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Abstract

Standard results in stochastic convex optimization bound the number of samples
that an algorithm needs to generate a point with small function value in expectation.
More nuanced high probability guarantees are rare, and typically either rely on
“light-tail” noise assumptions or exhibit worse sample complexity. In this work,
we show that a wide class of stochastic optimization algorithms for strongly convex
problems can be augmented with high confidence bounds at an overhead cost that
is only logarithmic in the confidence level and polylogarithmic in the condition
number. The procedure we propose, called proxBoost, is elementary and builds
on two well-known ingredients: robust distance estimation and the proximal point
method. We discuss consequences for both streaming (online) algorithms and offline
algorithms based on empirical risk minimization.

1 Introduction

Stochastic convex optimization lies at the core of modern statistical and machine learning.
Standard results in the subject bound the number of samples that an algorithm needs to
generate a point with small function value in expectation. Specifically, consider

min
x

f(x) := Ez∼P [f(x, z)], (1.1)

where the random variable z follows a fixed unknown distribution P and f(·, z) is convex
for almost every z ∼ P . Given a small tolerance ε > 0, stochastic gradient methods
typically produce a point xε satisfying

E[f(xε)]−min f ≤ ε.
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The cost of the algorithms, measured by the required number of stochastic (sub-)gradient
evaluations, is O(1/ε2) or O(1/ε) if f is strongly convex (e.g., [18, 35,39]).

In this paper, we are interested in procedures that can produce an approximate solution
with high probability, meaning a point xε,p satisfying

P(f(xε,p)−min f ≤ ε) ≥ 1− p, (1.2)

where p > 0 can be arbitrarily small. By Markov’s inequality, one can guarantee (1.2) by
generating a point xε,p satisfying E[f(xε,p)] − f ∗ ≤ pε, e.g., by using standard stochastic
gradient methods. However, the resulting sample complexity can be very high for small p
with the typical scaling of O(1/(pε)) or O(1/(pε)2). Existing literature does provide
a path to reducing the dependence of the sample complexity on p to log(1/p), but this
usually comes with cost of either worse dependence on ε (e.g., [8,38,42]) or more restrictive
sub-Gaussian assumptions on the stochastic gradient noise (e.g. [17,18,24,34]).

We aim to develop generic low-cost procedures that equip stochastic optimization
algorithms with high confidence guarantees, without making restrictive noise assumptions.
Consequently, it will be convenient to treat such algorithms as black boxes. More formally,
suppose that the function f may only be accessed through a minimization oracleM(f, ε),
which on input ε > 0, returns a point xε satisfying the low confidence bound

P(f(xε)−min f ≤ ε) ≥ 2

3
. (1.3)

(By Markov’s inequality, minimization oracles arise from any algorithm that can generate
xε satisfying Ef(xε) − min f ≤ ε/3.) Let CM(f, ε) denote the cost of the oracle call
M(f, ε). Given a minimization oracle and its cost, we investigate the following question:

Is there a procedure within this oracle model of computation that returns a
point xε,p satisfying the high confidence bound (1.2) at a total cost that is only
a “small” multiple of CM(f, ε) · log(1

p
)?

We will see that when f is strongly convex, the answer is yes for a wide class of oracles
M(f, ε). To simplify discussion, suppose f is µ-strongly convex and L-smooth (differen-
tiable with L-Lipschitz continuous gradient). Then the cost CM(f, ε) typically depends
on the condition number κ := L/µ � 1, as well as scale sensitive quantities such as
initialization quality and upper bound on the gradient variances, etc. The procedures
introduced in this paper execute the minimization oracle multiple times in order to boost
its confidence, with the total cost on the order of

log

(
log(κ)

p

)
log(κ) · CM

(
f, ε

log(κ)

)
.

Thus, high probability bounds are achieved with a small cost increase, which depends
only logarithmically on 1/p and polylogarithmically on the condition number κ.

Before introducing our approach, we discuss two techniques for boosting the confidence
of a minimization oracle, both of which have limitations. As a first approach, one may
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query the oracleM(f, ε) multiple times and pick the “best” iterate from the batch. This
is a flawed strategy since often one cannot test which iterate is “best” without increasing
sample complexity. To illustrate, consider estimating the expectation f(x) = Ez [f(x, z)]
to ε-accuracy for a fixed point x. This task amounts to mean estimation, which requires
on the order of 1/ε2 samples, even under sub-Gaussian assumptions [10]. In this paper,
the cost CM(f, ε) typically scales at worst as 1/ε, and therefore mean estimation would
significantly degrade the overall sample complexity.

The second approach leverages the fact that, with strong convexity, (1.3) implies

P(‖xε − x̄‖ ≤
√

2ε/µ) ≥ 2

3
,

where x̄ is the minimizer of f . Given this bound, one may apply the robust distance
estimation technique of [35, p. 243] and [20] to choose a point near x̄: Run m trials of
M(f, ε) and find one iterate xi∗ around which the other points “cluster”. Then the point
xi∗ will be within a distance of

√
18ε/µ from x̄ with probability 1 − exp(−m/18). The

downside of this strategy is that when converting naively back to function values, the
suboptimality gap becomes f(xi∗) −min f ≤ L

2
‖xi∗ − x̄‖2 ≤ 9κε. Thus the function gap

at xi∗ may be significantly larger than the expected function gap at xε, by a factor of
the condition number. Therefore, robust distance estimation exhibits a trade-off between
robustness and efficiency.

The robustness/efficiency trade-off disappears for perfectly conditioned losses. There-
fore, it appears plausible that one might avoid the κ factor through a continuation proce-
dure that solves a sequence of nearby, better conditioned problems. This is the strategy
we explore here. The proxBoostprocedure embeds robust distance estimation inside a
proximal point method. It begins by declaring the initial point x0 to be the output of the
robust distance estimator for minimizing f . Then the better conditioned function

f t(x) := f(x) +
µ2t

2
‖x− xt‖2,

is formed and the next iterate xt+1 is declared to be the output of the robust distance
estimator for minimizing f t. Since the conditioning of f t rapidly improves with t, the
robust distance estimator becomes more efficient as the counter t grows.

The proxBoostmethod can be applied to a wide class of stochastic minimization ora-
cles, including both streaming algorithms (e.g., stochastic gradient methods) and offline
methods such as empirical risk minimization (ERM). We now illustrate the consequences
of proxBoost for solving the problem (1.1) using these two types of oracles.

1.1 Streaming Oracles

Stochastic gradient methods can be treated as minimization oracles M(f, ε) whose cost
CM(f, ε) are measured by the number stochastic gradients needed to reach functional
accuracy ε in expectation. An algorithm with minimal such cost was proposed by Ghadimi
and Lan [18]. It generates a point xε satisfying E [f(xε)−min f ] ≤ ε with

O
(√

κ ln

(
∆in

ε

)
+
σ2

µε

)
(1.4)
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stochastic gradient evaluations, where the quantity σ2 is an upper bound on the variance of
the stochastic gradient estimator ∇f(x, z) and ∆in is a known upper bound on the initial
function gap ∆in ≥ f(x0)−f ∗. A simpler algorithm with a similar efficiency estimate was
recently presented by Kulunchakov and Mairal [25], and was based on estimate sequences.
Aybat et al. [4] developed an algorithm with similar efficiency, but in contrast to previous
work, it does not require the variance σ2 and the initial gap ∆in as inputs.

It is intriguing to ask if one can equip the stochastic gradient method and its acceler-
ated variant with high confidence guarantees. In their original work [17,18], Ghadimi and
Lan provide an affirmative answer under the additional assumption that the stochastic
gradient estimator has light tails. The very recent work of Juditsky-Nazin-Nemirovsky-
Tsybakov [23] shows that one can avoid the light tail assumption for the basic stochastic
gradient method, and for mirror descent more generally, by truncating the gradient estima-
tors. High confidence bounds for the accelerated method, without light tail assumptions,
remain open.

In this work, the optimal method of [18] will be used as a minimization oracle within
proxBoost, allowing us to nearly match the efficiency estimate (1.4) without “light-tail”
assumptions. Equipped with this oracle, proxBoost returns a point xε,p satisfying (1.2)
and the overall cost of the procedure is

Õ
(

log

(
1

p

)(√
κ ln

(
∆in

ε
∨ κ
)

+
σ2

µε

))
.

Here, Õ(·) only suppresses logarithmic dependencies in κ; see Section 5 for a precise
guarantee. Thus for small ε, the sample complexity of the robust procedure is roughly
log(1/p) times the efficiency estimate (1.4) of the low-confidence algorithm.

1.2 Empirical Risk Minimization Oracles

An alternative approach to streaming algorithms, such as the stochastic gradient method,
is based on empirical risk minimization (ERM) or sample average approximation (SAA)
[44]. Namely, we draw i.i.d. samples z1, . . . , zn ∼ P and minimize the empirical average

min
x

fS(x) :=
1

n

n∑
i=1

f(x, zi). (1.5)

A key question is to determine the number n of samples that would ensure that the
minimizer xS of the empirical risk fS has low generalization error f(xS) − min f , with
reasonably high probability. There is a vast literature on this subject; see for example
[5,20,41,42]. We build here on the work of Hsu-Sabato [20], who focused on high confidence
guarantees for nonnegative losses f(x, z). They showed that the empirical risk minimizer
xS yields a robust distance estimator of the true minimizer of f . As a consequence they
deduced that ERM can find a point xS satisfying the relative error guarantee

P
[
f(xS) ≤ (1 + γ)f ∗

]
≥ 1− p,
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with the sample complexity n on the order of

O
(

log

(
1

p

)
· κ̂ κ
γ

)
.

Loosely speaking, here κ and κ̂ are the condition numbers of f and fS, respectively. By
embedding ERM within proxBoost, we obtain the much better sample complexity

Õ
(

log

(
1

p

)(
κ̂

γ
+ κ̂

))
,

where the symbol Õ only suppresses polylogarithmic dependence on κ and κ̂. See Section 4
for the precise sample complexity guarantee.

