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1. Introduction Under favorable conditions, many fundamental optimization algorithms con-
verge linearly: the distance of the iterates to the optimal solution set (the “error”) is bounded by a
decreasing geometric sequence. Classical optimization literature highlights how quadratic growth
properties of the objective function, typically guaranteed through second-order optimality condi-
tions, ensure such linear convergence. Central examples traditionally include the method of steepest
descent for smooth minimization [5, Theorem 3.4] and, more abstractly, the proximal point method
for nonsmooth convex problems [48, Theorem 2, Proposition 7].

More recent techniques, originally highlighted in the work of Luo and Tseng [31], postulate
that the step length at each iteration of the algorithm linearly bounds the error. Such “error
bounds” are commonly used in the analysis of first-order methods for strongly convex functions,
popular in modern applications such as machine learning and high-dimensional statistics, including
in particular the proximal gradient method and its variants; see for example Nesterov [40] and
Beck-Teboulle [7]. Convergence analysis based only on the error bound property is appealingly
simple even without strong convexity, but the underlying assumption on the optimization problem
is opaque at least at first sight.

Some recent developments have focused on linear convergence guarantees based on more intuitive,
geometric properties, akin to the classical quadratic growth condition. Two interesting examples
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are [8] and [39]. Our aim here is to take a systematic and transparent approach, that is generalizable
to problems with more complex structure. Our aim is to show, in several interesting contempo-
rary optimization frameworks, the equivalence between, on the one hand, the intuitive notion of
quadratic growth of the objective function away from the set of minimizers, and on the other hand,
the powerful analytic tool furnished by an error bound. Rockafellar already foreshadowed this pos-
sibility with his original analysis of the proximal point method [48]. We extend that relationship
here to the proximal gradient method for problems

min
x

f(x) + g(x),

with g convex and f convex and smooth, and more generally to the prox-linear algorithm (a variant
of Gauss-Newton) for convex-composite problems

min
x

g(x) +h(c(x)), (1.1)

where g is a extended-real-valued closed convex function, h is a finite-valued convex function,
and c is a smooth mapping. Acceleration strategies for the prox-linear algorithm have recently
appeared in [24]. In parallel, we show how the error bound property quickly yields linear convergence
guarantees. In essence, our analysis depends on viewing these two methods as approximations of
the original proximal point algorithm – a perspective of an independent interest. Our assumptions
are mild: we rely primarily on a natural strict complementarity condition. In particular, we simplify
and extend some of the novel convergence guarantees established in the recent preprint [55] for the
prox-gradient method.1

The iterative algorithms we consider assign a “gradient-like” step to each potential iterate, as
in the analysis of proximal methods in [40, Section 2.1.5]; the step length is zero at stationary
points and otherwise serves as a surrogate measure of optimality. For steepest descent, the step is
simply a multiple of the negative gradient, for the proximal point method it is determined by a
subdifferential relationship, while the prox-gradient and prox-linear methods combine the two. In
the language of variational analysis, the existence of an error bound is exactly “metric subregular-
ity” of the gradient-like mapping; see Dontchev-Rockafellar [49]. We will show that subregularity
of the gradient-like mapping is equivalent to subregularity of the subdifferential of the objective
function itself, thereby allowing us to call on extensive literature relating the quadratic growth
of a function to metric subregularity of its subdifferential [19, 21, 23, 27]. Given the generality of
these techniques, we expect that the approach we describe here, rooted in understanding linear
convergence through quadratic growth, should extend broadly. We note, in particular, some parallel
developments influenced by the first version of this work [22], in the recent manuscript [54].

When analyzing the prox-linear algorithm, we encounter a surprise. The error bound condition
yields a linear convergence rate that is an order of magnitude worse than the natural rate for
the prox-gradient method in the convex setting. The difficulty is that in the nonconvex case,
the “linearizations” used by the method do not lower-bound the objective function. Nonetheless,
we show that the method does converge with the natural rate if the objective function satisfies
the stronger condition of quadratic growth that is uniform with respect to tilt-perturbations – a
property equivalent to the well-studied notions of tilt-stability [21] and strong metric regularity of
the subdifferential [49]. Concretely, these notions reduce to strong second-order sufficient conditions
in nonlinear programming [38], whenever the active gradients are linearly independent. Moreover,
we show that under a sharp growth condition [11], the scheme locally converges quadratically.

1 While finalizing a first version of this work, the authors became aware of a concurrent, independent and nicely
complementary approach [30], based on a related calculus of Kurdyka- Lojasiewicz exponents.
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An important byproduct of our analysis, worthy of independent interest, relates the step-lengths
taken by the prox-linear method to near-stationarity of the objective function at the iterates.
Therefore, short step-lengths can be used to terminate the scheme, with explicit guarantees on the
quality of the final solution. We end by studying to what extent the tools we have developed gener-
alize to composite optimization where the outer function h may be neither convex nor continuous
– an arena of growing recent interest (e.g. [29]). While considerably more technical, key ingredients
of our analysis extend to this very general setting.

There have been a number of closely related works that appeared on arXiv shortly before or
concurrently with the initial version of this manuscript, notably [8, 30, 39, 54, 55]. These papers
pertain to the first four sections on convex additive composite minimization. We postpone a discus-
sion of these articles and their overlap with the current work to Section 4.1, after having introduced
relevant notation and our main results.

The outline of the manuscript is as follows. Section 2 briefly records some elementary prelimi-
naries. Section 3 contains a detailed analysis of linear convergence of the prox-gradient method for
convex functions through the lens of error bounds and quadratic growth. In section 4, we show that
quadratic growth holds in concrete applications under a mild condition of dual strict complemen-
tarity; our analysis aims to illuminate and extend some of the results in [55] by dispensing with
strong convexity of component functions. Section 5 is dedicated to the local linear convergence of
the prox-linear algorithm for minimizing compositions of convex functions with smooth mappings.
Section 6 explains how a uniform notion of quadratic growth implies linear convergence of the
prox-linear method with the natural rate. In Section 7, we show that under a sharpness condition,
the prox-linear method locally converges quadratically. Section 8 explains the consequences of the
previous section on the prox-gradient method when the smooth component is not convex. The
final section 9 shows the equivalence between the error bound property of the prox-linear map and
subdifferential subregularity when both the component functions g and h may be infinite-valued
and non-convex.

2. Preliminaries Unless otherwise stated, we follow the terminology and notation of [40, 49,
50]. Throughout Rn will denote an n-dimensional Euclidean space with inner-product 〈·, ·〉 and
corresponding norm ‖ · ‖. The closed unit ball will be written as B, while the open ball of radius r
around a point x will be denoted by Br(x). For any set Q⊂Rn, we define the distance function

dist(x;Q) := inf
z∈Q
‖z−x‖.

The functions we consider will take values in the extended real line R := R∪{±∞}. The domain
and the epigraph of a function f : Rn→R are defined by

domf := {x∈Rn : f(x)<+∞},
epif := {(x, r)∈Rn×R : f(x)≤ r},

respectively. We say that f is closed if the inequality liminfx→x̄ f(x) ≥ f(x̄) holds for any point
x̄∈Rn. The symbol [f ≤ ν] := {x : f(x)≤ ν} will denote the ν-sublevel set of f . For any set Q⊂Rn,
the indicator function δQ : Rn→R evaluates to zero on Q and to +∞ elsewhere.

The Fenchel conjugate of a convex function f : Rn→R is the closed convex function f? : Rn→R
defined by

f?(y) = sup
x
{〈y,x〉− f(x)}.

The subdifferential of a convex function f at a point x, denoted by ∂f(x), is the set consisting of
all vectors v ∈Rn satisfying f(z)≥ f(x) + 〈v, z − x〉 for all z ∈Rn. For any function f : Rn→R
and a real number t > 0, we define the Moreau envelope

gt(x) := min
y

{
g(y) +

1

2t
‖y−x‖2

}
,
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and the proximal mapping

proxtg(x) := arg min
y∈Rn

{g(y) +
1

2t
‖y−x‖2}.

The proximal map x 7→ proxtg(x) is always 1-Lipschitz continuous.
A set-valued mapping F : Rn⇒Rm is a mapping assigning to each point x∈Rn the subset F (x)

of Rm. The graph of such a mapping is the set

gphF := {(x, y)∈Rn×Rm : y ∈ F (x)}.

The inverse map F−1 : Rm ⇒Rn is defined by setting F−1(y) = {x : y ∈ F (x)}. Every mapping
F : Rn⇒Rn obeys the identity [50, Lemma 12.14]:

(I +F )−1 + (I +F−1)−1 = I. (2.1)

Note that for any convex function g and a real t > 0, equality proxtg = (I + t∂g)−1 holds.

