Identifiability and the foundations of sensitivity analysis

Dmitriy Drusvyatskiy, School of ORIE, Cornell University, Joint work with Adrian S. Lewis

August 23, 2012

- Identifiable sets are central for algorithms and sensitivity analysis.
- Existence, calculus, properties.
- Connection to critical cones (Generalized Reduction Lemma).
- Illustration: Spectral functions.
- Generic existence (semi-algebraic setting).

Many algorithms for minimizing $f: \mathbb{R}^n \to \overline{\mathbb{R}}$,

- Subgradient (Gradient) projection methods,
- Newton-like methods,
- Proximal Point Algorithms,

produce iterates $x_k \rightarrow \overline{x}$, along with criticality certificates:

 $v_k \to 0$ with $v_k \in \partial f(x_k)$.

Many algorithms for minimizing $f: \mathbb{R}^n \to \overline{\mathbb{R}}$,

- Subgradient (Gradient) projection methods,
- Newton-like methods,
- Proximal Point Algorithms,

produce iterates $x_k \rightarrow \bar{x}$, along with criticality certificates:

 $v_k \to 0$ with $v_k \in \partial f(x_k)$.

What if we knew that for some set \mathcal{M} , have

 $x_i \in \mathcal{M}$ eventually?

Many algorithms for minimizing $f: \mathbb{R}^n \to \overline{\mathbb{R}}$,

- Subgradient (Gradient) projection methods,
- Newton-like methods,
- Proximal Point Algorithms,

produce iterates $x_k \rightarrow \bar{x}$, along with criticality certificates:

 $v_k \to 0$ with $v_k \in \partial f(x_k)$.

What if we knew that for some set \mathcal{M} , have

 $x_i \in \mathcal{M}$ eventually?

Then the problems

$$\min_{\mathbf{x}\in\mathbf{R}^n}f(\mathbf{x}) \quad \text{and} \quad \min_{\mathbf{x}\in\mathcal{M}}f(\mathbf{x}).$$

are "equivalent" for the algorithm.

Many algorithms for minimizing $f: \mathbb{R}^n \to \overline{\mathbb{R}}$,

- Subgradient (Gradient) projection methods,
- Newton-like methods,
- Proximal Point Algorithms,

produce iterates $x_k \rightarrow \bar{x}$, along with criticality certificates:

 $v_k \to 0$ with $v_k \in \partial f(x_k)$.

What if we knew that for some set \mathcal{M} , have

 $x_i \in \mathcal{M}$ eventually?

Then the problems

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{and} \quad \min_{x \in \mathcal{M}} f(x).$$

are "equivalent" for the algorithm.

 Foreshadowing: these problems are equivalent in a much stronger sense!

Definition (Identifiable sets)

A set $\mathcal{M} \subset \mathbf{R}^n$ is identifiable at $(\bar{x}, \bar{v}) \in \operatorname{gph} \partial f$ if

$$\left.\begin{array}{l} x_i \rightarrow \bar{x}, v_i \rightarrow \bar{v} \\ v_i \in \partial f(x_i) \end{array}\right\} \Longrightarrow x_i \in \mathcal{M} \text{ for all large } i,$$

Definition (Identifiable sets)

A set $\mathcal{M} \subset \mathbf{R}^n$ is identifiable at $(\bar{x}, \bar{v}) \in \operatorname{gph} \partial f$ if

$$\left.\begin{array}{l} x_i \to \bar{x}, v_i \to \bar{v} \\ v_i \in \partial f(x_i) \end{array}\right\} \Longrightarrow x_i \in \mathcal{M} \text{ for all large } i,$$

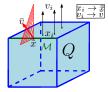
Example (Normal cone map) Let $f(x) = \delta_Q(x) - \langle \bar{v}, x \rangle$.