1.3 Convex composite optimization

The results, previewed so far rely on the assumption that f is strongly convex and smooth.
These techniques can not directly accommodate constraints or nonsmooth regularizers.
To illustrate the difficulty, consider the convex composite optimization problem

min
x
f(x) = g(x) + h(x), (1.6)

where g : Rd → R is smooth and strongly convex and h : Rd → R∪{+∞} is an arbitrary
closed convex function. For example, a constrained optimization problem can be modeled
by setting h to be zero on the feasible region and plus infinity elsewhere. The approach
for the unconstrained problems, outlined previously, heavily relies on the fact that the
function gap f(x)−min f and the squared distance to the solution ‖x−x̄‖2 are proportional
up to multiplication by the condition number. The analogous statement for the composite
setting (1.6) is decisively false. In particular, it is unclear how to turn low probability
guarantees on the function gap f(x) − min f to high probability outcomes, even if one
was willing to degrade the accuracy by the condition number of g.

In the last section of the paper, we resolve this apparent difficulty and thereby gener-
alize the proxBoost framework to the entire composite problem class (1.6). The key tool
is a new robust distance estimation technique for convex composite problems, which may
be of independent interest. Consequences for regularized empirical risk minimization and
proximal streaming algorithms, in the spirit of Sections 1.1 and 1.2, follow immediately.

1.4 Related literature

Our paper rests on two pillars: the proximal point method and robust distance estimation.
The two techniques have been well studied in the optimization and statistics literature
respectively. The proximal point method was introduced by Martinet [30,31] and further
popularized by Rockafellar [40]. This construction is also closely related to the smoothing
function of Moreau [33]. Recently, there has been a renewed interest in the proximal
point method, most notably due to its uses in accelerating variance-reduction methods
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for minimizing finite sums of convex functions [15,26,27,43]. The proximal point method
has also featured prominently as a guiding principle in nonconvex optimization, with the
works of [2, 3, 12–14]. The stepsize schedule we use within the proximal point method
is geometrically decaying, in contrast to the more conventional polynomially decaying
schemes. Geometrically decaying schedules for subgradient methods were first used by
Goffin [19] and have regained some attention recently due to their close connection to the
popular step-decay schedule in stochastic optimization [4, 16, 45,46].

Robust distance estimation has a long history. The estimator we use was first intro-
duced in [35, p. 243], and can be viewed as a multivariate generalization of the median
of means estimator [1, 21]. Robust distance estimation was further investigated in [20]
with a focus on high probability guarantees for empirical risk minimization. A different
generalization based on the geometric median was studied in [32]. Other recent articles
related to the subject include median of means tournaments [28], robust multivariate
mean estimators [22,29], and bandits with heavy tails [9].

One of the main applications of our techniques is to streaming algorithms. Most cur-
rently available results that establish high confidence convergence guarantees make sub-
Gaussian assumptions on the stochastic gradient estimator [17,18,24,34]. More recently,
there has been renewed interest in obtaining robust guarantees without the light-tails
assumption. For example, the two works [11, 47] make use of the geometric median of
means technique to robustly estimate the gradient in distributed optimization. A different
technique was recently developed by Juditsky et al. [23], where the authors establish high
confidence guarantees for mirror descent type algorithms by truncating the gradient.

The outline of the paper is as follows. Section 2 presents the problem setting and robust
distance estimation. Section 3 develops the proxBoostprocedure. Section 4 presents
consequences for empirical risk minimization, while Section 5 discusses consequences for
streaming algorithms, both in the strongly convex and smooth setting. The final Section 6
extends the aforementioned techniques to convex composite problems.

2 Problem setting

Throughout, we follow standard notation of convex optimization, as set out for example in
the monographs [6,37]. We let Rd denote an Euclidean space with inner product 〈·, ·〉 and
the induced norm ‖x‖ =

√
〈x, x〉. The symbol Bε(x) will stand for the closed ball around

x of radius ε > 0. We will use the shorthand interval notation [1,m] := {1, . . . ,m} for any
number m ∈ N. Abusing notation slightly, for any set of real numbers {ri}mi=1 we will let
median(r1, r2, . . . , rm) denote the dm

2
e’th entry in the ordered list r[1] ≤ r[2] ≤ . . . ≤ r[m].

Consider a function f : Rd → R ∪ {+∞}. The effective domain of f , denoted dom f ,
consists of all points where f is finite. The function f is called µ-strongly convex if the
perturbed function f − µ

2
‖ · ‖2 is convex. We say that f is L-smooth if it differentiable

with L-Lipschitz continuous gradient. If f is both µ-strongly convex and L-smooth, then
standard results in convex optimization (e.g., [37, § 2.1]) imply for all x, y ∈ Rd the bound

〈∇f(y), x− y〉+
µ

2
‖x− y‖2 ≤ f(x)− f(y) ≤ 〈∇f(y), x− y〉+

L

2
‖x− y‖2.
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In particular, if y is the minimizer of f , denoted by x̄, we have ∇f(x̄) = 0 and thus the
two-sided bound:

µ

2
‖x− x̄‖2 ≤ f(x)− f(x̄) ≤ L

2
‖x− x̄‖2 for all x ∈ Rd. (2.1)

The ratio κ := L/µ is called the condition number of f .

Assumption 2.1. Throughout this work, we consider the optimization problem

min
x∈Rd

f(x) (2.2)

where the function f : Rd → R ∪ {+∞} is closed and µ-strongly convex. We denote the
minimizer of f by x̄ and its minimal value by f ∗ := min f .

Let us suppose for the moment that the only access to f is by querying a black-box
procedure that estimates x̄. Namely following [20] we will call a procedure D(ε) a weak
distance oracle for the problem (2.2) if it returns a point x satisfying

P[‖x− x̄‖ ≤ ε] ≥ 2

3
. (2.3)

We will moreover assume that when querying D(ε) multiple times, the returned vectors
are all statistically independent. Weak distance oracles arise naturally in stochastic op-
timization both in streaming and offline settings. We will discuss specific examples in
Sections 4 and 5. The numerical value 2/3 plays no real significance and can be replaced
by any fraction greater than a half.

It is well known from [35, p. 243] and [20] that the low-confidence estimate (2.3) can
be improved to a high confidence guarantee by a clustering technique. Following [20], we
define the robust distance estimator D(ε,m) to be the following procedure (Algorithm 1).

Algorithm 1: Robust Distance Estimation D(ε,m)

Input: access to a weak distance oracle D(ε) and trial count m.
Query m times the oracle D(ε) and let Y = {y1, . . . , ym} consist of the responses.
Step i = 1, . . . ,m:

Compute ri = min{r ≥ 0 : |Br(yi) ∩ Y | > m
2
}.

Set i∗ = argmini∈[1,m] ri
Return yi∗

Thus the robust distance estimator D(ε,m) first generates m statistically independent
random points y1, . . . , ym by querying m times the weak distance oracle D(ε). Then the
procedure computes the smallest radius ball around each point yi that contains more
than half of the generated points {y1, . . . , ym}. Finally, the point yi∗ corresponding to the
smallest such ball is returned. See Figure 1 for an illustration.

The intuition underlying the algorithm is that by Chernoff’s bound, with high confi-
dence, the ball Bε(x̄) will contain strictly more than m/2 of the generated points. There-
fore in this event, the estimate ri∗ < 2ε holds. Moreover since the two sets, Bε(x̄) and
Bri∗ (yi∗) intersect, it follows that x̄ and yi∗ are within a distance of 3ε of each other. For
a complete argument, see [35, p. 243] or [20, Propositions 8,9].
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Figure 1: Illustration of the robust distance estimator D(ε,m).

Lemma 2.2 (Robust Distance Estimator). The point x returned by D(ε,m) satisfies

P
(
‖x− x̄‖ ≤ 3ε

)
≥ 1− exp

(
−m

18

)
.

We seek to understand how one may use a robust distance estimator D(ε,m) to com-
pute a point x satisfying f(x)−min f ≤ δ with high probability, where δ > 0 is a specified
accuracy. As motivation, consider the case when f is also L-smooth. Then one immedi-
ate approach is to appeal to the upper bound in (2.1). Hence by Lemma 2.2, the point

x = D (ε,m), with ε =
√

2δ
9L

, satisfies the guarantee

P (f(x)− f ∗ ≤ δ) ≥ P (‖x− x̄‖ ≤ 3ε) ≥ 1− exp
(
−m

18

)
.

We will follow an alternative approach, which can significantly decrease the overall

cost in the regime κ� 1. The optimistic goal is to replace the accuracy ε ≈
√

δ
L

used in

the call to D(ε,m) by the potentially much larger quantity
√

δ
µ
. The strategy we propose

will apply a robust distance estimator D to a sequence of optimization problems that are
better and better conditioned, thereby amortizing the overall cost. In the initial step,

we will simply apply D to f with the low accuracy
√

δ
µ
. In step i, we will apply D to

a new function f i, which has condition number κi ≈ L+µ2i

µ+µ2i
, with accuracy εi ≈

√
δ

µ+µ2i
.

Continuing this process for T ≈ log2

(
L
µ

)
rounds, we arrive at accuracy εT ≈

√
δ

µ+L
and a

function fT that is nearly perfectly conditioned with κT ≤ 2. In this way, the total cost
is amortized over the sequence of optimization problems. The key of course is to control
the error incurred by varying the optimization problems along the iterations.
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3 Main result

The continuation procedure outlined at the end of the previous section can be succinctly
described within the framework of an inexact proximal point method. Henceforth, fix an
increasing sequence of penalties λ0, . . . , λT and a sequence of centers x0, . . . , xT . For each
index i = 0, . . . , T , define the quadratically perturbed functions and their minimizers:

f i(x) := f(x) +
λi
2
‖x− xi‖2, x̄i+1 := argmin

x
f i(x).

The exact proximal point method [30, 31, 40] proceeds by inductively declaring xi = x̄i
for i ≥ 1. Since computing x̄i exactly is in general impossible, we will instead monitor
the error ‖x̄i− xi‖. The following elementary result will form the basis for the rest of the
paper. To simplify notation, we will set x̄0 := argmin f and λ−1 := 0, throughout.