3. Linear convergence of the prox-gradient method To motivate the discussion, con-
sider the optimization problem

min
x

ϕ(x) := f(x) + g(x) (3.1)

where g : Rn→R is a closed convex function and f : Rn→R is a convex C1-smooth function with
a β-Lipschitz continuous gradient:

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖ for all x, y ∈Rn.

The proximal gradient method is the recurrence

xk+1 = arg min
x∈Rn

f(xk) + 〈∇f(xk), x−xk〉+
1

2t
‖x−xk‖2 + g(x),

where the constant t > 0 is appropriately chosen. More succinctly, the method simply iterates

xk+1 = proxtg(xk− t∇f(xk)).

In order to see the parallel between the proximal gradient method and classical gradient descent
for smooth minimization, it is convenient to rewrite the recurrence yet again as xk+1 = xk− tGt(xk)
where

Gt(x) := t−1
(
x−proxtg(x− t∇f(x))

)
is the prox-gradient mapping. In particular, equality Gt(x) = 0 holds if and only if x minimizes ϕ.

Let S be the set of minimizers of ϕ and let ϕ∗ be the minimal value of ϕ. Supposing now t≤ β−1,
the following two inequalities are standard [40, Theorem 2.2.7, Corollary 2.2.1] and [7, Lemma 2.3]:

ϕ(xk)−ϕ(xk+1)≥ 1

2β
‖Gt(xk)‖2, (3.2)

ϕ(xk+1)−ϕ∗ ≤ 〈Gt(xk), xk−x∗〉−
1

2β
‖Gt(xk)‖2. (3.3)

Here x∗ denotes an arbitrary element of S. Hence equation (3.3) immediately implies

ϕ(xk+1)−ϕ∗ ≤ ‖Gt(xk)‖2
(
‖x∗−xk‖
‖Gt(xk)‖

− 1

2β

)
.
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Defining γk := ‖x∗−xk‖
‖Gt(xk)‖ and using inequality (3.2), along with some trivial algebraic manipulations,

yields the geometric decrease guarantee

ϕ(xk+1)−ϕ∗ ≤
(

1− 1

2βγk

)
(ϕ(xk)−ϕ∗). (3.4)

Hence if the quantities γk are bounded for all large k, asymptotic Q-linear convergence in function
values is assured. This observation motivates the following definition, originating in [31].

Definition 3.1 (Error bound condition). Given real numbers γ, ν > 0, we say that the
error bound condition holds with parameters (γ, ν) if the inequality

dist(x,S)≤ γ‖Gt(x)‖ is valid for all x∈ [ϕ≤ϕ∗+ ν].

Hence we have established the following.

Theorem 3.2 (Linear convergence). Suppose the error bound condition holds with param-
eters (γ, ν). Then the proximal gradient method with t≤ β−1 satisfies ϕ(xk)−ϕ∗ ≤ ε after at most

k≤ β

2ν
dist2(x0, S) + 2βγ ln

(
ϕ(x0)−ϕ∗

ε

)
iterations. (3.5)

Moreover, the iterate sequence xk converges to some x∗ ∈ S and there exists an index r such that
the inequality

‖xr+k−x∗‖2 ≤
(

1− 1

2βγ

)k
C · (ϕ(xr)−ϕ∗),

holds for all k≥ 1, where we set C := 2

β(1−
√

1−(2βγ)−1)2
.

Proof. From the the standard sublinear estimate ϕ(xk) − ϕ∗ ≤ β·dist2(x0,S)

2k
(see e.g. [7, Theo-

rem 3.1]), we deduce that after k ≤ β
2ν

dist2(x0, S) iterations the inequality ϕ(xk)− ϕ∗ ≤ ν holds.
The second summand in inequality (3.5) is then immediate from the linear rate (3.4) and the fact
that the values ϕ(xk) decrease monotonically.

It is standard that the sequence xk for k ≥ 1 is convergent. This directly follows from the
inequality ‖xk+1− x̄‖ ≤ ‖xk− x̄‖ holding for all k and x̄∈ S.2 Now, set x∗ := limk→∞ xk. Note that
if an iterate xr lies in the set [ϕ≤ϕ∗+ ν], then we have

‖xr+k−x∗‖ ≤
∞∑

i=r+k

‖xi−xi+1‖ ≤
√

2/β
∞∑

i=r+k

√
ϕ(xi)−ϕ(xi+1)

≤
√

2/β
√
ϕ(xr)−ϕ∗

∞∑
i=r+k

(
1− 1

2βγ

) i−r
2

≤
(

1− 1

2βγ

)k/2
D
√
ϕ(xr)−ϕ∗,

where we set D :=
√

2
√
β(1−
√

1−(2βγ)−1)
. Squaring both sides, the result follows. �

Convergence guarantees of Theorem 3.2 are expressed in terms of the error bound parameters
(γ, ν) – quantities not stated in terms of the initial data of the problem, f and g. Indeed, the
error bound condition is a property of the prox-gradient mapping Gt(x), a nontrivial object to
understand. In contrast, in the current work we will show that the error bound condition is simply
equivalent to the objective function ϕ growing quadratically away from its minimizing set S – a
familiar, transparent, and largely classical property in nonsmooth optimization.

2 See for example the first displayed equation of the proof of [7, Theorem 3.1]
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To gain some intuition, consider the simplest case g= 0. Then the prox-gradient method reduces
to gradient descent xk+1 = xk− t∇f(xk). Suppose now that f grows quadratically (globally) away
from its minimizing set, meaning there is a real number α> 0 such that

f(x)≥ f∗+
α

2
dist2(x,S) for all x∈Rn.

Notice this property is weaker than strong convexity even for C1-smooth functions; e.g f(x) =
(max{|x| − 1,0})2. Then convexity implies

α

2
dist2(x,S)≤ f(x)− f∗ ≤ 〈∇f(x), x∗−x〉 ≤ ‖∇f(x)‖‖x−x∗‖.

Thus the error bound condition holds with parameters (γ, ν) = ( 2
α
,∞), and the complexity bound

of Theorem 3.2 becomes k ≤ 4β
α

ln
(
ϕ(x0)−ϕ∗

ε

)
. This is the familiar linear rate of gradient descent

(up to a constant).
Our goal is to elucidate the quantitative relationship between quadratic growth and the error

bound condition in full generality. The strategy we follow is very natural; we will interpret the prox-
imal gradient method as an approximation to the true proximal point algorithm yk+1 = proxtϕ(yk)
on the function ϕ = f + g, and show a linear relationship between the corresponding step sizes
(Theorem 3.5). This will allow us to ignore the linearization appearing in the definition of the
proximal gradient method and focus on the relationship between quadratic growth of ϕ, proper-
ties of the mapping proxtϕ, and of the subdifferential ∂ϕ (Theorems 3.3 and 3.4). We believe this
interpretation of the proximal gradient method is of interest in its own right.

The following is a central result we will need. It establishes a relationship between quadratic
growth properties and a “global error bound property” of the function x 7→ d(0, ∂ϕ(x)). Variants
of this result have appeared in [1, Theorem 3.3], [4, Theorem 6.1], [19, Theorem 4.3], [23, Theorem
3.1], and [27].

Theorem 3.3 (Subdifferential error bound and quadratic growth). Consider a closed
convex function h : Rn→R with minimal value h∗ and let S be its set of minimizers. Consider the
conditions

h(x)≥ h(x̄) +
α

2
·dist2(x;S) for all x∈ [h≤ h∗+ ν] (3.6)

and
dist(x;S)≤L ·dist(0;∂h(x)) for all x∈ [h≤ h∗+ ν]. (3.7)

If condition (3.6) holds, then so does condition (3.7) with L= 2α−1. Conversely, condition (3.7)
implies condition (3.6) with any α∈ (0, 1

L
].

The proof of the implication (3.6)⇒ (3.7) is identical to the proof of the analogous implication
in [1, Theorem 3.3]; the proof of the implication (3.7)⇒ (3.6) is the same as that of [19, Theorem
4.3],[23, Theorem 3.1]. Hence we omit the arguments.

Given the equality proxth = (I+ t∂h)−1, it is clear that the subdifferential error bound condition
(3.7) is related to an analogous property of the proximal mapping. This is the content of the
following elementary result.