Definition (Identifiable sets)

A set $\mathcal{M} \subset \mathbf{R}^n$ is identifiable at $(\bar{x}, \bar{v}) \in \operatorname{gph} \partial f$ if

$$\left.\begin{array}{l} x_i \to \bar{x}, v_i \to \bar{v} \\ v_i \in \partial f(x_i) \end{array}\right\} \Longrightarrow x_i \in \mathcal{M} \text{ for all large } i,$$

Example (Normal cone map) Let $f(x) = \delta_Q(x) - \langle \bar{v}, x \rangle$.



Definition (Identifiable sets)

A set $\mathcal{M} \subset \mathbf{R}^n$ is identifiable at $(\bar{x}, \bar{v}) \in \operatorname{gph} \partial f$ if

$$\left.\begin{array}{l} x_i \to \bar{x}, v_i \to \bar{v} \\ v_i \in \partial f(x_i) \end{array}\right\} \Longrightarrow x_i \in \mathcal{M} \text{ for all large } i,$$

Example (Normal cone map) Let $f(x) = \delta_Q(x) - \langle \bar{v}, x \rangle$.

Definition (Identifiable sets)

A set $\mathcal{M} \subset \mathbf{R}^n$ is identifiable at $(\bar{x}, \bar{v}) \in \operatorname{gph} \partial f$ if

$$\left.\begin{array}{l} x_i \to \bar{x}, v_i \to \bar{v} \\ v_i \in \partial f(x_i) \end{array}\right\} \Longrightarrow x_i \in \mathcal{M} \text{ for all large } i,$$

Example (Normal cone map) Let $f(x) = \delta_Q(x) - \langle \bar{v}, x \rangle$.

In this case $\mathcal{M} = \bar{x} + K_Q(\bar{x}, \bar{v})$.

The "nicest" situation:

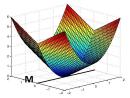


Figure: $f(x, y) = x^2 + |y|$, $\mathcal{M} = \{(t, 0) : -1 < t < 1\}$

The "nicest" situation:

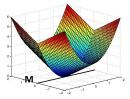


Figure:
$$f(x, y) = x^2 + |y|$$
, $\mathcal{M} = \{(t, 0) : -1 < t < 1\}$

Both \mathcal{M} and $f|_{\mathcal{M}}$ are smooth!

The "nicest" situation:

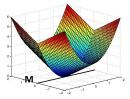


Figure:
$$f(x, y) = x^2 + |y|$$
, $\mathcal{M} = \{(t, 0) : -1 < t < 1\}$

Both \mathcal{M} and $f|_{\mathcal{M}}$ are smooth! So nonsmoothness is extrinsic to the problem!

The "nicest" situation:

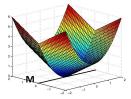


Figure:
$$f(x, y) = x^2 + |y|$$
, $\mathcal{M} = \{(t, 0) : -1 < t < 1\}$

Both \mathcal{M} and $f|_{\mathcal{M}}$ are smooth! So nonsmoothness is extrinsic to the problem!

• "Finite identification" considered implicitly by a number of authors: Bertsekas '76, Rockafellar '76, Calamai '87, Burke and Moré '88, Dunn '87, Ferris '91, Wright '93, Lewis and Hare '07...

Why are identifiable sets interesting?

Why are identifiable sets interesting?Proposition (D, Lewis)Suppose \mathcal{M} is an identifiable set at $(\bar{x}, 0) \in \operatorname{gph} \partial f$.

Why are identifiable sets interesting?

Proposition (D, Lewis)

Suppose \mathcal{M} is an identifiable set at $(\bar{x}, 0) \in \operatorname{gph} \partial f$.

- \bar{x} is a (strict) local minimizer of $f \iff \bar{x}$ is a (strict) local minimizer of $f \mid_{M}$.
- f grows quadratically near x̄ ⇐⇒ f , grows quadratically near x̄.
- f is tilt-stable at $\bar{x} \iff f|_{\mathcal{M}}$ is tilt-stable at \bar{x} .