Theorem 3.1 (Inexact proximal point method). For all j ≥ 0, the following estimate
holds:

f j(x̄j+1)− f ∗ ≤
j∑
i=0

λi
2
‖x̄i − xi‖2. (3.1)

Consequently, we have the error decomposition:

f(xj+1)− f ∗ ≤ (f j(xj+1)− f j(x̄j+1)) +

j∑
i=0

λi
2
‖x̄i − xi‖2. (3.2)

Moreover, if f is L-smooth, then for all j ≥ 0 the estimate holds:

f(xj)− f ∗ ≤
L+ λj−1

2
‖x̄j − xj‖2 +

j−1∑
i=0

λi
2
‖x̄i − xi‖2. (3.3)

Proof. We first establish (3.1) by induction. For the base case j = 0, observe λ− = 0 and

f 0(x̄1) = min
x
f 0(x) ≤ f 0(x̄0) = f ∗ +

λ0

2
‖x̄0 − x0‖2.

As the inductive assumption, suppose (3.1) holds up to iteration j− 1. We then conclude

f j(x̄j+1) ≤ f j(x̄j) = f(x̄j) +
λj
2
‖x̄j − xj‖2

≤ f j−1(x̄j) +
λj
2
‖x̄j − xj‖2 ≤ f ∗ +

j∑
i=0

λi
2
‖x̄i − xi‖2,

where the last inequality follows by the inductive assumption. This completes the proof
of (3.1). To see (3.2), we observe using (3.1) the estimate

f(xj+1)− f ∗ ≤ f j(xj+1)− f ∗ = (f j(xj+1)− f j(x̄j+1)) + f j(x̄j+1)− f ∗

≤ (f j(xj+1)− f j(x̄j+1)) +

j∑
i=0

λi
2
‖x̄i − xi‖2.
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Finally, if f is L-smooth, then f j is (L+ λj)-smooth. An analogous result to (2.1) yields

f j(xj+1)− f j(x̄j+1) ≤ L+ λj
2
‖x̄j+1 − xj+1‖2.

Inequality (3.3) follows from applying this bound in (3.2).

The main conclusion of Theorem 3.1 is the decomposition of the functional error de-
scribed in (3.2). Namely, the estimate (3.2) upper bounds the error f(xj+1)−min f as the
sum of the suboptimality in the last step fT (xT+1)−fT (x̄T+1) and the errors λi

2
‖x̄i−xi‖2

incurred along the way. By choosing T sufficiently large, we can be sure that the function
fT is well-conditioned. Moreover in order to ensure that each term in the sum λi

2
‖x̄i−xi‖2

is of order δ, it suffices to guarantee ‖x̄i − xi‖ ≤
√

2δ
λi

for each index i. Since λi is an

increasing sequence, it follows that we may gradually decrease the tolerance on the errors
‖x̄i − xi‖, all the while improving the conditioning of the functions we encounter. With
this intuition in mind, we introduce the proxBoostprocedure (Algorithm 2). The algo-
rithm, and its latter modifications, depend on the amplitude sequence {λj}Tj=1 governing
the proximal regularization terms. To simplify notation, we will omit this sequence from
the algorithm input and instead treat it as a global parameter specified in theorems.

Algorithm 2: proxBoost(δ, p, T )

Input: δ ≥ 0, p ∈ (0, 1), T ∈ N
Set λ−1 = 0, ε−1 =

√
2δ
µ

Generate a point x0 satisfying ‖x0 − x̄0‖ ≤ ε−1 with probability 1− p.
for j = 0, . . . , T − 1 do

Set εj =
√

2δ
µ+λj

Generate a point xj+1 satisfying

P [‖xj+1 − x̄j+1‖ ≤ εj | Ej] ≥ 1− p, (3.4)

where Ej denotes the event Ej :=
{
xi ∈ Bεi−1

(x̄i) for all i ∈ [0, j]
}

.

end

Generate a point xT+1 satisfying

P
[
fT (xT+1)−min fT ≤ δ | ET

]
≥ 1− p. (3.5)

Return xT+1

Thus proxBoost consists of three stages, which we now examine in detail.

Stage I: Initialization. Algorithm 2 begins by generating a point x0 that is a distance

of
√

2δ
µ

away from the minimizer of f with probability 1 − p. This task can be achieved

by applying a robust distance estimator on f , as discussed in Section 2.
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Stage II: Proximal iterations. In each subsequent iteration, xj+1 is defined to be a

point that is within a radius of εj =
√

2δ
µ+λj

from the minimizer of f j with probability

1 − p conditioned on the event Ej. The event Ej encodes that each previous iteration
was successful in the sense that the point xi indeed lies inside the ball Bεi−1

(x̄i) for all
i = 0, . . . , j. Thus xj+1 can be determined by a procedure that conditioned on the event
Ej is a robust distance estimator on the function f j.

Stage III: Cleanup. In the final step, the algorithm outputs a δ-minimizer of fT with
probability 1−p conditioned on the event ET . In particular, if f is L-smooth then we may
use a robust distance estimator on fT directly. Namely, taking into account the upper
bound in (2.1), we may declare xT+1 to be any point satisfying

P
[
‖xT+1 − x̄T+1‖ ≤

√
2δ

L+λT
| ET

]
≥ 1− p.

Notice that by choosing λT sufficiently large, we may ensure that the condition number
µ+λT
L+λT

of fT is arbitrarily close to one. If f is not smooth, such as when constraints
or additional regularizers are present, we can not use a robust distance estimator in the
cleanup stage. We will see in Section 6 a different approach for convex composite problems,
based on a modified robust distance estimation technique.

The following theorem summarizes the guarantees of the proxBoost procedure.

Theorem 3.2 (Proximal Boost). Fix a constant δ > 0, a probability of failure p ∈ (0, 1)
and a natural number T ∈ N. Then with probability at least 1 − (T + 2)p, the point
xT+1 = proxBoost(δ, p, T ) satisfies

f(xT+1)−min f ≤ δ

(
1 +

T∑
i=0

λi
µ+ λi−1

)
. (3.6)

Proof. We first prove by induction the estimate

P[Et] ≥ 1− (t+ 1)p for all t = 0, . . . , T. (3.7)

The base case t = 0 is immediate from the definition of x0. Suppose now that (3.7) holds
for some index t− 1. Then the inductive assumption and the definition of xt yield

P[Et] = P[Et
∣∣Et−1]P[Et−1] ≥ (1− p) (1− tp) ≥ 1− (t+ 1)p,

thereby completing the induction. Thus the inequalities (3.7) hold. Define the event

F = {fT (xT+1)−min fT ≤ δ}.

We therefore deduce

P[F ∩ ET ] = P[F | ET ] · P[ET ] ≥ (1− (T + 1)p)(1− p) ≥ 1− (T + 2)p.

11



Suppose now that the event F ∩ ET occurs. Then using the estimate (3.2), we conclude

f(xT+1)−min f ≤ (fT (xT+1)− fT (x̄T+1)) +
T∑
i=0

λi
2
‖x̄i − xi‖2 ≤ δ +

T∑
i=0

δλi
µ+ λi−1

,

where the last inequality uses the definitions of xT+1 and εj. This completes the proof.

Looking at the estimate (3.6), we see that the final error f(xT+1)−min f is controlled
by the sum

∑T
i=0

λi
µ+λi−1

. A moment of thought yields an appealing choice λi = µ2i for the

proximal parameters. Indeed, then every element in the sum λi
µ+λi−1

is upper bounded by

two. Moreover, if f is L-smooth, then the condition number L+λT
µ+λT

of fT is upper bounded

by two after only T = dlog(L/µ)e rounds.

Corollary 3.3 (Proximal boost with geometric decay). Fix an iteration count T , a target
accuracy ε > 0, and a probability of failure p ∈ (0, 1). Define the algorithm parameters:

δ =
ε

2 + 2T
and λi = µ2i ∀i ∈ [0, T ].

Then the point xT+1 = proxBoost(δ, p, T ) satisfies

P(f(xT+1)−min f ≤ ε) ≥ 1− (T + 2)p.

In the next two sections, we seed the proxBoostprocedure with (accelerated) stochas-
tic gradient algorithms and methods based on empirical risk minimization. The reader,
however, should keep in mind that proxBoost is entirely agnostic to the inner workings
of the robust distance estimators it uses. The only point to be careful about is that
some distance estimators (e.g., when using stochastic gradient methods) require auxiliary
quantities as input, such as an upper estimate on the function gap at the initial point.
Therefore, we may have to update such estimates along the iterations of proxBoost.

4 Consequences for empirical risk minimization

In this section, we explore the consequences of the proxBoost algorithm for empirical risk
minimization. Setting the stage, fix a probability space (Ω,F ,P) and equip Rd with the
Borel σ-algebra. Consider the optimization problem

min
x
f(x) = Ez∼P [f(x, z)] , (4.1)

where f : Rd × Ω → R+ is a measurable nonnegative function. A common approach to
problems of the form (4.1) is based on empirical risk minimization. Namely, one collects
i.i.d. samples z1, . . . , zn ∼ P and minimizes the empirical average

min
x
fS(x) :=

1

n

n∑
i=1

f(x, zi). (4.2)

12



A central question is to determine the number n of samples that would ensure that
the minimizer xS of the empirical risk has low generalization error f(xS) − min f , with
reasonably high probability. There is a vast literature on this subject; some representative
works include [5,20,41,42]. We build here on the work of Hsu-Sabato [20], who specifically
focused on high confidence guarantees for smooth strongly convex minimization. As in
the previous sections, we let x̄ be a minimizer of f and define the shorthand f ∗ = min f .

Assumption 4.1. Following [20], we make the following assumptions on the loss.

1. (Strong convexity) There exist a real µ > 0 and a natural number N ∈ N such that:

(a) the population loss f is µ-strongly convex,

(b) the empirical loss x 7→ fS(x) is µ-strongly convex with probability at least 5/6,
whenever |S| ≥ N .

2. (Smoothness) There exist constants L, L̂ > 0 such that:

(a) for a.e. z ∼ P , the loss x 7→ f(x, z) is L̂-smooth,

(b) the population objective x 7→ f(x) is L-smooth. (It holds that L ≤ L̂.)

In addition, we assume f ∗ := min f > 0.

The following result proved in [20, Theorem 15] shows that the empirical risk minimizer
is a weak distance oracle for the problem (4.1).

Lemma 4.2. Fix an i.i.d. sample z1, . . . , zn ∼ P of size n ≥ N . Suppose Assumption 4.1
holds. Then the minimizer xS of the empirical risk (4.2) satisfies the bound:

P

‖xS − x̄‖ ≤
√

96L̂f ∗

nµ2

 ≥ 2/3.