Theorem 3.4 (Proximal and subdifferential error bounds).
Consider a closed convex function h : Rn→R with minimal value h∗ and let S be its set of mini-
mizers. Consider the conditions

dist(x;S)≤L ·dist(0;∂h(x)) for all x∈ [h≤ h∗+ ν]. (3.8)

and
dist(x;S)≤ L̂ · t−1‖x−proxth(x)‖ for all x∈ [h≤ h∗+ ν]. (3.9)

If condition (3.8) holds, then so does condition (3.9) with L̂= L+ t. Conversely, condition (3.9)
implies condition (3.8) with L= L̂.
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Proof. Suppose condition (3.8) holds and consider a point x ∈ [h ≤ h∗ + ν]. Then clearly the
inequality h(proxth(x))≤ h(x)≤ h∗+ν holds. Taking into account the inclusion t−1(x−proxth(x))∈
∂h(proxth(x)), we obtain

dist(x,S)≤ ‖x−proxth(x)‖+ dist(proxth(x), S)
≤ ‖x−proxth(x)‖+L ·dist(0;∂h(proxth(x)))
≤ (1 + t−1L)‖x−proxth(x)‖,

as claimed. Conversely suppose condition (3.9) holds and fix a point x∈ [h≤ h∗+ν]. Then for any
subgradient v ∈ ∂h(x), equality proxth(x+ tv) = x holds. Hence, we obtain

dist(x,S)≤ L̂t−1‖x−proxth(x)‖ ≤ L̂t−1 ‖proxth(x+ tv)−proxth(x)‖ ≤ L̂‖v‖,

where we have used the fact that the proximal mapping is 1-Lipschitz continuous. Since the sub-
gradient v ∈ ∂h(x) is arbitrary, the result follows. �

The final step is to relate the step sizes taken by the proximal gradient and the proximal point
methods. The ensuing arguments are best stated in terms of monotone operators. To this end,
observe that our running problem (3.1) is equivalent to solving the inclusion

0∈∇f(x) + ∂g(x).

More generally, consider monotone operators F : Rn→Rn and G : Rn⇒R, meaning that F and
G satisfy the inequalities 〈v1− v2, x1−x2〉 ≥ 0 and 〈F (x1)−F (x2), x1−x2〉 ≥ 0 for all xi ∈Rn and
vi ∈G(xi) with i= 1,2. We now further assume that G is maximal monotone, meaning that the
graph gphG is not a proper subset of the graph of any other monotone operator. Along with the
operator G and a real t > 0, we associate the resolvent

proxtG := (I + tG)−1.

The mapping proxtG : Rn → Rn is then single-valued and nonexpansive (1-Lipschitz continuous
[50, Theorem 12.12]). We aim to solve the inclusion

0∈Φ(x) := F (x) +G(x)

by the Forward-Backward algorithm

xk+1 = proxtG(xk− tF (xk)),

Equivalently we may write xk+1 = xk− tGt(xk) where Gt(x) is the prox-gradient mapping

Gt(x) :=
1

t
(x−proxtG(x− tF (x)) .

Setting F =∇f , G := ∂g, Φ := ∂ϕ recovers the proximal gradient method for the problem (3.1).
The following key result shows that the step lengths of the Forward-Backward algorithm and

those taken by the proximal point algorithm zk+1 = proxtΦ(zk) are proportional. During the final
stages of the review process, we became aware of the earlier paper [17], where essentially the same
result is proved.

Theorem 3.5 (Step-lengths comparison). Consider two maximal monotone operators
G : Rn ⇒ Rn and Φ: Rn ⇒ Rn, with the difference F := Φ − G that is single-valued. Then the
inequality

‖Gt(x)‖ ≤ dist (0;Φ(x)) holds. (3.10)

Supposing that F is in addition β-Lipschitz continuous, the inequalities hold:

(1−βt) · ‖Gt(x)‖ ≤ ‖t−1 (x−proxtΦ(x))‖ ≤ (1 +βt) · ‖Gt(x)‖ (3.11)
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Proof. Fix a point x∈Rn and a vector v ∈Φ(x). Then clearly the inclusion

(x− tF (x)) + tv ∈ x+ tG(x) holds,

or equivalently x = proxtG((x − tF (x)) + tv). Since the proximal mapping is nonexpansive, we
deduce

t‖Gt(x)‖= ‖x−proxtG(x− tF (x))‖ ≤ t‖v‖.

Letting v be the minimal norm element of Φ(x), we deduce the claimed inequality ‖Gt(x)‖ ≤
dist (0;Φ(x)).

Now suppose that F is β-Lipschitz continuous. Consider a point x ∈Rn and define z := Gt(x).
Observe the chain of equivalences:

z = Gt(x) ⇔ tz = x−proxtG(x− tF (x))
⇔ x− tF (x)∈ (x− tz) + tG(x− tz)
⇔ x+ t (F (x− tz)−F (x))∈ (I + tΦ)(x− tz)

Define now the vector w= F (x− tz)−F (x) and note ‖w‖ ≤ βt‖z‖. Hence taking into account that
resolvents are nonexpansive, we obtain

x− tz = proxtΦ(x+ tw)⊂ proxtΦ(x) + t‖w‖B,

and so deduce

z ∈ 1

t
(x−proxtΦ(x)) +βt‖z‖B.

Hence ∣∣∣‖z‖− t−1‖x−proxtΦ(x)‖
∣∣∣≤ ‖z− t−1 (x−proxtΦ(x))‖ ≤ βt‖z‖.

The two inequalities in (3.11) follow immediately. �

We now arrive at the main result of this section.

Corollary 3.6 (Error bound and quadratic growth). Consider a closed, convex func-
tion g : Rn→R and a C1-smooth convex function f : Rn→R with β-Lipschitz continuous gradient.
Suppose that the function ϕ := f+g has a nonempty set S of minimizers and consider the following
conditions:
• (Quadratic growth)

ϕ(x)≥ϕ? +
α

2
·dist2(x;S) for all x∈ [ϕ≤ϕ∗+ ν] (3.12)

• (Error bound condition)

dist(x,S)≤ γ‖Gt(x)‖ is valid for all x∈ [ϕ≤ϕ∗+ ν], (3.13)

Then property (3.12) implies property (3.13) with γ = (2α−1 + t)(1 + βt). Conversely, condition
(3.13) implies condition (3.12) with any α∈ (0, γ−1].

Proof. Suppose condition (3.12) holds. Then for any x∈ [ϕ≤ϕ∗+ ν], we deduce

dist(x,S)≤ 2α−1 ·dist(0;∂ϕ(x)) (Theorem 3.3)
≤ (2α−1 + t)‖t−1(x−proxtϕ(x))‖ (Theorem 3.4)
≤ (2α−1 + t)(1 +βt)‖Gt(x)‖ (Inequality 3.11)

This establishes (3.13) with γ = (2α−1 + t)(1 + βt). Conversely suppose (3.13) holds. Then for
any x ∈ [ϕ ≤ ϕ∗ + ν] we deduce using Theorem 3.5 the inequality dist(x,S) ≤ γ‖Gt(x)‖ ≤ γ ·
dist(0, ∂ϕ(x)). An application of Theorem 3.3 completes the proof. �
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The following convergence result is now immediate from Theorem 3.2 and Corollary 3.6. Notice
that the complexity bound matches (up to a constant) the linear rate of convergence of the proximal
gradient method when applied to strongly convex functions.

Corollary 3.7 (Quadratic growth and linear convergence). Consider a closed, convex
function g : Rn→R and a C1-smooth function f : Rn→R with β-Lipschitz continuous gradient.
Suppose that the function ϕ := f + g has a nonempty set S of minimizers and that the quadratic
growth condition holds:

ϕ(x)≥ϕ∗+
α

2
·dist2(x;S) for all x∈ [ϕ≤ϕ∗+ ν].

Then the proximal gradient method with t≤ β−1 satisfies ϕ(xk)−ϕ∗ ≤ ε after at most

k≤ β

2ν
dist2(x0, S) + 12 · β

α
ln

(
ϕ(x0)−ϕ∗

ε

)
iterations.

Moreover, the iterate sequence xk converges to some x∗ ∈ S and there exists an index r such that
the inequality

‖xr+k−x∗‖2 ≤
(

1− 1

2βγ

)k
C · (ϕ(xr)−ϕ∗),

holds for all k≥ 1, where we set C := 2

β(1−
√

1−(2βγ)−1)2
and γ := (2α−1 + t)(1 +βt).

