

Strict complementarity: 0 ∈ ri ∂̂fv (xv )

Quadratic growth: fv grows quadratically near xv .

[Convex semi-algebraic case considered in Bolte, Daniilidis, Lewis '11].
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Generic Properties
Semi-algebraic subdi�erential graphs are not too big, not too small,
but just right:

Theorem (D, Io�e, Lewis)

For lsc, semi-algebraic f : Rn → R, we have

dim gph ∂f = n,

even locally around any pair (x , v) ∈ gph ∂f .

Metric regularity is typical (Nonsmooth Sard's theorem):

Theorem (Io�e)

For semi-algebraic F : Rn ⇒ Rm, for generic v ∈ Rm, have

x ∈ F−1(v) =⇒ F is metrically regular at (x , v).

Further, if dim gphF = n = m, then strong metric regularity is typical.
Strong metric regularity of ∂f (i.e. tilt-stability) is equivalent to a
uniform quadratic growth condition (D, Lewis '12).
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Summary

Presented the intuitive notion of identi�able sets.

Showed how identi�able sets capture the essence of previously
developed concepts (dimension reduction, critical cones,
optimality conditions).

Illustration: spectral functions.

Generic properties of semi-algebraic optimization problems.
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