In particular, using Algorithm 1 one may turn empirical risk minimization into a ro-
bust distance estimator for the problem (4) using a total of mn samples. Let us estimate
the function value at the generated point by a direct application of smoothness. Ap-
pealing to Lemma 2.2 and the two-sided bound (2.1), we deduce that with probability
1− exp(−m/18) the procedure will return a point x satisfying

f(x) ≤

(
1 +

432L̂L

nµ2

)
f ∗.

Observe that this is an estimate of relative error. In particular, let p ∈ (0, 1) be some
acceptable probability of failure and let γ > 0 be a desired level of relative accuracy. Then
setting m = d18 ln(1/p)e and n ≥ max{432κ̂κ

γ
, N}, we conclude that x satisfies

P[f(x) ≤ (1 + γ)f ∗] ≥ 1− p, (4.3)

13



while the overall sample complexity is⌈
18 ln

(
1

p

)⌉
·max

{⌈
432κ̂κ

γ

⌉
, N

}
, (4.4)

where κ̂ = L̂/µ and κ = L/µ. This is exactly the result [20, Corollary 16].
We will now see how to find a point x satisfying (4.3) with significantly fewer samples

by embedding empirical risk minimization within proxBoost. Algorithm 3 encodes the
empirical risk minimization process on a quadratically regularized problem. Algorithm 4
is the robust distance estimator induced by Algorithm 3. Finally, Algorithm 5 is the
proxBoost algorithm specialized to empirical risk minimization.

Algorithm 3: ERM(n, λ, x)

Input: sample count n ∈ N, center x ∈ Rd, amplitude λ > 0.
Generate i.i.d. samples z1, . . . , zn ∼ P and compute the minimizer ȳ of

min
y

1

n

n∑
i=1

f(y, zi) +
λ

2
‖y − x‖2.

Return ȳ

Algorithm 4: ERM-R(n,m, λ, x)

Input: sample count n ∈ N, trial count m ∈ N, center x ∈ Rd, amplitude λ > 0.
Query m times ERM(n, λ, x) and let Y = {y1, . . . , ym} consist of the responses.
Step j = 1, . . . ,m:

Compute ri = min{r ≥ 0 : |Br(yi) ∩ Y | > m
2
}.

Set i∗ = argmini∈[1,m] ri
Return yi∗

Algorithm 5: BoostERM(γ, T,m)

Input: T,m ∈ N, γ > 0

Set λ−1 = 0, x−1 = 0, n−1 = 432L̂
γµ

Step j = 0, . . . , T :
xj = ERM-R(nj−1,m, λj−1, xj−1)

nj = 432
⌈
L̂+λj
µ+λj

(
1
γ

+
∑j

i=0
λi

µ+λi−1

)⌉
∨N

Return xT+1 = ERM-R(L+λT
µ+λT

· nT ,m, λT , xT )

Using Theorem 3.2, we can now prove the following result.

Theorem 4.3 (Efficiency of BoostERM). Fix a target relative accuracy γ > 0 and num-
bers T,m ∈ N. Then with probability at least 1 − (T + 2) exp

(
−m

18

)
, the point xT+1 =

14



BoostERM(γ, T,m) satisfies

f(xT+1)− f ∗ ≤

(
1 +

T∑
i=0

λi
µ+ λi−1

)
γf ∗.

Proof. We will verify that Algorithm 5 is an instantiation of Algorithm 2 with δ = γf ∗

and p = exp(−m
18

). More precisely, we will prove by induction that with this choice of p
and δ, the iterates xj satisfy (3.4) for each index j = 0, . . . , T and xT+1 satisfies (3.5).
As the base case, consider the evaluation x0 = ERM-R(n−1,m, λ−1, x−1) where x−1 can be
arbitrary since λ−1 = 0. Then Lemma 2.2 and Theorem 4.2 guarantee

P

‖x0 − x̄0‖ ≤ 3

√
96L̂f ∗

n−1µ2

 ≥ 1− exp
(
−m

18

)
.

Taking into account the definitions of n−1 in Algorithm 5 and ε−1 in Algorithm 2, we
deduce

P [‖x0 − x̄0‖ ≤ ε−1] ≥ 1− p,
as claimed. As an inductive hypothesis, suppose that (3.4) holds for x0, x1, . . . , xj−1. We
will prove it holds for xj = ERM-R(nj−1,m, λj−1, xj−1). To this end, suppose that the event
Ej−1 occurs. Then by the same reasoning as in the base case, the point xj satisfies

P

‖xj − x̄j‖ ≤ 3

√
96(L̂+ λj−1)f j−1(x̄j)

nj−1(µ+ λj−1)2

 ≥ 1− exp
(
−m

18

)
. (4.5)

Now, using (3.1) and the inductive assumption that ‖xi − x̄i‖ ≤ εi−1 =
√

2δ
µ+λi−1

for all

i ∈ [0, j − 1] (conditioned on Ej−1), we have

f j−1(x̄j)− f ∗ ≤
j−1∑
i=0

λi
2
‖x̄i − xi‖2 ≤ δ

j−1∑
i=0

λi
µ+ λi−1

,

which, together with δ = γf ∗, implies

f j−1(x̄j) ≤ f ∗ + δ

j−1∑
i=0

λi
µ+ λi−1

=

(
1 + γ

j−1∑
i=0

λi
µ+ λi−1

)
f ∗.

Combining this inequality with (4.5), we conclude that conditioned on the event Ej−1, we
have with probability 1− p the guarantee

µ+ λj−1

2
‖xj − x̄j‖2 ≤

432(L̂+ λj−1)(1 + γ
∑j−1

i=0
λi

µ+λi−1
)

nj−1(µ+ λj−1)
· f ∗ ≤ γf ∗ = δ, (4.6)

where the last inequality follows from the definition of nj−1. This implies that the estimate

(3.4) holds for xj with εj−1 =
√

2δ
µ+λj−1

. Therefore, it holds for all iterates x0, . . . , xT , as
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needed. Suppose now that that event ET occurs. Then by exactly the same reasoning
that led to (4.6), and considering the extra factor L+λT

µ+λT
multiplied to nT in the last call

of ERM-R, we have the estimate

µ+ λT
2
‖xT+1 − x̄T+1‖2 ≤ µ+ λT

L+ λT
γf ∗.

Using smoothness, we therefore deduce fT (xT+1) − min fT ≤ γf ∗ = δ, as claimed. An
application of Theorem 3.2 completes the proof.

Finally, using the proximal parameters λi = µ2i yields the following guarantee.

Corollary 4.4 (Efficiency of BoostERM with geometric decay). Fix a target relative ac-
curacy γ′ > 0 and a probability of failure p ∈ (0, 1). Define the algorithm parameters:

T = dlog2 (κ)e , m =

⌈
18 ln

(
T + 2

p

)⌉
, γ =

γ′

2 + 2T
, λi = µ2i.

Then with probability of at least 1 − p, the point xT+1 = BoostERM(γ, T,m) satisfies
f(xT+1) ≤ (1 + γ′)f ∗. Moreover, the total number of samples used by the algorithm is

O
(

ln(κ) ln

(
ln(κ)

p

)
·max

{(
1 + 1

γ′

)
κ̂ ln(κ), N

})
.

Notice that the sample complexity provided by Corollary 4.4 is an order of magnitude
better than (4.4) in terms of the dependence on the condition numbers κ̂ and κ.

5 Consequences for stochastic approximation

We next investigate the consequences of proxBoost for stochastic approximation. Namely,
we will seed proxBoostwith the robust distance estimator, induced by the stochastic
gradient method and its accelerated variant. An important point is that the sample
complexity of stochastic gradient methods depends on the initialization quality f(x0)−f ∗.
Consequently, in order to know how many iterations are needed to reach a desired accuracy
E[f(xi)] − f ∗ ≤ δ, we must have available an upper bound on the initialization quality
∆ ≥ f(x0) − f ∗. Therefore, we will have to dynamically update an estimate of the
initialization quality for each proximal subproblem along the iterations of proxBoost.
The following assumption formalizes this idea.

Assumption 5.1. Consider the proximal minimization problem

min
y

ϕx(y) := f(y) +
λ

2
‖y − x‖2,

Let ∆ > 0 be a real number satisfying ϕx(x)−minϕx ≤ ∆. We will let Alg(δ, λ,∆, x) be
a procedure that returns a point y satisfying

P[ϕx(y)−minϕx ≤ δ] ≥ 2

3
.
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Clearly, Alg(δ, λ,∆, x) is a minimization oracle in the sense of (1.3). Since the proximal
function ϕx is (µ+ λ)-strongly convex, it has a unique minimizer ȳx and satisfies

µ+ λ

2
‖y − ȳx‖2 ≤ ϕx(y)−minϕx.

Therefore, Alg(δ, λ,∆, x) is a weak distance oracle, in the sense that P(‖y− ȳx‖ ≤ ε) ≥ 2
3

with ε =
√

2δ
µ+λ

. Following the procedure in Section 2, we may turn it into a robust

distance estimator for minimizing ϕx, as long as ∆ upper bounds the initialization error.
We record the robust distance estimator induced by Alg(·) as Algorithm 6.

Algorithm 6: Alg-R(δ, λ,∆, x,m)

Input: accuracy δ > 0, amplitude λ > 0, upper bound ∆ > 0, center x ∈ Rd,
trial count m ∈ N.

Query m times Alg(δ, λ,∆, x) and let Y = {y1, . . . , ym} consist of the responses.
Step j = 1, . . . ,m:

Compute ri = min{r ≥ 0 : |Br(yi) ∩ Y | > m
2
}.

Set i∗ = argmini∈[1,m] ri
Return yi∗

Henceforth, in addition to Assumptions 2.1 and 5.1, we assume that f is L-smooth and
set κ = L

µ
. It is then straightforward to instantiate proxBoostwith the robust distance

estimator Alg-R. We record the resulting procedure as Algorithm 7.

Algorithm 7: BoostAlg(δ,∆in, xin, T,m)

Input: accuracy δ > 0, upper bound ∆in > 0, center xin ∈ Rd, and m,T ∈ N
Set λ−1 = 0, ∆−1 = ∆in, x−1 = xin

Step j = 0, . . . , T :
xj = Alg-R(δ/9, λj−1,∆j−1, xj−1,m)

∆j = δ
(
L+λj−1

µ+λj−1
+
∑j−1

i=0
λi

µ+λi−1

)
Return xT+1 = Alg-R(µ+λT

L+λT
· δ

9
, λT ,∆T , xT ,m)

We can now prove the following theorem on the efficiency of Algorithm 7. The proof is
almost a direct application of Theorem 3.2. The only technical point is to verify that for all
indices j, the quantity ∆j is a valid upper bound on the initialization error f j(xj)−min f j

in the event Ej (defined in Algorithm 2).