4. Quadratic growth in structured optimization Recently, the authors of [55] proved
that the error bound condition holds under very mild assumptions, thereby explaining asymptotic
linear convergence of the proximal gradient method often observed in practice. In this section, we
aim to use the equivalence between the error bound condition and quadratic growth, established in
Theorem 3.6, to streamline and illuminate the arguments in [55], while also extending their results
to a wider setting. To this end, consider the problem

inf
x
ϕ(x) := f(Ax) + g(x) (4.1)

where f : Rm→R is convex and C1-smooth, g : Rn→R is closed and convex, and A : Rn→Rm

is a linear mapping. We assume that g is proper, meaning that its domain is nonempty and it does
not take the value −∞. Consider now the Fenchel dual problem

sup
y
−Ψ(y) :=−f?(y)− g?(−ATy). (4.2)

By [47, Corollary 31.2.1(a)], the optimal values of the primal (4.1) and of the dual (4.2) are equal,
and the dual optimal value is attained. To make progress, we assume that the dual problem (4.2)
admits a strictly feasible point:

1. (dual nondegeneracy) 0∈AT (ri domf?) + ridomg?,
Then by [47, Corollary 31.2.1(b)], the optimal value of the primal (4.1) is also attained. From the
Kuhn-Tucker conditions [47, p. 333], any optimal solution of the dual coincides with ∇f(Ax) for
any primal optimal solution x. In particular, the dual has a unique optimal solution and we will
denote it by ȳ. Clearly, the inclusion 0∈ ∂Ψ(ȳ) holds. We now assume the mildly stronger property:

2. (dual strict complementarity) 0∈ ri∂Ψ(ȳ).
Taken together, these two standard conditions (dual nondegeneracy and dual strict complemen-
tarity) immediately imply

0∈ ri∂Ψ(ȳ) = ri
(
∂f?(ȳ)−A∂g?(−AT ȳ)

)
= ri∂f?(ȳ)−A

(
ri∂g?(−AT ȳ)

)
, (4.3)
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where the last equality follows for example from [47, Theorem 6.6].
Let S be the solution set of the primal problem (4.1). To highlight the impact of the inclusion

(4.3) on error bounds, recall that we must estimate the distance dist(x,S) for an arbitrary point
x. To this end, the Kuhn-Tucker conditions again directly imply that S admits the description

S = ∂g?(−AT ȳ)∩A−1∂f?(ȳ).

The inclusion (4.3), combined with [47, Theorem 6.7], guarantees that the relative interiors of the
two sets ∂g?(−AT ȳ) and A−1∂f?(ȳ) meet. Then appealing to [6, Corollary 4.5], we deduce that for
any compact set X ⊂Rn there exists a constant κ≥ 0 satisfying3

dist(x,S)≤ κ
(

dist(x,∂g?(−AT ȳ)) + dist(Ax,∂f?(ȳ))
)

for all x∈X . (4.4)

This type of an inequality is often called linear regularity; see for example [6, Corollary 4.5]. The
final assumption we need to deduce quadratic growth of ϕ, not surprisingly, is a quadratic growth
condition on the individual functions f and g after tilt perturbations.

Definition 4.1 (Firm convexity). A closed convex function h : Rn → R is firmly convex
relative to a vector v ∈Rn if the tilted function hv(x) := h(x)−〈v,x〉 satisfies the quadratic growth
condition: for any compact set X ⊂Rn there is a constant α satisfying

hv(x)≥ (inf hv) +
α

2
dist2(x, (∂hv)

−1(0)) for all x∈X .

We say that h is firmly convex if h is firmly convex relative to any v ∈Rn, for which (∂hv)
−1(0) 6= ∅.

Note that not all convex functions are firmly convex; for example f(x) = x4 is not firmly convex
at x= 0 relative to v = 0. We are now ready to prove the main theorem of this section; note that
unlike in [55], we do not require strong convexity of the function f . This generalization is convenient
since it allows to capture “robust” formulations where f is a translate of the Huber penalty or its
asymmetric extensions.

Theorem 4.2 (Quadratic growth in composite optimization). Consider a closed, con-
vex function g : Rn → R and a C1-smooth convex function f : Rm → R. Suppose that the sum
ϕ(x) := f(Ax) + g(x) has a nonempty set S of minimizers and let ȳ be the optimal solution of the
dual problem (4.2). Suppose the conditions hold:

1. (Compactness) The solution set S is bounded.
2. (Dual nondegeneracy and strict complementarity) Assumptions 1 and 2.
3. (Quadratic growth of components) The functions f and g are firmly convex relative to ȳ and

−AT ȳ, respectively.
Then the error bound condition holds with some parameters (γ, ν).

Proof. Since S is compact, all sublevel sets of ϕ are compact. Choose a number ν > 0 and set
X := [ϕ≤ ϕ∗+ ν] and Y =A(X ). Let x̄ ∈ S be arbitrary and note the equality ȳ =∇f(Ax̄). Then
observing that Ax̄ minimizes f(·)−〈ȳ, ·〉 and x̄ minimizes g(·) + 〈AT ȳ, ·〉, property (3) (Quadratic
growth of components) guarantees that there exist constants c,α≥ 0 such that

f(y)≥ f(Ax̄) + 〈ȳ, y−Ax̄〉+ c

2
dist2(y, (∂f)−1(ȳ)) for all y ∈Y, (4.5)

and
g(x)≥ g(x̄) + 〈−AT ȳ, x− x̄〉+ α

2
dist2(x, (∂g)−1(−AT ȳ)) for all x∈X .

3 This follows by applying the characterization of linear regularity in [6, Corollary 4.5] first to the pair of sets,
∂g?(−AT ȳ) and A−1∂f?(ȳ), and then to the pair, gph A and Rn× ∂f∗(ȳ).
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Letting κ be the constant from (4.4) and setting y :=Ax in (4.5), we deduce

ϕ(x) = f(Ax) + g(x)≥
(
f(Ax̄) + 〈ȳ,Ax−Ax̄〉+ c

2
dist2(Ax,∂f?(ȳ))

)
+

+
(
g(x̄) + 〈−AT ȳ, x− x̄〉+ α

2
dist2(x,∂g?(−AT ȳ))

)
≥ϕ(x̄) +

min{α, c}
4κ2

dist2(x,S).

This completes the proof. �

Notice that firm convexity requires a certain inequality to hold on compact sets X , rather than
on sublevel sets. In any case, firm convexity is intimately tied to error bounds. For example,
analogously to Theorem 3.3, one can show that h is firmly convex relative to v if and only if for
any compact set X there exists a constant L≥ 0 satisfying

dist(x, (∂h)−1(v))≤L ·dist(v, ∂h(x)) for all x∈X .

Indeed this is implicitly shown in the proof of Theorem [1, Theorem 3.3], for example. Moreover,
the same argument as in Theorem 3.4 shows that h is firmly convex relative to v if and only if for
any compact set X there exists a constant L̂≥ 0 satisfying

dist(x;S)≤ L̂ · ‖t−1(x−proxth(x))‖ for all x∈X .

The class of firmly convex functions is large, including for example all strongly convex functions
and polyhedral functions h. More generally, all convex Piecewise Linear Quadratic (PLQ) functions
[50, Section 10.20] are firmly convex, since their subdifferential graphs are finite unions of polyhedra.
Indeed, the subclass of affinely composed PLQ penalties [50, Example 11.18] is ubiquitous in
optimization. These are functions of the form

h(x) := sup
z∈Z
〈Bx− b, z〉− 〈Az, z〉

where Z is a polyhedron, B is a linear map, and A is a positive-semidefinite matrix. For more
details on the PLQ family, see [2, 3]. For example, the elastic net penalty [56], used for group
detection, and the soft-insensitive loss [15], used for training Support Vector Machines, fall within
this class. We note that the class of PLQ penalties is subsumed by the dual functions considered
in [31], which were shown to satisfy the error bound property in [32].

Note that the assumptions of dual nondegeneracy and strict complementarity (Assumptions 1
and 2) were only used in the proof Theorem 4.2 to guarantee inequality (4.4). On the other hand,
this inequality holds automatically if the subdifferentials ∂g?(−AT ȳ) and ∂f?(ȳ) are polyhedral—a
common situation.

Corollary 4.3 (Quadratic growth without strict complementarity).
Consider a closed convex function g : Rn → R and a C1-smooth convex function f : Rm → R.

Suppose that the function ϕ(x) := f(Ax) + g(x) has a nonempty compact set S of minimizers and
let ȳ be the optimal solution of the dual problem (4.2). Suppose the conditions hold:

1. (Compactness) The solution set S is bounded.
2. (Polyhedrality) Assume that the subdifferential sets, ∂g?(−AT ȳ) and ∂f?(ȳ), are polyhedral.
3. (Quadratic growth of components) The functions f and g are firmly convex relative to ȳ and

−AT ȳ, respectively.
Then the error bound condition holds with some parameters (γ, ν).