Question: What are the smallest possible identifiable sets?

Question: What are the smallest possible identifiable sets?

Definition

An identifiable set \mathcal{M} at $(\bar{x}, \bar{v}) \in \operatorname{gph} \partial f$ is locally minimal if

 \mathcal{M}' identifiable at $(\bar{x}, \bar{v}) \Longrightarrow \mathcal{M} \subset \mathcal{M}'$, locally near \bar{x} .

Question: What are the smallest possible identifiable sets?

Definition

An identifiable set \mathcal{M} at $(\bar{x}, \bar{v}) \in \operatorname{gph} \partial f$ is locally minimal if

 \mathcal{M}' identifiable at $(\bar{x}, \bar{v}) \Longrightarrow \mathcal{M} \subset \mathcal{M}'$, locally near \bar{x} .

Locally minimal identifiable sets may fail to exist in general (e.g. $f(x, y) = \sqrt{x^4 + y^2}$).

Locally minimal identifiable sets exist for

- fully amenable functions: f(x) = g(F(x)) where
 - F is C²-smooth,
 - 2 g is (convex) piecewise quadratic,
 - gualification condition holds.

Locally minimal identifiable sets exist for

- fully amenable functions: f(x) = g(F(x)) where
 - Is C²-smooth,
 - 2 g is (convex) piecewise quadratic,
 - gualification condition holds.

E.g. convex polyhedra, max-type functions, standard problems of nonlinear math programming.

Locally minimal identifiable sets exist for

- fully amenable functions: f(x) = g(F(x)) where
 - Is C²-smooth,
 - 2 g is (convex) piecewise quadratic,
 - gualification condition holds.

E.g. convex polyhedra, max-type functions, standard problems of nonlinear math programming.

A strong chain rule is available for composite functions

$$f(x) = g(F(x)).$$

The critical cone of a convex set Q at \bar{x} for $\bar{v} \in N_Q(\bar{x})$ is

 $K_Q(\bar{x},\bar{v}):=T_Q(\bar{x})\cap\bar{v}^{\perp}.$

The critical cone of a convex set Q at \bar{x} for $\bar{v} \in N_Q(\bar{x})$ is

$$K_Q(\bar{x},\bar{v}):=T_Q(\bar{x})\cap\bar{v}^{\perp}.$$

Important for analysing polyhedral variational inequalities

$$0\in F(x,p)+N_Q(x),$$

where Q is a convex polyhedron,

The critical cone of a convex set Q at \bar{x} for $\bar{v} \in N_Q(\bar{x})$ is $K_Q(\bar{x}, \bar{v}) := T_Q(\bar{x}) \cap \bar{v}^{\perp}.$

Important for analysing polyhedral variational inequalities

$$0\in F(x,p)+N_Q(x),$$

where Q is a convex polyhedron, because of

 $\operatorname{gph} N_Q = \operatorname{gph} N_{\bar{x} + K_Q(\bar{x}, \bar{v})} \quad \text{locally near } (\bar{x}, \bar{v}).$

 $gph N_Q = gph N_{\bar{x} + K_Q(\bar{x}, \bar{v})} \quad locally \ near \ (\bar{x}, \bar{v}).$

Not true at all beyond polyhedral sets, but

 $gph N_Q = gph N_{\bar{x} + K_Q(\bar{x}, \bar{v})} \quad locally \ near \ (\bar{x}, \bar{v}).$

Not true at all beyond polyhedral sets, but

Proposition (D, Lewis)

Let \mathcal{M} be a (prox-regular) identifiable set at $(\bar{x}, \bar{v}) \in \operatorname{gph} N_Q(\bar{x})$. Then

 $\operatorname{gph} N_Q = \operatorname{gph} N_{\mathcal{M}} \quad locally \ near \ (\bar{x}, \bar{v}),$