Theorem 5.2 (Efficiency of BoostAlg). Fix an arbitrary point xin ∈ Rd and let ∆in be
any constant satisfying ∆in ≥ f(xin)−min f . Fix natural numbers T,m ∈ N. Then with
probability at least 1 − (T + 2) exp

(
−m

18

)
, the point xT+1 = BoostAlg(δ,∆in, xin, T,m)

satisfies

f(xT+1)−min f ≤ δ

(
1 +

T∑
i=0

λi
µ+ λi−1

)
.
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Proof. We will verify that Algorithm 7 is an instantiation of Algorithm 2 with p =
exp(−m

18
). More precisely, we will prove by induction that with this choice of p, the

iterates xj satisfy (3.4) for each index j = 0, . . . , T and xT+1 satisfies (3.5). For the base
case j = 0, Lemma 2.2 guarantees that with probability 1− p, the point x0 produced by
the robust distance estimator Alg-R satisfies

‖x0 − x̄0‖ ≤ 3

√
2 · δ/9
µ

= ε−1.

As an inductive hypothesis, suppose that (3.4) holds for the iterates x0, . . . , xj−1 for some
j ≥ 1. We will prove it holds for xj. To this end, suppose that the event Ej−1 occurs.
Then using (3.3) we deduce

f(xj−1)− f ∗ ≤ L+ λj−2

2
‖x̄j−1 − xj−1‖2 +

j−2∑
i=0

λi
2
‖x̄i − xi‖2

≤ δ(L+ λj−2)

µ+ λj−2

+

j−2∑
i=0

δλi
µ+ λi−1

= ∆j−1,

where the second inequality follows from xi ∈ Bεi−1
(x̄i) with εi−1 =

√
2δ

µ+λi−1
for all

i ∈ [0, j − 1]. By examining the definition of f j−1, we deduce f j−1(xj−1) = f(xj−1) and
min f j−1 ≥ min f = f ∗, which imply

f j−1(xj−1)−min f j−1 ≤ f(xj−1)− f ∗ ≤ ∆j−1. (5.1)

That is, ∆j−1 is an upper bound on the initial gap f j−1(xj−1)−min f j−1 for all j whenever
the event Ej−1 occurs. Moreover Lemma 2.2 guarantees that conditioned on Ej−1 with
probability 1− p, the following estimate holds:

‖xj − x̄j‖ ≤ 3

√
2 · δ/9
µ+ λj−1

= εj−1.

Thus the condition (3.4) holds for the iterate xj, as desired.
Now suppose that the event ET holds. Then exactly the same reasoning that led to

(5.1) yields the guarantee fT (xT )−min fT ≤ ∆T . Therefore Lemma 2.2 guarantees that
with probability 1− p conditioned on ET , we have

‖xT+1 − x̄T+1‖ ≤ 3

√
2

µ+ λT
· δ

9
· µ+ λT
L+ λT

=

√
2δ

L+ λT
.

Taking into account the fact that fT is (L+ λT )-smooth, we therefore deduce

P[fT (xT+1)−min fT ≤ δ | ET ] ≥ 1− p,

thereby establishing (3.5). An application of Theorem 3.2 completes the proof.
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When using the proximal parameters λi = µ2i, we obtain the following guarantee.

Corollary 5.3 (Efficiency of BoostAlg with geometric decay). Fix an arbitrary point
xin ∈ Rd and let ∆in be any upper bound ∆in ≥ f(xin) − min f . Fix a target accuracy
ε > 0 and probability of failure p ∈ (0, 1), and set the algorithm parameters

T = dlog2(κ)e , m =

⌈
18 ln

(
2 + T

p

)⌉
, δ =

ε

2 + 2T
, λi = µ2i.

Then the point xT+1 = BoostAlg(δ,∆in, xin, T,m) satisfies

P(f(xT+1)−min f ≤ ε) ≥ 1− p.

Moreover, the total number of calls to Alg(·) is⌈
18 ln

(
d2 + log2(κ)e

p

)⌉
d2 + log2(κ)e,

while the initialization errors satisfy

max
i=0,...,T+1

∆i ≤
κ+ 1 + 2 dlog2(κ)e

2 + 2 dlog2(κ)e
ε.

We now concretely describe how to use (accelerated) stochastic gradient methods as
Alg(·) within proxBoost .

Illustration: robust (accelerated) stochastic gradient methods

Following the standard literature on streaming algorithms, we suppose that the only access
to f is through a stochastic gradient oracle. Namely, fix a probability space (Ω,F ,P) and
let G : Rd × Ω→ R be a measurable map satisfying

EzG(x, z) = ∇f(x) and Ez‖G(x, z)−∇f(x)‖2 ≤ σ2.

We suppose that for any point x, we may sample z ∈ Ω and compute the vector G(x, z),
which serves as an unbiased estimator of the gradient ∇f(x). The performance of stan-
dard numerical methods within this model of computation is judged by their sample
complexity—the number of stochastic gradient evaluations G(x, z) with z ∼ P required
by the algorithm to produce an approximate minimizer of the problem.

Fix an initial point xin and let ∆in > 0 satisfy ∆in ≥ f(x0)− f ∗. It is well known that
an appropriately modified stochastic gradient method can generate a point x satisfying
Ef(x)− f ∗ ≤ ε with sample complexity

O
(
κ log

(
∆in

ε

)
+
σ2

µε

)
. (5.2)
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The accelerated stochastic gradient method of [18, Multi-stage AC-SA, Proposition 6]
and the simplified optimal algorithm of [25, Restarted Algorithm C, Corollary 9] have the
substantially better sample complexity

O
(√

κ log

(
∆in

ε

)
+
σ2

µε

)
. (5.3)

Clearly, we may use either of these two procedures as Alg(·) within the proxBoost frame-
work. Indeed, using Corollary 5.3, we deduce that the two resulting algorithms will find
a point x satisfying

P[f(x)− f ∗ ≤ ε] ≥ 1− p

with sample complexities

O
(

ln (κ) ln

(
lnκ

p

)
·
(
κ ln

(
∆in ln(κ)

ε
∨ κ
)

+
σ2 ln(κ)

µε

))
, (5.4)

and

O
(

ln (κ) ln

(
lnκ

p

)
·
(√

κ ln

(
∆in ln(κ)

ε
∨ κ
)

+
σ2 ln(κ)

µε

))
, (5.5)

for the unaccelerated and accelerated methods, respectively. Thus, proxBoost endows the
stochastic gradient method and its accelerated variant with high confidence guarantees
at an overhead cost that is only polylogarithmic in κ and logarithmic in 1/p.

6 Extension to convex composite problems

One limitation of the techniques presented in Sections 4 and 5 is that the function f
to be minimized was assumed to be smooth. In particular, these techniques can not
accommodate constraints or nonsmooth regularizers. To illustrate the difficulty, consider
the task of minimizing a smooth and strongly convex function f over a closed convex set
X . The current approach heavily relies on the two-sided bound (2.1), which guarantees
that the function gap f(x) − f ∗ and the squared distance to the solution ‖x − x̄‖2 are
proportional up to multiplication by the condition number of f . When a constraint set
X is present, the left inequality of (2.1) still holds, but the right inequality is typically
false. In particular, in the clean up stage of proxBoost, it is unclear how to turn low
probability guarantees on the function gap to high probability guarantees using robust
distance estimation. In this section, we show how to overcome this difficulty and extend
the aforementioned techniques to convex composite optimization problems.

6.1 Geometric intuition in the constrained case

Before delving into the details, it is instructive to first focus on the constrained setting,
where no additional regularizers are present. This is the content of this section. In section
6.2, we formally describe the algorithm for regularized convex optimization problems in
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full generality and prove correctness. Consequently, the reader may safely skip to Section
6.2, without losing continuity.

Setting the stage, consider the optimization problem

min
x

g(x) subject to x ∈ X ,

where g : Rd → R is µ-strongly convex and L-smooth and X is a closed convex set. In line
with the previous sections, let x̄ be the minimizer of the problem and let κ = L

µ
denote

the condition number. Suppose that we have available an algorithmM(ε) that generates
a point xε satisfying

P
(
g(xε)−min

x∈X
g ≤ ε

)
≥ 2

3
. (6.1)

Our immediate goal is to explain how to efficiently boost this low-probability guarantee
to a high confidence outcome, albeit with the degraded accuracy κε.

We begin as in the unconstrained setting with the two-sided bound:

〈∇g(x̄), x− x̄〉+
µ

2
‖x− x̄‖2 ≤ g(x)− g(x̄) ≤ 〈∇g(x̄), x− x̄〉+

L

2
‖x− x̄‖2 (6.2)

for all x ∈ X . In particular, if the minimizer x̄ lies in the interior of X the gradient ∇g(x̄)
vanishes and the estimate (6.2) reduces to (2.1). In the more general constrained setting,
however, the additive term 〈∇g(x̄), x− x̄〉 plays an important role. Note that optimality
conditions at x̄ immediately imply that this term is nonnegative

〈∇g(x̄), x− x̄〉 ≥ 0 for all x ∈ X .

Moreover, we see from the estimate (6.2) that the point xε returned by M(ε), with
probability 2/3, lies in the region

Λ :=

{
x ∈ X : ‖x− x̄‖ ≤

√
2ε

µ
and 0 ≤ 〈∇g(x̄), x− x̄〉 ≤ ε

}
. (6.3)

Thus xε simultaneously lies in the ball around x̄ of radius
√

2ε/µ and is sandwiched
between two parallel hyperplanes with normal ∇g(x̄). See Figure 2 for an illustation.