Firm convexity is preserved under separable sums.
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Lemma 4.4 (Separable sum). Consider a family of functions fi : Rni →R for i = 1, . . . ,m
with each fi firmly convex relative to some vi ∈Rni. Then the separable function f : Rn1+...+nm→R
defined by f(x) =

∑m

i=1 fi(xi) is firmly convex relative to the vector (v1, . . . , vn).

Proof. The proof is immediate from definitions. �

Combining Corollary 4.3 and Lemma 4.4, one recovers immediately the result of [51, Theorem
2] showing that the group LASSO always satisfies the error bound condition.

Next, we note that firmly convex functions are preserved by the Moreau envelope.

Theorem 4.5 (Moreau envelope). Consider a function h : Rn → R that is firmly convex
relative to a vector v. Then the Moreau envelope ht is itself firmly convex relative to v.

Proof. Define the tilted functions hv(x) := h(x)−〈v,x〉 and (ht)v(x) := ht(x)−〈v,x〉. Observe

(ht)v(x) = min
y

{
h(y) +

1

2t
‖y−x‖2− 1

t
〈tv,x〉

}
= min

y

{
h(y)−〈v, y〉+ 1

2t
‖y− (x− tv)‖2− t

2
‖v‖2

}
= (hv)

t(x− tv)− t

2
‖v‖2.

Since firm convexity is invariant under translation of the domain, it is now sufficient to show that
(hv)

t is firmly convex relative to the zero vector. To this end, let S be the set of minimizers of
hv, or equivalently the set of minimizers of (hv)

t. Since h is firmly convex relative to v, for any
compact set Z ⊂Rn, there exists a constant L̂≥ 0 so that

dist(z,S)≤ L̂‖t−1(z−proxthv(z))‖ for all z ∈Z.

Taking into account the equation

∇(hv)
t(z) = t−1[z−proxthv(z)],

we deduce dist(z,S)≤ L̂ · ‖∇(hv)
t(z)‖ for all z ∈Z, thereby completing the proof. �

In summary, all typical smooth penalties (e.g. square l2-norm, logistic loss), polyhedral functions
(e.g. l1 and l∞-penalties, vapnik, hinge loss, check function, anisotropic total variation penalty),
Moreau envelopes of polyhedral functions (e.g. Huber and quantile huber [3]), group LASSO regu-
larizer, and general affinely composed PLQ penalties (e.g. soft-insensitive loss [15], elastic net [56])
are firmly convex. Another important example is the nuclear norm [55].

Remark 4.1 (Role of compactness). Notice that the assumptions of Theorem 4.2 require
the solution set S to be compact. This assumption is used in two places: (1) the definition of firm
convexity has to do with quadratic growth on compact sets and (2) the dual strict complementarity
only implies equation (4.4) on compact sets. If instead, the functions f and g are firmly convex
globally (i.e. X in the definition is the whole space) and the subdifferentials ∂g?(−AT ȳ) and ∂f?(ȳ)
are polyhedral, then the compactness assumption on S can be dropped.

4.1. Discussion of recent related work There have been a number of closely related
manuscripts circulating shortly before or concurrently with the initial version of our manuscript
[22], namely [8, 30, 39, 54, 55]. These papers pertain to the first four sections on additive composite
minimization. Concerning these papers, we here discuss only those results that overlap with ours.

The authors of [39] consider the problem of minimizing a smooth convex function over a simple
closed convex set. They define various quadratic growth conditions, and show their equivalence
to the error bound of Luo-Tseng, up to a rescaling by problem-independent constants. They then
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prove linear convergence guarantees for a number of popular first-order methods, and compute
condition numbers when the constraint set is polyhedral. An important distinguishing feature of
our work is that we prove an equivalence of the error bound and subdifferential subregularity
(3.7), the latter being known to be equivalent to quadratic growth for convex functions. It is this
equivalence that extends to Gauss-Newton type methods for problems of the form (1.1) – the
setting where quadratic growth alone does not necessarily imply the error bound. The proofs in the
two manuscripts are also very different, and our results are stated for additive composite problems.

The paper [8] studies the impact of the K L–inequality on complexity of first-order methods
for convex minimization. In particular, the authors show that the K L–inequality with exponent
1/2 is equivalent to quadratic growth. Combining our work with [8], one concludes that for any
closed convex function, the K L–inequality with exponent 1/2, quadratic growth, and subdifferen-
tial subregularity are equivalent (up to problem-independent constants); if the function is a sum
of a smooth and a convex function, these notions are also equivalent to the error bound property.
The equivalence proof of the K L–inequality with exponent 1/2 and quadratic growth in [8] relies
on a subgradient flow argument. As an aside, it is worth noting that a different proof based instead
on a perturbation argument appears in [20, Theorems 3.7, Proposition 3.8]. Indeed, in nonconvex
settings, the K L–inequality with a desingularizing power function always implies Hölder subdiffer-
ential subregularity, while the converse holds for prox-regular (e.g. weakly convex) functions.

The paper [55] develops sufficient conditions under which the error bound holds for problems of
Fenchel form (4.1). Most importantly, the authors recognized the key ingredient: strict dual com-
plementarity. Their strategy follows a careful analysis of subregularity of certain maps associated
with the problem. Our paper complements and builds on their work; we show in Section 4 how the
equivalence of the error bound with quadratic growth significantly simplifies the analysis.

Manuscript [30] focuses on a calculus of the K L-inequality in nonconvex optimization. Aside
from proving a number of positive results, the authors make a compelling case that for nonconvex
problems, no reasonable condition implies validity of a sum rule. Taking into account the equiva-
lence of the K L-inequality with growth conditions, it is therefore quiet striking that the sum rule
does hold for convex problems (see [55] or Section 4 of the current manuscript).

The paper [54] also seeks to understand linear rates of converge under conditions weaker than
strong convexity. Their development, in part using the results developed here, instead focuses on
equating restricted strong convexity with the error bound.

5. Prox-linear algorithm We next step away from convex formulations (3.1), and consider
the broad class of nonsmooth and nonconvex optimization problems

min
x

ϕ(x) := g(x) +h(c(x)), (5.1)

where g : Rn→R is a proper closed convex function, h : Rm→R is a finite-valued convex function,
and c : Rn→Rm is a C1-smooth mapping. Since such problems are typically nonconvex, we seek
a point x that is only first-order stationary, meaning that the directional derivate of ϕ at x is
nonnegative in all directions. The directional derivate of ϕ is exactly the support function of the
subdifferential set, defined by

∂ϕ(x) := ∂g(x) +∇c(x)T∂h
(
c(x)

)
,

and hence stationary of ϕ at x simply amounts to the inclusion 0∈ ∂ϕ(x).4

4 For those well-versed in variational analysis, we note that ∂ϕ(x) coincides with the Fréchet, limiting, and Clarke
subdifferentials of ϕ at x. The more general definition outside the composite setting will appear in Definition 9.1.
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To specify the algorithm we study, define for any points x, y ∈Rn the linearized function

ϕ(x;y) := g(y) +h
(
c(x) +∇c(x)(y−x)

)
,

and for any real t > 0 consider the quadratic perturbation

ϕt(x;y) :=ϕ(x;y) +
1

2t
‖x− y‖2.

Note that the function ϕ(x; ·) is always convex, even though ϕ typically is not convex. Let xt be
the minimizer of the proximal subproblem

xt := arg min
y

ϕt(x;y).

Suppose now that h is L-Lipschitz continuous and the Jacobian ∇c(x) is β-Lipschitz continuous.
It is then immediate that the linearized function ϕ(x; ·) is quadratically close to ϕ itself:

− Lβ
2
‖x− y‖2 ≤ϕ(y)−ϕ(x;y)≤ Lβ

2
‖x− y‖2. (5.2)

In particular, ϕt(x; ·) is a quadratic upper estimator of ϕ for any t≤ (Lβ)−1. We now define the
prox-gradient mapping in the natural way

Gt(x) := t−1(x−xt).

It is easily verified that equality Gt(x) = 0 holds if and only if x is stationary for ϕ. In this section,
we consider the well-known prox-linear method (Algorithm 1), recently studied for example in [29];
see also [14] for interesting variants. The ideas behind the method (and its trust-region versions)
go back a long time, e.g. [9, 10, 12, 13, 25, 45, 46, 52, 53]; see [9] for a historical discussion. We
note that Algorithm 1 differs slightly from the one in [29] in the step acceptance criterion.