 $gph N_Q = gph N_{\bar{x} + K_Q(\bar{x}, \bar{v})} \quad locally \ near \ (\bar{x}, \bar{v}).$

Not true at all beyond polyhedral sets, but

Proposition (D, Lewis)

Let \mathcal{M} be a (prox-regular) identifiable set at $(\bar{x}, \bar{v}) \in \operatorname{gph} N_Q(\bar{x})$. Then

 $\operatorname{gph} N_Q = \operatorname{gph} N_{\mathcal{M}} \quad \operatorname{locally near} (\bar{x}, \bar{v}),$

and if \mathcal{M} is also locally minimal, then

 $K_Q(\bar{x}, \bar{v}) = \operatorname{cl\,conv} T_{\mathcal{M}}(\bar{x}).$

 $gph N_Q = gph N_{\bar{x} + K_Q(\bar{x}, \bar{v})} \quad locally \ near \ (\bar{x}, \bar{v}).$

Not true at all beyond polyhedral sets, but

Proposition (D, Lewis)

Let \mathcal{M} be a (prox-regular) identifiable set at $(\bar{x}, \bar{v}) \in \operatorname{gph} N_Q(\bar{x})$. Then

 $\operatorname{gph} N_Q = \operatorname{gph} N_{\mathcal{M}} \quad \operatorname{locally near} (\bar{x}, \bar{v}),$

and if ${\mathcal M}$ is also locally minimal, then

 $K_Q(\bar{x}, \bar{v}) = \operatorname{cl\,conv} T_{\mathcal{M}}(\bar{x}).$

May use this to study nonpolyhedral variational inequalities!

Identifiable manifolds

Identifiable manifolds

 \mathcal{M} is an identifiable manifold at $(\bar{x}, \bar{v}) \in \operatorname{gph} \partial f$ if \mathcal{M} is identifiable, \mathcal{M} is a manifold, and $f|_{\mathcal{M}}$ is smooth.

Identifiable manifolds

 \mathcal{M} is an identifiable manifold at $(\bar{x}, \bar{v}) \in \operatorname{gph} \partial f$ if \mathcal{M} is identifiable, \mathcal{M} is a manifold, and $f|_{\mathcal{M}}$ is smooth.

Proposition (D-Lewis)

Identifiable manifolds $\mathcal{M} \subset \operatorname{dom} f$ are automatically locally minimal.

Identifiable manifolds

 \mathcal{M} is an identifiable manifold at $(\bar{x}, \bar{v}) \in \operatorname{gph} \partial f$ if \mathcal{M} is identifiable, \mathcal{M} is a manifold, and $f|_{\mathcal{M}}$ is smooth.

Proposition (D-Lewis)

Identifiable manifolds $\mathcal{M}\subset \mathrm{dom}\, f$ are automatically locally minimal.

• Identifiable manifolds provide a refinement of partly smooth manifolds Lewis '03 (and Wright '93 in the convex case).

Identifiable manifolds

 \mathcal{M} is an identifiable manifold at $(\bar{x}, \bar{v}) \in \operatorname{gph} \partial f$ if \mathcal{M} is identifiable, \mathcal{M} is a manifold, and $f|_{\mathcal{M}}$ is smooth.

Proposition (D-Lewis)

Identifiable manifolds $\mathcal{M}\subset \mathrm{dom}\, f$ are automatically locally minimal.

• Identifiable manifolds provide a refinement of partly smooth manifolds Lewis '03 (and Wright '93 in the convex case).

```
Proposition (D-Lewis)
Let \mathcal{M} be a C^2-manifold. Then
```

```
\mathcal{M} is identifiable at (\bar{x}, \bar{v})
```

if and only if

- \mathcal{M} is a partly smooth manifold at \bar{x} (for \bar{v}),
- $\bar{v} \in \operatorname{ri} \partial f(\bar{x})$,
- f is prox-regular at \bar{x} for \bar{v} .