Naturally, our goal is to generate a point x that lies in Λ, or a slight perturbation
thereof, with probability 1 − p. As the first attempt, suppose for the moment that we
know the value of the gradient ∇g(x̄). Then we can define the metric

ρ(x, x′) = max

{√
εµ

2
· ‖x− x′‖, |〈∇g(x̄), x− x′〉|

}
and form the robust distance estimator (Algorithm 1) with ρ(·, ·) replacing the Euclidean
norm ‖ · ‖. In particular, the confidence bound (6.1) and the left inequality in (6.2) imply
that M(ε) is a weak distance oracle, that is, P

(
ρ(x, x̄) ≤ ε

)
≥ 2

3
. A direct extension of
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x̄

R =
√

2ε/µ

X ∇g(x̄)

〈∇g(x̄), x− x̄〉 = 0

〈∇g(x̄), x− x̄〉 = ε

•
•

•
•
• •

••

•

•

••

•
•

Figure 2: Geometry of the region Λ.

Lemma 2.2 shows that with m calls to the oracle M(ε), the robust distance estimator
returns a point x ∈ X satisfying

P
(
ρ(x, x̄) ≤ 3ε

)
≥ 1− exp(−m/18).

Consequently, appealing to the right-hand-side of (6.2), we obtain the desired guarantee

P
(
g(x)− g(x̄) ≤ 3(1 + κ)ε

)
≥ 1− p.

The assumption that we know the gradient ∇g(x̄) is of course unrealistic. Therefore,
the strategy we propose will instead replace the gradient ∇g(x̄) with some estimate of

the gradient ∇g(x̂) at a nearby point x̂, which we denote by ∇̃g(x̂). See Figure 3 for an
illustration. Indeed, a natural candidate for x̂ is the robust distance estimator of x̄ in the
Euclidean norm. We will see that in order for the proposed procedure to work, it suffices
for the gradient estimator ∇̃g(x̂) to approximate ∇g(x̂) only up to the very loose accuracy
κ
√
µε. In particular, if we have access to a stochastic gradient estimator of ∇g(x̂) with

variance σ2, then ∇̃g can be formed using only 1
κ2 · σ

2

µε
samples. This overhead in sample

complexity is negligible compared to the cost of executing typical algorithms M(ε), e.g.,
as given in (5.2) and (5.3).

6.2 Convex composite setting

In this section, we formally develop the procedure that turns low probability guarantees
on the function gap for composite problems to high probability outcomes.

Assumption 6.1 (Convex composite problem). We consider the optimization problem

min
x∈Rd

f(x) := g(x) + h(x) (6.4)

where the function g : Rd → R is L-smooth and µ-strongly convex and h : Rd → R ∪
{+∞} is closed and convex. We denote the minimizer of f by x̄, its minimal value by
f ∗ := min f , and its condition number by κ := L/µ.
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O(ε)

{x′ : ρ(x, x′) ≤ ε} contains
more than half candidates

•
x̄

R =
√

2ε/µ

unknown ∇g(x̄)known ∇̃g(x̂)

O(
√
ε) error

Λ•

•

• •
•

•

•

•

•

•
•

{x′ : ρ(x, x′) ≤ ε} contains
more than half candidates

O(ε)

Figure 3: The left side illustrates the region Λ; the right side depicts the perturbation of
Λ obtained by replacing the exact gradient ∇g(x̄) with an estimator ∇̃g(x̂) ≈ ∇g(x̂).

In particular, we may model minimization of a smooth and strongly convex function
g over a closed convex set X by declaring h to take value zero on X and +∞ off it.
Before stating the proposed algorithm, we require three elementary ingredients: a two-
sided bound akin to (2.1), robust distance estimation with a “pseudometric,” and a robust
gradient estimator.

6.2.1 The two-sided bound

Observe that optimality conditions at x̄ imply the inclusion −∇g(x̄) ∈ ∂h(x̄), where ∂h(x̄)
denotes the subdifferential of h at x̄, and therefore the nonnegativity of the quantity

Dh(x, x̄) := h(x)− h(x̄) + 〈∇g(x̄), x− x̄〉.

Indeed, optimization specialists may recognize Dh(x, x̄) as a Bregman divergence induced
by h—hence the notation. The term Dh(x, x̄) appears naturally in a two sided bound
similar to (2.1). Specifically, adding h(x)−h(x̄) to the two-sided bound (6.2) throughout,
we obtain the key two-sided estimate

Dh(x, x̄) +
µ

2
‖x− x̄‖2 ≤ f(x)− f ∗ ≤ Dh(x, x̄) +

L

2
‖x− x̄‖2. (6.5)

6.2.2 Robust distance estimation with a pseudometric

As the second ingredient, we will require a slight modification of the robust distance
estimation technique of [35, p. 243] and [20]. In particular, it will be convenient to
replace the Euclidean norm ‖ · ‖ with a more general distance measure.

Definition 6.2 (Pseudometric). A mapping ρ : X × X 7→ R is a pseudometric on a set
X if for all x, y, z ∈ X it satisfies:

1. (nonnegative) ρ(x, y) ≥ 0 and ρ(x, x) = 0,
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2. (symmetry) ρ(x, y) = ρ(y, x),

3. (triangle inequality) ρ(x, y) ≤ ρ(x, z) + ρ(z, y).

The symbol Bρ
r (x) = {y ∈ X : ρ(x, y) ≤ r} will denote the r-radius ball around x in the

pseudometric ρ.

With this notation, we record Algorithm 8, which is in the same spirit as the robust
distance estimator, Algorithm 1. The differences are that the Euclidean norm is replaced
with a pseudometric ρ, an index set is returned instead of a single point, and we leave the
origin of the vectors yi unspecified for the moment.

Algorithm 8: Extract({yi}mi=1, ρ)

Input: A set of m points Y = {y1, ..., ym} ⊂ X , a pseudometric ρ on X .
Step i = 1, . . . ,m:

Compute ri = min{r ≥ 0 : |Bρ
r (yi) ∩ Y | > m

2
}.

Compute the median r̂ = median(r1, . . . , rm).
Return I = {i ∈ [1,m] : ri ≤ r̂}.

We will need the following elementary lemma, akin to Lemma 2.2. The main difference
is that the lemma provides at least m/2 points, instead of a single point, that are close
to the target with high probability. The proof is identical to that of [35, p. 243] and [20,
Propositions 8 and 9]; we provide details for the sake of completeness.

Lemma 6.3 (Robust distance estimation). Let ρ be a pseudometric on a set X . Consider
a set of points Y = {y1, . . . , ym} ⊂ X and a point ȳ ∈ X satisfying |Bρ

ε (ȳ) ∩ Y | > m
2

for
some ε > 0. Then the index set I = Extract({yi}mi=1, ρ) satisfies the guarantee

ρ(yi, ȳ) ≤ 3ε for all i ∈ I.

Proof. Note that for any points yi, yj ∈ Bρ
ε (ȳ), the triangle inequality implies the estimate

ρ(yi, yj) ≤ ρ(yi, ȳ) + ρ(ȳ, yj) ≤ 2ε.

This means that any point yi ∈ Bρ
ε (ȳ), at least m

2
of them, satisfies |Bρ

2ε(yi)∩Y | > m
2

and
consequently ri ≤ 2ε. Therefore the inequality r̂ = median(r1, . . . , rm) ≤ 2ε holds.

Fix an index i ∈ I. Since both Bρ
ri

(yi) and Bρ
ε (ȳ) contain a strict majority of the

points in Y , there must exist some point in the intersection y ∈ Bρ
ri

(yi) ∩ Bρ
ε (ȳ). Using

the triangle inequality, we conclude ρ(yi, ȳ) ≤ ρ(yi, y) + ρ(y, ȳ) ≤ 3ε, thereby completing
the proof.
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6.2.3 Robust gradient estimator

The need for this last ingredient is explained at the end of Section 6.1. Namely, we
will need to estimate the gradient ∇g(x̄), thereby perturbing the term Dh(x, x̄) in the
two-sided bound (6.2). For this purpose, we make the following mild assumption that is
standard in applications. Indeed, we already encountered this assumption when paring
proxBoost with stochastic gradient methods for unconstrained optimization.

Assumption 6.4 (Stochastic first-order oracle). Fix a probability space (Ω,F ,P) and
let G : Rd × Ω→ R be a measurable map satisfying

EzG(x, z) = ∇g(x) and Ez‖G(x, z)−∇g(x)‖2 ≤ σ2.

We suppose that for any point x, we may sample z ∈ Ω and compute the vector G(x, z),
which serves as an unbiased estimator of the gradient ∇g(x).

Under this assumption, we can define a weak gradient oracle Gσ(·, ε) as the averge of
a finite sample of stochastic gradients, i.e., for any x̂ ∈ X ,

Gσ(x̂, ε) :=
1

s

s∑
i=1

G(x̂, zi) where s =

⌈
3σ2

ε2

⌉
.

Taking into account the variance reduction by a factor of s and using Markov’s inequality,
we have

P
(∥∥∥∥1

s

s∑
i=1

G(x̂, zi)−∇g(x̂)

∥∥∥∥2

≥ ε2

)
≤ σ2/s

ε2
≤ 1

3
.

That is, P
(
‖Gσ(x̂, ε)−∇g(x̂)‖ < ε

)
≥ 2

3
, confirming that Gσ(·, ε) is indeed a weak distance

oracle in the sense of (2.3). Based on this oracle, we can use Algorithm 1 to construct a

robust gradient estimator Gσ(·, ε,m), which returns an estimate ∇̃g(·). By Lemma 2.2,

P
(
‖∇̃g(x̂)−∇g(x̂)‖ ≤ 3ε

)
≥ 1− exp(−m/18). (6.6)
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6.2.4 Robust function gap estimation

Equipped with the three ingredients described above, we present in Algorithm 9 a proce-
dure to robustly estimate the gap f(x)− f ∗.

Algorithm 9: RobustGap(Mf (·),m, ε).
Input: Minimization oracle Mf (·), integer m ∈ N, accuracy ε > 0.
Step 1: Independently generate x1, ..., xm by the oracle Mf (ε) so that

P
(
f(xi)− f ∗ ≤ ε

)
≥ 2

3
, for all i ∈ [1,m]. (6.7)

Step 2: Set ρ1 = ‖ · ‖ to be the usual Euclidean norm and compute

I1 := Extract ({xi}mi=1, ρ1) . (6.8)

Step 3: Fix arbitrary i ∈ I1 and set x̂ := xi. Use the robust gradient estimator to
generate

∇̃g(x̂) := Gσ(x̂, κ
√
µε, m).