Algorithm 1 Prox-linear method

Input: A point x1 ∈ domg, and constants q ∈ (0,1), t > 0, and σ > 0.
k← 1
while ‖Gt(xk)‖> ε do

while ϕ(xtk)>ϕ(xk)− σ
2
‖Gt(xk)‖2 do

t← qt . Backtracking

end while
xk+1← xtk . Iterate update

k← k+ 1
end while
return xk

Note that the prox-gradient method in Section 3 for the problem minx f(x)+g(x) is an example
of Algorithm 1 with the decomposition c(x) = f(x) and h(r) = r. In this case, we have L = 1.
Observe also that we do not require f to be convex anymore. Motivated by this observation, we
now perform an analysis following the same strategy as for the proximal gradient method; there are
important and surprising differences, however, both in the conclusions we make and in the proof
techniques. We begin with the following lemma; the proof follows that of [40, Lemma 2.3.2].
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Lemma 5.1 (Gradient inequality). For all points x, y ∈Rn, the inequality

ϕ(x;y)≥ϕt(x;xt) + 〈Gt(x), y−x〉+ t

2
‖Gt(x)‖2, (5.3)

holds, and consequently we have

ϕ(y)≥ϕ(xt) + 〈Gt(x), y−x〉+ t

2
(2−Lβt)‖Gt(x)‖2− Lβ

2
‖x− y‖2. (5.4)

and

ϕ(x)≥ϕ(xt) +
t

2
(2−Lβt)‖Gt(x)‖2. (5.5)

Proof. Noting that the function ϕt(x;y) :=ϕ(x;y)+ 1
2t
‖y−x‖2 is strongly convex in the variable

y, we deduce

ϕ(x;y) =ϕt(x;y)− 1

2t
‖y−x‖2

≥ϕt(x;xt) +
1

2t

(
‖y−xt‖2−‖y−x‖2

)
=ϕt(x;xt) + 〈Gt(x), y−x〉+ t

2
‖Gt(x)‖2,

establishing (5.3). Inequality (5.4) follows by combining (5.2) and (5.3). Finally, we obtain inequal-
ity (5.5) from (5.4) by setting y= x. �

For simplicity, we assume that the constants L and β are known and we set t≤ 1
Lβ

and σ= 1
Lβ

in
Algorithm 1, so that the line search always accepts the initial step. The more general setting with
the backtracking line-search is entirely analogous. Observe now that the inequality (5.5) yields the
functional decrease guarantee

ϕ(xk+1)≤ϕ(xk)−
1

2Lβ
‖Gt(xk)‖2, (5.6)

and hence we obtain the global convergence rate

min
i=1,...,k

‖Gt(xi)‖2 ≤
2Lβ

k

k∑
i=1

ϕ(xi)−ϕ(xi+1) =
2Lβ(ϕ(x1)−ϕ∗)

k
,

where ϕ∗ := limk→∞ϕ(xk). Note moreover the prox-gradients Gt(xk) tend to zero, since their norms
are square-summable. Thus after 2Lβ(ϕ(x1)−ϕ∗)/ε iterations, we can be sure that Algorithm 1
finds a point xk satisfying ‖Gt(xk)‖2 ≤ ε.

Does a small stepsize ‖Gt(x)‖ imply that x is “nearly stationary”? This question is fundamental,
and speaks directly to reliability of the termination criterion of Algorithm 1. We will see shortly
(Theorem 5.3) that the answer is affirmative: if the quantity ‖Gt(x)‖ is small, then x is close to
a point that is nearly stationary for ϕ. Our key tool for establishing this result will be Ekeland’s
variational principle.

Theorem 5.2 (Ekeland’s variational principle).
Consider a closed function f : Rn→R that is bounded from below. Suppose that for some ε > 0

and x̄∈Rn, we have f(x̄)≤ inf f + ε. Then for any ρ> 0, there exists a point ū satisfying
• f(ū)≤ f(x̄),
• ‖x̄− ū‖ ≤ ε/ρ,
• {ū}= arg min

u
{f(u) + ρ‖u− ū‖}.
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We can now explain the relation of the quantity ‖Gt(x)‖ to approximate stationarity. Aside from
its immediate appeal, this result will play an important role in the proof of Theorem 5.11 and in
sections 6, 7.

Theorem 5.3 (Prox-gradient and near-stationarity).
Consider the convex-composite problem (5.1), where h is L-Lipschitz continuous and the Jacobian
∇c is β-Lipschitz. Then for any real t > 0, there exists a point x̂ satisfying the properties

1. (point proximity) ‖xt− x̂‖ ≤ ‖xt−x‖,
2. (value proximity) ϕ(x̂)−ϕ(xt)≤ t

2
(Lβt+ 1)‖Gt(x)‖2,

3. (near-stationarity) dist (0;∂ϕ(x̂))≤ (3Lβt+ 2)‖Gt(x)‖.

Proof. Define the function ζ(y) := ϕ(y) + 1
2
(Lβ + t−1)‖x − y‖2 and note that the inequality

ζ(y)≥ϕt(x, y)≥ϕt(x,xt) holds for all y ∈Rn. Letting ζ∗ be the infimal value of ζ, we have

ζ(xt)− ζ∗ ≤ϕ(xt)−ϕ(x;xt) +
Lβ

2
‖xt−x‖2 ≤Lβ‖xt−x‖2,

where the last inequality follows from (5.2). Define the constants ε :=Lβ‖xt−x‖2 and ρ :=Lβ‖xt−
x‖. Applying Ekeland’s variational principle, we obtain a point x̂ satisfying the inequalities ζ(x̂)≤
ζ(xt) and ‖xt− x̂‖ ≤ ε/ρ, and the inclusion 0 ∈ ∂ζ(x̂) + ρB. The proximity conditions (1) and (2)
are immediate. To see near-stationarity (3), observe

dist(0, ∂ϕ(x̂))≤ ρ+ (Lβ+ t−1)‖x̂−x‖
≤Lβ‖xt−x‖+ (Lβ+ t−1)(‖xt− x̂‖+ ‖xt−x‖)
≤
(
Lβ+ 2(Lβ+ t−1)

)
‖xt−x‖.

The result follows. �

Following the general outline of the paper and armed with Theorem 5.3, we now turn to linear
convergence. To this end, let {xk} be a sequence generated by Algorithm 1 and suppose that x∗ is a
limit point of {xk}. Then inequality (5.4) (with y= x∗) and lower-semicontinuity of ϕ immediately
imply that the values ϕ(xk) converge to ϕ(x∗). A standard argument also shows that x∗ is a
stationary point of ϕ. Appealing to inequality (5.4) with y= x∗, we deduce

ϕ(xk+1)−ϕ(x∗)≤ ‖Gt(xk)‖2
(
‖xk−x∗‖
‖Gt(xk)‖

+
Lβ

2

‖xk−x∗‖2

‖Gt(xk)‖2
+
t

2
(Lβt− 2)

)
.

Defining γk := max{1,‖xk−x∗‖/‖Gt(xk)‖} we deduce

ϕ(xk+1)−ϕ(x∗)≤ ‖Gt(xk)‖2
((

1 +
Lβ

2

)
γ2
k +

t

2
(Lβt− 2)

)
. (5.7)

Combining this inequality with (5.6) yields the geometric decay

ϕ(xk+1)−ϕ(x∗)≤
(

1− 1

Lβ(2 +Lβ)γ2
k

)
(ϕ(xk)−ϕ(x∗)).

Hence provided that γk are bounded for all large k, the function values asymptotically converge
Q-linearly. This motivates the following definition, akin to Definition 3.1.

Definition 5.4 (Error bound condition). We say that the error bound condition holds
around a point x̄ with parameter γ > 0 if there exists a real number ε > 0 so that the inequality

dist (x, (∂ϕ)
−1

(0))≤ γ‖Gt(x)‖ is valid for all x∈Bε(x̄).
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Hence we arrive at the following convergence guarantee.

Theorem 5.5 (Linear convergence of the proximal method). Consider the sequence xk
generated by Algorithm 1 with t ≤ (Lβ)−1, and suppose that xk has some limit point x∗ around
which the error bound condition holds with parameter γ > 0. Define now the fraction

q := 1− 1

Lβ(2 +Lβ)γ2
.

Then for all large k, function values converge Q-linearly

ϕ(xk+1)−ϕ(x∗)≤ q · (ϕ(xk)−ϕ(x∗)),

while xk asymptotically converge R-linearly: there exists an index r such that the inequality

‖xr+k−x∗‖2 ≤C · (ϕ(xr)−ϕ∗) · qk,

holds for all k≥ 1, where we set C := 2

Lβ(1−
√

1−(1−q)−1)2
.