Consider $S^n := \{n \times n \text{ symmetric matrices}\}$ and the eigenvalue map

$$A\mapsto (\lambda_1(A),\ldots,\lambda_n(A)),$$

where

$$\lambda_1(A) \leq \ldots \leq \lambda_n(A).$$

Consider $S^n := \{n \times n \text{ symmetric matrices}\}$ and the eigenvalue map

$$A\mapsto (\lambda_1(A),\ldots,\lambda_n(A)),$$

where

$$\lambda_1(A) \leq \ldots \leq \lambda_n(A).$$

For permutation-invariant $f : \mathbb{R}^n \to \overline{\mathbb{R}}$, form the spectral function

$$f \circ \lambda \colon \mathbf{S}^n \to \overline{\mathbf{R}}.$$

Consider $S^n := \{n \times n \text{ symmetric matrices}\}$ and the eigenvalue map

$$A\mapsto (\lambda_1(A),\ldots,\lambda_n(A)),$$

where

$$\lambda_1(A) \leq \ldots \leq \lambda_n(A).$$

For permutation-invariant $f : \mathbb{R}^n \to \overline{\mathbb{R}}$, form the spectral function

$$f \circ \lambda \colon \mathbf{S}^n \to \overline{\mathbf{R}}.$$

(e.g.
$$(f \circ \lambda)(A) = \lambda_n(A)$$
 or $(f \circ \lambda)(A) = \sum_i |\lambda_i(A)|$).

Consider $S^n := \{n \times n \text{ symmetric matrices}\}$ and the eigenvalue map

$$A\mapsto (\lambda_1(A),\ldots,\lambda_n(A)),$$

where

$$\lambda_1(A) \leq \ldots \leq \lambda_n(A).$$

For permutation-invariant $f : \mathbb{R}^n \to \overline{\mathbb{R}}$, form the spectral function

$$f \circ \lambda \colon \mathbf{S}^n \to \overline{\mathbf{R}}$$

(e.g.
$$(f \circ \lambda)(A) = \lambda_n(A)$$
 or $(f \circ \lambda)(A) = \sum_i |\lambda_i(A)|$).

Identifiable manifolds "lift": (D, Lewis), (Daniilidis, Malick, Sendov)

 $\begin{array}{l} \mathcal{M} \text{ identifiable manifold at } (\bar{x},\bar{v})\in \mathrm{gph}\,\partial f \\ \Longrightarrow \lambda^{-1}(\mathcal{M}) \text{ identifiable manifold at } (\bar{X},\bar{V})\in \mathrm{gph}\,\partial(f\circ\lambda). \end{array}$

History: Rockafellar-Spingarn '79, considered problems

$$\begin{array}{rl} P(\mathbf{v}, \mathbf{u}): & \min & f(x) - \langle \mathbf{v}, x \rangle, \\ & \text{s.t. } g_i(x) \leq u_i, \text{ for all } i \in I := \{1, \ldots, m\}, \end{array}$$

for smooth f, g_i .

History: Rockafellar-Spingarn '79, considered problems

$$\begin{array}{rl} P(\mathbf{v}, \mathbf{u}): & \min \ f(x) - \langle \mathbf{v}, x \rangle, \\ & \text{s.t. } g_i(x) \leq u_i, \text{ for all } i \in I := \{1, \ldots, m\}, \end{array}$$

for smooth f, g_i .

Theorem (Rockafellar-Spingarn '79)

• For almost all (v, u), at every minimizer of P(v, u):

Active manifold: active gradients are independent Strict complementarity: multipliers are strictly positive and Quadratic growth: objective function grows quadratically.

Goal: Eliminate representation dependence.

Goal: Eliminate representation dependence.

Cost: We consider the semi-algebraic setting.

- Goal: Eliminate representation dependence.
- Cost: We consider the semi-algebraic setting.
- $f: \mathbf{R}^n \to \overline{\mathbf{R}}$ is semi-algebraic if $\operatorname{epi} f$ can be described by

finitely many polynomial inequalities.