Step 4: Define the pseudometric ρ2(x, x′) := |h(x)− h(x′) + 〈∇̃g(x̂), x− x′〉| on
dom h and compute

I2 = Extract({xt}mt=1, ρ2).

Return: xi for an arbitrary i ∈ I1 ∩ I2.

Thus, the first step of RobustGap(Mf (·),m, ε) generates m statistically independent
points x1, . . . , xm satisfying (6.7). The second step determines a set of points {xi}i∈I that
are all close to x̄ with high probability. We then choose a distinguished point x̂ := xi
for an arbitrary i ∈ I1, and estimate the gradient ∇g(x̂) with ∇̃g(x̂). The next step

approximates Dh(·, x̄) with a pseudometric ρ2 by replacing ∇g(x̄) with ∇̃g(x̂), and then
performs robust distance estimation to find a set of points {xi}i∈I2 with low value of
Dh(xi, x̄). Finally a point xi is returned, for any i ∈ I1 ∩ I2. The intuition is that this xi
simultaneously achieves low values of ‖xi− x̄‖ and Dh(xi, x̄), thus allowing us to use (6.5)
for robust gap estimation.

The following theorem summarizes the guarantees of the RobustGap procedure.

Theorem 6.5 (Robust function gap estimation). With probability at least 1−2 exp
(
−m

18

)
,

the point x = RobustGap(Mf (·),m, ε) satisfies the guarantee

‖x− x̄‖ ≤ 3

√
2ε

µ
, Dh(x, x̄) ≤ 65κε, f(x)− f ∗ ≤ 74κε.

In total, the procedure queries m times the oracle Mf (ε) and evaluates m ·
⌈

3σ2

κ2µε

⌉
times

the stochastic gradient oracle G(x̂, ·).

26



Proof. Define the index set J = {i ∈ [1,m] : f(xi)− f ∗ ≤ ε} and define the event

E :=
{
|J | > m

2

}
.

Hoeffding’s inequality for Bernoulli random variables guarantees

P (E) ≥ 1− exp(−m/18).

Moreover, using the left inequality in (6.5), we deduce

‖xi − x̄‖ ≤
√

2ε

µ
and Dh(xi, x̄) ≤ ε for all i ∈ J . (6.9)

Henceforth, suppose that the event E occurs. Then Lemma 6.3 implies

‖xi − x̄‖ ≤ 3

√
2ε

µ
for all i ∈ I1. (6.10)

As discussed in Section 6.2.3, specifically (6.6), the estimate ∇̃g(x̂) generated by the
robust gradient estimator Gσ(x̂, κ

√
µε,m) satisfies

P(‖∇̃g −∇g(x̂)‖ ≤ 3κ
√
µε | E) ≥ 1− exp(−m/18). (6.11)

Define the event Ê := {‖∇̃g(x̂) − ∇g(x̂)‖ ≤ 3κ
√
µε} and suppose that E ∩ Ê occurs.

Then, we compute

‖∇̃g(x̂)−∇g(x̄)‖ ≤ ‖∇̃g(x̂)−∇g(x̂)‖+ ‖∇g(x̂)−∇g(x̄)‖
≤ 3κ

√
µε+ L‖x̂− x̄‖ (6.12)

≤ 3κ
√
µε+ 3L

√
2ε/µ = 3(1 +

√
2)κ
√
µε, (6.13)

where (6.12) follows from (6.11) and Lipschitz continuity of ∇g, while (6.13) follows from
(6.9). Consequently, for each index i ∈ J , we successively deduce

ρ2(xi, x̄) = |h(xi)− h(x̄) + 〈∇̃g(x̂), xi − x̄〉|
≤ Dh(xi, x̄) + |〈∇̃g(x̂)−∇g(x̄), xi − x̄〉|
≤ ε+ 3(1 +

√
2)κ
√
µε ·

√
2ε/µ (6.14)

= (1 + (3
√

2 + 6)κ)ε,

where (6.14) follows from (6.9) and (6.13). Therefore, appealing to Lemma 2.2 in the
event E ∩ Ê, we conclude

ρ2(xi, x̄) ≤ 3(1 + (3
√

2 + 6)κ)ε for all i ∈ I2. (6.15)
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Finally, fix an arbitrary index i ∈ I1 ∩ I2. We therefore deduce

Dh(xi, x̄) ≤ ρ2(xi, x̄) + |〈∇g(x̄)− ∇̃g, xi − x̄〉|

≤ 3(1 + (3
√

2 + 6)κ)ε+ 3(1 +
√

2)κ
√
µε · 3

√
2ε

µ
(6.16)

= 3(1 + (6
√

2 + 12)κ)ε ≤ 65κε, (6.17)

where (6.16) follows from the estimates (6.10), (6.13), and (6.15). Using the right side of
(6.5), we therefore conclude

f(xi)− f(x̄) ≤ Dh(xi, x̄) +
L

2
‖xi − x̄‖2 ≤ 65κε+ 9κε = 74κε,

where the last inequality follows from the estimates (6.10) and (6.17). Noting

P(E ∩ Ê) = P(Ê | E)P(E) ≥
(
1− exp

(
−m

18

)) (
1− exp

(
−m

18

))
≥ 1− 2 exp

(
−m

18

)
,

completes the proof.

With Theorem 6.5 at hand, we can now replace robust distance estimation with
RobustGap within the proxBoost framework, thereby making proxBoost applicable to
convex composite problems. The following two sections illustrate the consequences of the
resulting method for regularized empirical risk minimization and (proximal) stochastic
approximation algorithms.

6.3 Consequences for empirical risk minimization

In this section, we explore the consequences of RobustGap and proxBoost for regularized
empirical risk minimization. In particular, we will boost the low-probability guarantees
developed in the seminal work [42] for strongly convex problems to high confidence out-
comes. The following assumption summarizes the setting of this section.

Assumption 6.6. Fix a probability space (Ω,F ,P) and equip Rd with the Borel σ-
algebra. Throughout, we consider the optimization problem

min
x

f(x) := g(x) + h(x) where g(x) = Ez∼P [g(x, z)],

under the following assumptions.

1. (Measurability) The function g : Rd × Ω→ R is measurable.

2. (Strong convexity) The function h : Rd → R ∪ {+∞} is convex and there exists
µ > 0 such that the function g(x, z) + h(x) is µ-strongly convex for a.e. z ∼ P .

3. (Lipschitz continuity) There exists a measurable map ` : Ω → R and a real ¯̀> 0
satisfying the moment bound

√
Ez`(z)2 ≤ ¯̀ and the Lipschitz condition

|g(x, z)− g(y, z)| ≤ `(z)‖x− y‖ ∀x ∈ U, z ∈ Ω,

where U is some open neighborhood of dom h.
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4. (Smoothness) The function g : Rd → R is L-smooth.

The first three assumptions are slight modifications of those used in [42], while the
additional smoothness assumption on g will be necessary in the sequel to obtain high-
confidence guarantees. That being said, the sample efficiency will depend only polyloga-
rithmically on L, and therefore we will be able to treat nonsmooth loss function g(x, z)
using standard smoothing techniques. Under the first three assumptions, the authors
of [42] obtained the following guarantee for the accuracy of empirical risk minimization.

Lemma 6.7 ( [42, Theorem 6]). Let the set S ⊂ Ω consist of n i.i.d. samples drawn from
P. Then the minimizer of the regularized empirical risk

xS := argmin
x

1

n

∑
z∈S

g(x, z) + h(x)

satisfies the generalization bound

ES[f(xS)− f ∗] ≤ 2l̄2

µn
.

We will see now how to equip this guarantee with a high confidence bound using
proxBoost. Recall that to apply the RobustGap algorithm, we require an unbiased gra-
dient estimator G : Rd × Ω→ Rd for g. Let us therefore simply declare

G(x, z) := ∇g(x, z).

Then we can upper-bound the variance by the second moment

Ez‖G(x, z)−∇g(x)‖2 ≤ 2(Ez‖∇g(x, z)‖2 + Ez‖∇g(x)‖2) ≤ 4l̄2.

We are now ready to present Algorithm 10 as an instantiation of the proxBoost proce-
dure for regularized empirical risk minimization. In particular, we can still use ERM() in
Algorithm 3 for the proximal subproblem, with the definition f(y, zi) := g(y, zi) + h(y).
The robust distance estimator ERM-R() in Algorithm 4 can be used without any change.

Algorithm 10: BoostERMC(δ, T,m)

Input: accuracy δ > 0, iterations m,T ∈ N
Set λ−1 = 0, x−1 = 0
Step j = 0, . . . , T :

xj = ERM-R
(

54l̄2

(µ+λj−1)δ
, m, λj−1, xj−1

)
Define the minimization oracle MT (ε) := ERM

(
6l̄2

(µ+λT )δ
, λT , xT

)
.

Return xT+1 = RobustGap
(
MT

(
δ(µ+λT )

222(L+λT )

)
, m, δ(µ+λT )

222(L+λT )

)
Notice that in Algorithm 10, we only need to call RobustGap in the last cleanup stage,

since the intermediate iterations of proxBoost only rely on distance estimates to the
optimal solutions and not on the function gap. The following theorem and its corollary
are immediate consequences of Theorems 3.2 and 6.5.
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Theorem 6.8 (Efficiency of BoostERMC). Fix δ > 0 and integers T,m ∈ N. Then with
probability at least 1− (T + 3) exp

(
−m

18

)
, the point xT+1 = BoostERMC(δ, T,m) satisfies

f(xT+1)− f ∗ ≤

(
1 +

T∑
i=0

λi
µ+ λi−1

)
δ.

Corollary 6.9 (Efficiency of BoostERMC with geometric decay). Fix a target accuracy
ε > 0 and a probability of failure p ∈ (0, 1). Define the algorithm parameters:

T = dlog2 (κ)e , m =

⌈
18 ln

(
T + 3

p

)⌉
, δ =

ε

4 + 2T
, λi = µ2i.

Then the point xT+1 = BoostERMC(δ, T,m) satisfies

P(f(xT+1)− f(x∗) ≤ ε) ≥ 1− p.