Proof. Let ε, ν > 0 be as in Definition 5.4. As observed above, the function values ϕ(xk) converge
to ϕ(x∗). Hence we may assume all the iterates xk lie in [ϕ ≤ ϕ(x∗) + ν]. We aim now to show
that if xr is sufficiently close to x∗, then all following iterates never leave the ball Bε(x

∗). To this
end, let r be an index such that xr lies in Bε(x

∗) and let k ≥ 1 be the smallest index satisfying
xr+k /∈Bε(x∗). Defining ζ :=Lβ(2 +Lβ)γ2 and using inequality (5.6), we deduce

‖xk−xr‖ ≤
k−1∑
i=r

‖xi−xi+1‖ ≤
√

2/(Lβ)
k−1∑
i=r

√
ϕ(xi)−ϕ(xi+1)

≤
√

2/(Lβ)
√
ϕ(xr)−ϕ(x∗)

k∑
i=r

(
1− 1

ζ

) i−r
2

≤

√
2(ϕ(xr)−ϕ(x∗))

Lβ(1− ζ−1)
.

Hence if xr lies in the ball Bε/2(x∗) and is sufficiently close to x∗ so that the right-hand-side is
smaller than ε

2
, we obtain a contradiction. Thus there exists an index r so that for all k ≥ r, the

iterates xk lie in Bε(x
∗). The claimed Q-Linear rate follows immediately. To obtain the R-linear

rate of the iterates, we argue as in the proof of Theorem 3.2:

‖xr+k−x∗‖ ≤
∞∑

i=r+k

‖xi−xi+1‖ ≤
√

2/(Lβ)
∞∑

i=r+k

√
ϕ(xi)−ϕ(xi+1)

≤
√

2/(Lβ)
√
ϕ(xr)−ϕ(x∗)

∞∑
i=r+k

(
1− 1

ζ

) i−r
2

≤
(

1− 1

ζ

)k/2
D
√
ϕ(xr)−ϕ∗,

where D=
√

2
√
Lβ(1−

√
1−ζ−1)

. Squaring both sides, the result follows. �

Theorem 5.5 already marks a point of departure from the convex setting. Gradient descent for an
α-strongly convex function with β-Lipschitz gradient converges at the linear rate 1−α/β. Treating
this setting as a special case of composite minimization with g = 0 and h(t) = t, Theorem 5.5
guarantees the linear rate only on the order of 1− (α/β)2. The difference is the lack of convexity;
the linearizations ϕ(x; ·) no longer lower bound the objective function ϕ, but only do so up to a
quadratic deviation, thereby leading to a worse linear rate of convergence. We put this issue aside
for the moment and will revisit it in section 6, where we will show that Algorithm 1 accelerates
under a natural uniform quadratic growth condition. The ensuing discussion relating the error
bound condition and quadratic growth will drive that analysis as well.
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Following the pattern of the current work, we seek to interpret the error bound condition in
terms of a natural property of the subdifferential ∂ϕ. It is tempting to proceed by showing that
the step-lengths of Algorithm 1 are proportional to the step-lengths of the proximal point method
zk+1 ∈ (I + t∂ϕ)−1(zk), as in Theorem 3.5. The following Theorem 5.7 attempts to do just that.
We will need the following lemma.

Lemma 5.6. The inequality, ϕ(y) ≥ ϕ(x) + 〈v, y − x〉 − Lβ
2
‖y − x‖2, holds for all x, y ∈ domϕ

and v ∈ ∂ϕ(x).

Proof. Fix a point x and a subgradient v = z +∇c(x)∗w for some z ∈ ∂g(x) and w ∈ ∂h(c(x)).
Then for all y ∈Rn we successively deduce

ϕ(y) = g(y) +h(c(y))≥
(
g(x) + 〈z, y−x〉

)
+
(
h(c(x)) + 〈w,c(y)− c(x)〉

)
≥ϕ(x) + 〈z, y−x〉+ 〈w,∇c(x)(y−x)〉− Lβ

2
‖y−x‖2

=ϕ(x) + 〈v, y−x〉− Lβ
2
‖y−x‖2,

as claimed. �

First, we establish inequality (5.8), showing that the norm ‖Gt(x)‖ is always bounded by twice
the stationarity measure dist (0;∂ϕ(x)). This is a direct analogue of (3.10), though we arrive at
it through a different argument. Second, seeking to imitate the key inequality (3.11), we arrive at
the inequality (5.9) below. The difficulty is that in this more general setting, the proportionality
constant we need (left-hand-side of (5.9)) tends to +∞ as t tends to (Lβ)−1 – the most interesting
regime. We will circumvent this difficulty in the proof of our main result (Theorem 5.11) by a
separate argument using Theorem 5.3; nonetheless, we believe the proportionality inequality (5.9)
is interesting in its own right.

Theorem 5.7 (Step-lengths comparison).
Consider the convex-composite problem (5.1). Then the inequality

1

2
‖Gt(x)‖ ≤ dist (0;∂ϕ(x)) holds. (5.8)

Suppose in addition that h is L-Lipschitz continuous and ∇c is β-Lipschitz continuous, and set
r :=Lβ. Then for t < r−1 and any point x+ ∈ (I + t∂ϕ)−1(x) the inequality holds:

1 + (1− tr)−1 ≥ ‖x
t−x‖

‖x+−x‖
+
‖x+−x‖
‖xt−x‖

. (5.9)

Proof. Fix a vector v ∈ ∂ϕ(x). Then there exist vectors z ∈ ∂g(x) and w ∈ ∂h(c(x)) satisfying
v= z+∇c(x)∗w. Convexity yields

g(xt)+h
(
c(x) +∇c(x)(xt−x)

)
≥(

g(x) + 〈z,xt−x〉
)

+
(
h
(
c(x)

)
+ 〈w,∇c(x)(xt−x)〉

)
=ϕ(x) + 〈v,xt−x〉.

Appealing to the inequality ϕ(x)≥ ϕ(x;xt) + 1
2t
‖x− xt‖2, we deduce ‖v‖ · ‖xt − x‖ ≥ 1

2t
‖xt − x‖2,

completing the proof of (5.8).
Next, again fix a point x and consider a point x+ ∈ (I + t∂ϕ)−1(x). To simplify notation, set

r :=Lβ. Applying Lemma 5.6 with x replaced by x+ yields

ϕ(y)≥ϕ(x+) + 〈t−1(x−x+), y−x+〉− Lβ
2
‖y−x+‖2

=ϕ(x+) +
1

2t
‖x+−x‖2 +

t−1− r
2
‖x+− y‖2− 1

2t
‖y−x‖2.
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Plugging in y= xt, we deduce

t−1− r
2
‖x+−xt‖2 ≤

(
ϕ(xt) +

1

2t
‖xt−x‖2

)
−
(
ϕ(x+) +

1

2t
‖x+−x‖2

)
≤ϕt(x;xt)−ϕt(x;x+) +

r

2

(
‖xt−x‖2 + ‖x+−x‖2

)
.

Taking into account the strong convexity inequality ϕt(x;x+)≥ϕt(x;xt)+ 1
2t
‖x+−xt‖2, we deduce

(2t−1− r)‖x+−xt‖2 ≤ r
(
‖xt−x‖2 + ‖x+−x‖2

)
.

A short computation then shows

1 + (1− tr)−1 ≥ ‖x
t−x‖

‖x+−x‖
+
‖x+−x‖
‖xt−x‖

,

and the result follows. �

As alluded to prior to the theorem, the inequality (5.9) is meaningless for t= 1/Lβ – the most
interesting case – since the left-hand-side becomes infinite. To circumvent this difficulty, instead of
relying on (5.9), we will prove our main result (Theorem 5.11) by using Theorem 5.3.

Next, we introduce the “natural property” of the subdifferential with which we will equate the
error bound.

Definition 5.8 (Subregularity). A set-valued mapping F : Rn ⇒ Rm is subregular at
(x̄, ȳ)∈ gphF with constant l > 0 if there exists a neighborhood X of x̄ satisfying

dist
(
x;F−1(ȳ)

)
≤ l ·dist (ȳ;F (x)) for all x∈X .

Clearly, the error bound property around a stationary point x̄ of ϕ with parameter γ amounts to
subregularity of the prox-gradient mapping Gt(·) at (x̄,0) with constant γ. We aim to show that the
error bound property is equivalent to subregularity of the subdifferential ∂ϕ itself – a transparent
notion closely tied to quadratic growth [19, 21, 23]. We first record the following elementary lemma;
we omit the proof, as it quickly follows from definitions.

Lemma 5.9 (Perturbation by identity). Consider a set-valued mapping S : Rn⇒Rm and
a pair (x̄,0) ∈ gphS. Then if S is subregular at (x̄,0) with constant l, the mapping (I + S−1)−1

is subregular at (x̄,0) with constant 1 + l. Conversely, if (I + S−1)−1 is subregular at (x̄,0) with
constant l̂, then S is subregular at (x̄,0) with constant 1 + l̂.