Goal: Eliminate representation dependence. Cost: We consider the semi-algebraic setting.

 $f: \mathbf{R}^n \to \overline{\mathbf{R}}$ is semi-algebraic if $\operatorname{epi} f$ can be described by

finitely many polynomial inequalities.

Theorem (D, loffe, Lewis)

For semi-algebraic $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, consider the perturbed functions

 $f_{\mathbf{v}}(x) := f(x) - \langle \mathbf{v}, x \rangle,$

Goal: Eliminate representation dependence. Cost: We consider the semi-algebraic setting. $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is semi-algebraic if epi f can be described by

finitely many polynomial inequalities.

Theorem (D, loffe, Lewis) For semi-algebraic $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, consider the perturbed functions

$$f_{\mathbf{v}}(x) := f(x) - \langle \mathbf{v}, x \rangle,$$

Then for a "typical" $v \in \mathbf{R}^n$, at every minimizer x_v of f_v ,

Goal: Eliminate representation dependence. Cost: We consider the semi-algebraic setting. $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is semi-algebraic if epi f can be described by

finitely many polynomial inequalities.

Theorem (D, loffe, Lewis) For semi-algebraic $f : \mathbb{R}^n \to \overline{\mathbb{R}}$, consider the perturbed functions

$$f_{\mathbf{v}}(x) := f(x) - \langle \mathbf{v}, x \rangle,$$

Then for a "typical" $v \in \mathbf{R}^n$, at every minimizer x_v of f_v ,

Active manifold: existence of an identifiable manifold Strict complementarity: $0 \in \operatorname{ri} \hat{\partial} f_{v}(x_{v})$ Quadratic growth: f_{v} grows quadratically near x_{v} .

Goal: Eliminate representation dependence. Cost: We consider the semi-algebraic setting. $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is semi-algebraic if epi f can be described by

finitely many polynomial inequalities.

Theorem (D, loffe, Lewis) For semi-algebraic $f : \mathbb{R}^n \to \overline{\mathbb{R}}$, consider the perturbed functions

$$f_{\mathbf{v}}(x) := f(x) - \langle \mathbf{v}, x \rangle,$$

Then for a "typical" $v \in \mathbf{R}^n$, at every minimizer x_v of f_v ,

Active manifold: existence of an identifiable manifold Strict complementarity: $0 \in \operatorname{ri} \hat{\partial} f_{v}(x_{v})$ Quadratic growth: f_{v} grows quadratically near x_{v} .

[Convex semi-algebraic case considered in Bolte, Daniilidis, Lewis '11].

Semi-algebraic subdifferential graphs are not too big, not too small, but just right:

Semi-algebraic subdifferential graphs are not too big, not too small, but just right:

Theorem (D, loffe, Lewis)

For lsc, semi-algebraic $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, we have

 $\dim \operatorname{gph} \partial f = \operatorname{\mathbf{n}},$

Semi-algebraic subdifferential graphs are not too big, not too small, but just right:

Theorem (D, loffe, Lewis)

For lsc, semi-algebraic $f : \mathbb{R}^n \to \overline{\mathbb{R}}$, we have

 $\dim \operatorname{gph} \partial f = \operatorname{\mathbf{n}},$

even locally around any pair $(x, v) \in \operatorname{gph} \partial f$.

