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Goals

Identifiable sets are central for algorithms and sensitivity
analysis.

Existence, calculus, properties.
Connection to critical cones (Generalized Reduction Lemma).

[llustration: Spectral functions.

Generic existence (semi-algebraic setting).
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Motivation (Algorithms)

Many algorithms for minimizing f: R” — R,
o Subgradient (Gradient) projection methods,
@ Newton-like methods,
@ Proximal Point Algorithms,
produce iterates x, — X, along with criticality certificates:

vk — 0 with vx € Of (xk).
What if we knew that for some set M, have
xi € M eventually?
Then the problems

in f in f(x).
e b and - in 700

are “equivalent” for the algorithm.
@ Foreshadowing: these problems are equivalent in a much
stronger sense!
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Finite identification

Definition (ldentifiable sets)
A set M C R" is identifiable at (x,v) € gph Of if

Xj = X, Vi >V

vi € O (x) } = x; € M for all large i,

Example (Normal cone map)
Let f(x) = dg(x) — (v, x).

In this case M = x + Kg(x, v).
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So nonsmoothness is extrinsic to the problem!



SEIE

The “nicest” situation:

ol
AR
ool
ottt
//’" !/'/"l"

Figure: f(x,y) =x>+1y|, M ={(t,0): -1 <t<1}

Both M and f|M are smooth!
So nonsmoothness is extrinsic to the problem!

@ “Finite identification” considered implicitly by a number of
authors: Bertsekas '76, Rockafellar '76, Calamai '87, Burke
and Moré '88, Dunn '87, Ferris '91, Wright '93, Lewis and
Hare '07. ..
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Sensitivity Analysis

Why are identifiable sets interesting?
Proposition (D, Lewis)
Suppose M is an identifiable set at (x,0) € gph Of.

@ X is a (strict) local minimizer of f <= X is a (strict) local
minimizer of f’M )

o f grows quadratically near x < f | v 8rows quadratically
near X.

o f is tilt-stable at X <= f‘M is tilt-stable at X.
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Clearly all of R" is identifiable at (X, V) € gph Of (not interesting).
So...

Question: What are the smallest possible identifiable sets?

Definition
An identifiable set M at (x,V) € gph Of is locally minimal if

M’ identifiable at (x,v) = M C M’, locally near X.

Locally minimal identifiable sets may fail to exist in general (e.g.

f(x,y) = Vx4 +y?).
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Existence and calculus

Locally minimal identifiable sets exist for
o fully amenable functions: f(x) = g(F(x)) where
@ F is C2-smooth,
@ g is (convex) piecewise quadratic,
© qualification condition holds.
E.g. convex polyhedra, max-type functions, standard problems of
nonlinear math programming.
A strong chain rule is available for composite functions
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Proposition (Reduction Lemma due to Robinson)
If @ is polyhedral, then

gph Ng = gph Ny ko(z,p)  locally near (X, 7).

Not true at all beyond polyhedral sets, but
Proposition (D, Lewis)

Let M be a (prox-regular) identifiable set at (x,v) € gph No(x).
Then

gph Ng = gph Ny locally near (X, v),

and if M is also locally minimal, then

Ko(x,v) = clconv Ty (X).

May use this to study nonpolyhedral variational inequalities!
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|dentifiable manifolds

M is an identifiable manifold at (X, V) € gph of if M is
identifiable, M is a manifold, and f’M is smooth.

Proposition (D-Lewis)

Identifiable manifolds M C dom f are automatically locally
minimal.

@ Identifiable manifolds provide a refinement of partly smooth
manifolds Lewis '03 (and Wright '93 in the convex case).
Proposition (D-Lewis)
Let M be a C2-manifold. Then

M is identifiable at (X, V)

if and only if
e M is a partly smooth manifold at X (for v),
e v eridf(x),

e f is prox-regular at X for v.
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Lifts of identifiable manifolds

Consider S” := {n x n symmetric matrices} and the eigenvalue

map
= (A1(A), ..., An(A)),

where
A(A) < ... < A(A).

For permutation-invariant f: R” — R, form the spectral function

fol:S" 5 R.

(e.g. (F o N)(A) = An(A) or (f o N)( Z\)\ (A))).
Identifiable manifolds “lift": (D, Lewis), (Dan||||d|s, Malick, Sendov)

M identifiable manifold at (x, V) € gph of
— A\ ! (M) identifiable manifold at (X, V) € gphd(f o \).
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Generic Properties

History: Rockafellar-Spingarn 79, considered problems
P(v,u): min f(x)— (v,x),
s.t. gi(x) <uwj, foralliel:={1,...,m},
for smooth f, g;.
Theorem (Rockafellar-Spingarn '79)

@ For almost all (v, u), at every minimizer of P(v, u):

Active manifold: active gradients are independent
Strict complementarity: multipliers are strictly positive and

Quadratic growth: objective function grows quadratically.
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Generic Properties

Goal: Eliminate representation dependence.
Cost: We consider the semi-algebraic setting.
f: R" — R is semi-algebraic if epi f can be described by

finitely many polynomial inequalities.

Theorem (D, loffe, Lewis)

For semi-algebraic f: R" — R, consider the perturbed functions
fu(x) == f(x) — (v, x),
Then for a “typical” v € R", at every minimizer x, of f,,

Active manifold: existence of an identifiable manifold
Strict complementarity: 0 € i Of,(x,)

Quadratic growth: f, grows quadratically near x,.

[Convex semi-algebraic case considered in Bolte, Daniilidis, Lewis '11].
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Generic Properties

Semi-algebraic subdifferential graphs are not too big, not too small,
but just right:

Theorem (D, loffe, Lewis)

For Isc, semi-algebraic f: R” — R, we have
dim gph 9f = n,

even locally around any pair (x,v) € gph Of .
Metric regularity is typical (Nonsmooth Sard’s theorem):
Theorem (loffe)

For semi-algebraic F: R" = R™, for generic v € R™, have

x € F7Y(v) = F is metrically regular at (x, v).

Further, if dimgph F = n = m, then strong metric regularity is typical.
Strong metric regularity of Of (i.e. tilt-stability) is equivalent to a
uniform quadratic growth condition (D, Lewis '12).



Presented the intuitive notion of identifiable sets.

Showed how identifiable sets capture the essence of previously
developed concepts (dimension reduction, critical cones,
optimality conditions).

[llustration: spectral functions.

Generic properties of semi-algebraic optimization problems.
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Advertisement: Tame variational analysis, a survey,
D-loffe-Lewis, to appear (at some point).



Thank you.
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