Moreover, the total number of samples used by the algorithm is

O
(

ln2(κ) ln

(
ln(κ)

p

)
·

¯̀2

εµ

)
. (6.18)

Thus, proxBoost endows regularized empirical risk minimization with high confidence
guarantees at an overhead cost that is only polylogarithmic in κ and logarithmic in 1/p.
In particular, observe that the sample complexity (6.18) established in Corollary 6.9
depends on the smoothness parameter L (through κ = L/µ) only polylogarithmically.
Consequently, it appears plausible that if the losses g(·, z) are nonsmooth, we may simply
replace them by a smooth approximation and apply BoostERMC. The price to pay should
then only be polylogarithmic in the target accuracy ε. Let us formally see how this can be
done. To this end, we will assume that the optimization problem in question is to minimize
a sum of an expectation of convex functions, a deterministic smooth and strongly convex
function (e.g. squared `2 norm), and a nonsmooth regularizer.

Assumption 6.10. Consider the optimization problem

min
x

f(x) := Ez∼P [g(x, z)] + ϕ(x) + h(x) (6.19)

under the following assumptions.

1. (Measurability) The function g : Rd × Ω → R is measurable and the assignment
x 7→ g(x, z) is convex for a.e. z ∈ Ω.

2. (Strong convexity) The function h : Rd → R ∪ {+∞} is convex and there exist
parameters µ, β > 0 such that the function ϕ : Rd → R is µ-strongly convex and
β-smooth for a.e. z ∈ Ω.

3. (Lipschitz continuity) There exists a measurable map ` : Ω → R and a real ¯̀> 0
satisfying the moment bound

√
Ez`(z)2 ≤ ¯̀ and the Lipschitz condition

|g(x, z)− g(y, z)| ≤ `(z)‖x− y‖ ∀x ∈ Rd, z ∈ Ω.
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The strategy we follow is to simply replace g(·, z) by a smooth approximation and
then apply BoostERMC. We now make precise what we mean by a smooth approximation.
Assumptions of this type are classical in convex optimization; see for example Nesterov [36]
and Beck-Teboulle [7].

Assumption 6.11 (Smoothing). Suppose that for any parameter ε > 0, there exist
measurable functions gε : Rd × Ω→ R and `ε, Lε : Ω→ R+ such that gε(·, z) is Lipschitz
continuous with constant `ε(z) and its gradient is Lipschitz continuous with constant
Lε(z), and the estimate holds:

|g(x, z)− gε(x, z)| ≤ ε for all x ∈ Rd, z ∈ Ω. (6.20)

We suppose moreover that the moment conditions,
√

Ez`2
ε(z) ≤ ¯̀

ε and EzLε(z) ≤ L̄ε,
hold for some constants ¯̀

ε, L̄ε > 0.

Let us look at two standard examples of smoothings of convex functions.

Example 6.1 (Moreau envelope). A classical approach to smoothing a convex function
is based on the Moreau envelope [33]. Namely, fix a convex function ψ : Rd → R. The
Moreau envelope of ψ with parameter ν > 0 is defined to be

Mψ
ν (x) = min

y
ψ(y) +

1

2ν
‖y − x‖2.

It is well-known that Mψ
ν is 1

ν
-smooth. Moreover if ψ is Lipschitz continuous with constant

lip (ψ), then Mψ
ν is also Lipschitz continuous with the same constant and the bound holds:

0 ≤ ψ(x)− ψν(x) ≤ ν(lip (ψ))2.

Coming back to our target problem (6.19), we may define gε(·, z) to be the Moreau enve-
lope of g(·, z) with parameter ν(z) := ε

l(z)2 , or more explicitly

gε(x, z) = min
y

g(y, z) +
l(z)2

2ε
‖y − x‖2.

Then the parameters from Assumption 6.10 become `ε(z) := `(z) and Lε(z) := l(z)2

ε
.

Example 6.2 (Compositional smoothing). Often, the Moreau envelope of g(·, z) may be
difficult to compute explicitly. In typical circumstances, however, the function g(·, z) may
be written as a composition of a simple nonsmooth convex function with a linear map.
It then suffices to replace only the outer function with its Moreau envelope—a technique
famously explored by Nesterov [36].

To illustrate on a concrete example, suppose that the population data consists of tuples
z = (a, b) ∼ P and the loss takes the form g(x, z) = h(〈a, x〉, b) for some measurable
function h(·, ·) that is convex and 1-Lipschitz in its first argument. In order to control
the Lipschitz constant, suppose also the moment bound

√
Ea‖a‖2 ≤ A for some constant

A > 0. Let us now define the smoothing

gε(x, z) = hε(〈a, x〉, b),

where hε(·, b) is the Moreau envelope of h(·, b) with parameter ν = ε. It is straightforward
to verify that the estimate (6.20) holds and that we may set `ε(z) = A and Lε(z) = A2

ε
.

31



With Assumptions 6.10 and 6.11 at hand, we may now simply apply BoostERMC to
the smoothed problem

min
x

fε(x) := g(x) + h(x) where g(x) = Ez∼P [gε(x, z)] + ϕ(x).

Using Corollary 6.9, we deduce that the procedure will find a point x satisfying

P(fε(x)− f ∗ε ≤ ε) ≥ 1− p,

using

O
(

ln2
(
L̄ε+β
µ

)
ln

(
ln( L̄ε+β

µ
)

p

)
·

¯̀2
ε

εµ

)
samples. Observe that with probability 1− p the returned point x satisfies:

f(x)− f ∗ ≤ fε(x)− f ∗ε + (f(x)− fε(x)) + (f ∗ε − f ∗) ≤ 3ε.

In particular, in the setup of Examples 6.1 and 6.2, the sample complexities become:

O
(

ln2
(

¯̀2/ε+β
µ

)
ln

(
ln(

¯̀2/ε+β
µ

)

p

)
·

¯̀2

εµ

)
and O

(
ln2
(
A2/ε+β

µ

)
ln

(
ln(

A2/ε+β
µ

)

p

)
· A

2

εµ

)
,

respectively. Hence, the price to pay for nonsmoothness is only polylogarithmic in 1/ε.

6.4 Consequences for stochastic approximation

We now extend the results of Section 5 to the convex composite setting. In addition to
Assumptions 6.1 and 6.4, in this section we will use the following composite analogue of
Assumption 5.1. At the end of the section, we will let Alg(·) be the (accelerated) proximal
stochastic gradient method.

Assumption 6.12. Consider the proximal minimization problem

min
y

ϕx(y) := g(y) +
λ

2
‖y − x‖2 + h(y),

Let ∆ > 0 be a real number satisfying ϕx(x)−minϕx ≤ ∆. We will let Alg(δ, λ,∆, x) be
a procedure that returns a point y satisfying

P[ϕx(y)−minϕx ≤ δ] ≥ 2

3
.

The following algorithm is a direct extension of BoostAlg (Algorithm 6) to the con-
vex composite setting; the only difference is that BoostAlgC (Algorithm 9) replaces the
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distance estimator Alg-R(·) with RobustGap(·).

Algorithm 11: BoostAlgC(δ,∆in, xin, T,m)

Input: accuracy δ > 0, upper bound ∆in > 0, initial xin ∈ Rd, numbers m,T ∈ N
Set λ−1 = 0, ∆−1 = ∆in, x−1 = xin

Step j = 0, . . . , T :
Define the minimization oracle for the proximal subproblem

Mj−1(·) := Alg(·, λj−1, ∆j−1, xj−1).

Set xj = RobustGap
(
Mj−1(δ/9), m, δ/9

)
Set ∆j = δ

(
9 · L+λj−1

µ+λj−1
+
∑j−1

i=0
λi

µ+λi−1

)
Return xT+1 = RobustGap

(
MT

(
δ(µ+λT )

74(L+λT )

)
, m, δ(µ+λT )

74(L+λT )

)
In BoostAlgC, we need to use RobustGap in every proximal iteration as well as the

cleanup step, because the stochastic proximal gradient method encoded as Alg typically
requires robust gap estimation on the initialization gap ∆j. The proof of the following
theorem is almost identical to that of Theorem 5.2, with Theorem 6.5 playing the role of
Lemma 2.2.

Theorem 6.13 (Efficiency of BoostAlgC). Fix an arbitrary point xin ∈ Rd and let ∆in

be any upper bound ∆in ≥ f(xin) − min f . Fix natural numbers T,m ∈ N. Then with
probability at least 1 − 2(T + 2) exp

(
−m

18

)
, the point xT+1 = BoostAlgC(δ,∆in, xin, T,m)

satisfies

f(xT+1)−min f ≤ δ

(
1 +

T∑
i=0

λi
µ+ λi−1

)
.

When using the proximal parameters λi = µ2i, we obtain the following guarantee,
which generalizes Corollary 5.3 to the composite setting.

Corollary 6.14 (Efficiency of BoostAlgC with geometric decay). Fix an arbitrary point
xin ∈ Rd and let ∆in be any upper bound ∆in ≥ f(xin) − min f . Fix a target accuracy
ε > 0 and probability of failure p ∈ (0, 1), and set the algorithm parameters

T = dlog2(κ)e , m =

⌈
18 ln

(
4 + 2T

p

)⌉
, δ =

ε

2 + 2T
, λi = µ2i.

Then the point xT+1 = BoostAlg(δ,∆in, xin, T,m) satisfies

P(f(xT+1)−min f ≤ ε) ≥ 1− p.

Moreover, the total number of calls to Alg(·) is⌈
18 ln

(
4 + 2 dlog2(κ)e

p

)⌉
d2 + log2(κ)e,
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the number of evaluations of the stochastic gradient oracle G(·, ·) is at most1⌈
18 ln

(
d4 + 2 log2(κ)e

p

)⌉
·
⌈

6σ2

Lε
· (2 + 2dlog2(κ)e)

⌉
· d2 + log2(κ)e,

and the initialization errors satisfy

max
i=0,...,T+1

∆i ≤
9κ+ 1 + 2 dlog2(κ)e

2 + 2 dlog2(κ)e
ε.

In particular, the stochastic gradient method and its accelerated variant [18,25] admit
proximal extensions with exactly the same sample complexities as in the smooth case, (5.2)
and (5.3), respectively. Clearly, we may use either of these two procedures as Alg(·) within
Algorithm 11. Corollary 6.14 then immediately shows that the two resulting algorithms
will find a point x satisfying P[f(x)− f ∗ ≤ ε] ≥ 1− p with the same sample complexities
as in the smooth setting, (5.4) and (5.5), respectively.
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