Semi-algebraic subdifferential graphs are not too big, not too small, but just right:

Theorem (D, loffe, Lewis)

For lsc, semi-algebraic $f : \mathbb{R}^n \to \overline{\mathbb{R}}$, we have

 $\dim \operatorname{gph} \partial f = \operatorname{\mathbf{n}},$

even locally around any pair $(x, v) \in gph \partial f$. Metric regularity is typical (Nonsmooth Sard's theorem):

Semi-algebraic subdifferential graphs are not too big, not too small, but just right:

Theorem (D, loffe, Lewis)

For lsc, semi-algebraic $f : \mathbb{R}^n \to \overline{\mathbb{R}}$, we have

 $\dim \operatorname{gph} \partial f = \operatorname{\mathbf{n}},$

even locally around any pair $(x, v) \in gph \partial f$. Metric regularity is typical (Nonsmooth Sard's theorem): Theorem (loffe) For semi-algebraic $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$, for generic $v \in \mathbb{R}^m$, have

 $x \in F^{-1}(v) \Longrightarrow F$ is metrically regular at (x, v).

Semi-algebraic subdifferential graphs are not too big, not too small, but just right:

Theorem (D, loffe, Lewis)

For lsc, semi-algebraic $f : \mathbb{R}^n \to \overline{\mathbb{R}}$, we have

 $\dim \operatorname{gph} \partial f = \operatorname{\mathbf{n}},$

even locally around any pair $(x, v) \in gph \partial f$. Metric regularity is typical (Nonsmooth Sard's theorem): Theorem (loffe) For semi-algebraic $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$, for generic $v \in \mathbb{R}^m$, have

 $x \in F^{-1}(\mathbf{v}) \Longrightarrow F$ is metrically regular at (x, \mathbf{v}) .

Further, if dim gph F = n = m, then strong metric regularity is typical.

Semi-algebraic subdifferential graphs are not too big, not too small, but just right:

Theorem (D, loffe, Lewis)

For lsc, semi-algebraic $f : \mathbb{R}^n \to \overline{\mathbb{R}}$, we have

 $\dim \operatorname{gph} \partial f = \operatorname{\mathbf{n}},$

even locally around any pair $(x, v) \in gph \partial f$. Metric regularity is typical (Nonsmooth Sard's theorem): Theorem (loffe) For semi-algebraic $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$, for generic $v \in \mathbb{R}^m$, have

 $x \in F^{-1}(v) \Longrightarrow F$ is metrically regular at (x, v).

Further, if dim gph F = n = m, then strong metric regularity is typical. Strong metric regularity of ∂f (i.e. tilt-stability) is equivalent to a uniform quadratic growth condition (D, Lewis '12).

- Presented the intuitive notion of identifiable sets.
- Showed how identifiable sets capture the essence of previously developed concepts (dimension reduction, critical cones, optimality conditions).
- Illustration: spectral functions.
- Generic properties of semi-algebraic optimization problems.

- **Optimality, identifiability, and sensitivity**, D-Lewis, submitted to Math. Programming Ser. A.
- The dimension of semi-algebraic subdifferential graphs, D-loffe-Lewis. Nonlinear Analysis: Theory, methods, and applications, 75(3), 1231-1245, 2012.
- Semi-algebraic functions have small subdifferentials, D-Lewis. to appear in Math. Programming Ser. B.

- **Optimality, identifiability, and sensitivity**, D-Lewis, submitted to Math. Programming Ser. A.
- The dimension of semi-algebraic subdifferential graphs, D-loffe-Lewis. Nonlinear Analysis: Theory, methods, and applications, 75(3), 1231-1245, 2012.
- Semi-algebraic functions have small subdifferentials, D-Lewis. to appear in Math. Programming Ser. B.

Some of these are available on

http://people.orie.cornell.edu/dd379/

- **Optimality, identifiability, and sensitivity**, D-Lewis, submitted to Math. Programming Ser. A.
- The dimension of semi-algebraic subdifferential graphs, D-loffe-Lewis. Nonlinear Analysis: Theory, methods, and applications, 75(3), 1231-1245, 2012.
- Semi-algebraic functions have small subdifferentials, D-Lewis. to appear in Math. Programming Ser. B.

Some of these are available on

http://people.orie.cornell.edu/dd379/

Advertisement: Tame variational analysis, a survey, D-loffe-Lewis, to appear (at some point).

Thank you.