The following result analogous to Theorem 3.4 is now immediate.

Theorem 5.10 (Proximal and subdifferential subregularity).
Consider the convex-composite problem (5.1) and let x̄ be a stationary point of ϕ. Consider the
conditions

1. the subdifferential ∂ϕ is subregular at (x̄,0) with constant l.
2. the mapping T := t−1 (I − (I + t∂ϕ)−1) is subregular at (x̄,0) with constant l̂.

If condition (1) holds, then so does condition (2) with l̂ = l+ t. Conversely, condition (2) implies
condition (1) with l= l̂+ t.

Proof. Note first the equality tT = (I + (t∂ϕ)−1)−1 (equation (2.1)). Suppose that ∂ϕ is l-
subregular at (x̄,0) with constant l. Then by Lemma 5.9, the mapping tT is subregular at (x̄,0)
with constant 1 + l/t, and hence T is subregular at (x̄,0) with constant l + t, as claimed. The
converse argument is analogous. �

We are now ready to prove the main result of this section.
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Theorem 5.11 (Subdifferential subregularity and the error bound property).
Consider the convex-composite problem (5.1), where h is L-Lipschitz continuous and the Jacobian
∇c is β-Lipschitz. Let x̄ be a stationary point of ϕ and consider the conditions:

1. the subdifferential ∂ϕ is subregular at (x̄,0) with constant l.
2. the prox-gradient mapping Gt(·) is subregular at (x̄,0) with constant l̂.

If condition (2) holds, then condition (1) holds with l := 2l̂. Conversely, if condition (1) holds, then
condition (2) holds with l̂ := (3Lβt+ 2)l+ 2t.

Proof. Suppose first that the gradient mapping Gt(x) is subregular at (x̄,0) with constant l̂.
Then by Theorems 5.7 and 5.10, we deduce for all x near x̄, the inequalities

dist(x,
(
∂ϕ)−1(0)

)
≤ l̂ · ‖Gt(x)‖ ≤ 2l̂ ·dist(0;∂ϕ(x)).

Conversely, suppose that ∂ϕ is subregular at (x̄,0) with constant l. Fix a point x, and let x̂ be the
point guaranteed to exist by Theorem 5.3. For the purpose of establishing subregularity of Gt(·),
we can suppose the x and xt are arbitrarily close to x̄. Then x̂ is close to x̄, and we deduce

l ·dist(0, ∂ϕ(x̂))≥ dist
(
x̂; (∂ϕ)−1(0)

)
≥ dist

(
x; (∂ϕ)−1(0)

)
−‖xt− x̂‖−‖xt−x‖

≥ dist
(
x; (∂ϕ)−1(0)

)
− 2‖xt−x‖.

We conclude dist (x; (∂ϕ)−1(0))≤ (l(3Lβ+ 2t−1) + 2)‖xt−x‖, as claimed. �

Thus subregularity of the subdifferential ∂ϕ and the error bound property are identical notions,
with a precise relationship between the constants. Subdifferential subregularity at a unique mini-
mizer, on the other hand, is equivalent to the natural quadratic growth condition when the functions
in question are semi-algebraic (or more generally tame) [19] or convex (Theorem 3.3).

Remark 5.1. As mentioned above, the inequality (5.9) is meaningless for t= 1/Lβ, and there-
fore the proof of our main result Theorem 5.11 followed by an indirect argument based on Ekeland’s
variational principle. The follow-up paper [24, Theorem 4.3] overcomes this difficulty directly. It
shows that the step-lengths of Algorithm 1 indeed linearly bound the step-lengths of the proximal
point method: 4 · ‖G1/Lβ‖ ≥ ‖2Lβ(x−proxF/(2Lβ)(x))‖. Since this result appeared after the current
manuscript was well into the reviewing process, we do not use it in the current work.

6. Natural linear rate of convergence under tilt-stability As we alluded to in section
5, the linear rate at which Algorithm 1 converges under the error bound condition is an order of
magnitude slower than the rate that one would expect. In section 5, we highlighted the equiva-
lence between the error bound condition and subregularity of the subdifferential, and their close
relationships to quadratic growth. We will now show that when these properties hold uniformly
relative to tilt-perturbations, the algorithm accelerates to the natural rate.

We begin with the following definition.

Definition 6.1 (Stable strong local minimizer). We say that x̄ is a stable strong local
minimizer with constant α > 0 of a function f : Rn→R if there exists a neighborhood X of x̄ so
that for each vector v near the origin, there is a point xv (necessarily unique) in X , with x0 = x̄,
so that in terms of the perturbed functions fv := f(·)−〈v, ·〉, the inequality

fv(x)≥ fv(xv) +
α

2
‖x−xv‖2 holds for all x∈X .

This type of uniform quadratic growth is known to be equivalent to a number of influential
notions, such as tilt-stability [42] and strong metric regularity of the subdifferential [21]. Here, we
specialize the discussion to the convex-composite case, though the relationships hold much more
generally. The following theorem appears in [23, Theorem 3.7, Proposition 4.5]; some predecessors
were proved in [21, 34].
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Theorem 6.2 (Uniform growth, tilt-stability, & strong regularity).
Consider the convex-composite problem (5.1) and let x∗ be a local minimizer of ϕ. Then the fol-
lowing properties are equivalent.

1. (uniform quadratic growth) The point x∗ is a stable strong local minimizer of ϕ with
constant α.

2. (local subdifferential convexity) There exists a neighborhood X of x∗ so that for any
sufficiently small vector v, there is a point xv ∈X ∩ (∂ϕ)−1(v) so that the inequality

ϕ(x)≥ϕ(xv) + 〈v,x−xv〉+
α

2
‖x−xv‖2 holds for all x∈X .

3. (tilt-stability) There exists a neighborhood X of x∗ so that the mapping

v 7→ arg min
x∈X

{ϕ(x)−〈v,x〉}

is single-valued and 1/α-Lipschitz continuous on some neighborhood of the origin.
4. (strong regularity of the subdifferential) There exist neighborhoods X of x∗ and V of

v̄= 0 so that the restriction (∂ϕ)−1 : V⇒X is a single-valued 1/α-Lipschitz continuous mapping.

There has been a lot of recent work aimed at characterizing the above properties in concrete
circumstances; see e.g. [35, 36, 37, 38]. Suppose that the equivalent conditions in Theorem 6.2 hold.
We will now investigate the impact of such an assumption on the linear convergence of Algorithm 1.
Assume t≤ (Lβ)−1. Observe that property 4 directly implies that ∂ϕ is subregular at (x∗,0) with
constant 1/α. Consequently, local linear convergence with the rate on the order of 1− ( α

βL
)2 is

already assured by Theorems 5.5 and 5.11; our goal is to derive a faster rate.
Consider a point x near x̄. Let x̂ then be the point guaranteed to exist by Theorem 5.3, and

set v to be the minimal norm vector in the subdifferential ∂ϕ(x̂). Note the inequality ‖v‖ ≤
(3Lβt+ 2)‖Gt(x)‖ ≤ 5‖Gt(x)‖. Hence for any point y near x∗, we have

ϕ(y)≥ϕ(x̂) + 〈v, y− x̂〉 (strong-regularity)
≥ϕt(x, x̂)−Lβ‖x− x̂‖2 + 〈v, y− x̂〉 (inequality (5.2))
≥ϕt(x,xt)−Lβ‖x− x̂‖2 + 〈v, y− x̂〉 (definition of xt)
≥ϕ(xt)−Lβ‖x− x̂‖2 + 〈v, y− x̂〉 (inequality (5.2)).

Plugging in y= x∗, we deduce

ϕ(xt)−ϕ(x∗)≤Lβ‖x− x̂‖2 + 〈v, x̂−x∗〉
≤ 4Lβ‖xt−x‖2 + ‖v‖ · (‖x̂−xt‖+ ‖xt−x‖+ ‖x−x∗‖)
≤ 4

Lβ
‖Gt(x)‖2 + 5‖Gt(x)‖ · (2‖xt−x‖+ ‖x−x∗‖)

≤ 14

Lβ
‖Gt(x)‖2 + 5‖Gt(x)‖ · ‖x−x∗‖

=
‖Gt(x)‖2

Lβ

(
14 + 5Lβ

‖x−x∗‖
‖Gt(x)‖

)
.

Hence if while Algorithm 1 is running, the fractions ‖xk−x
∗‖

‖Gt(xk)‖ remain bounded by a constant γ,

appealing to the descent inequality (5.6), we obtain the Q-linear convergence guarantee

ϕ(xk+1)−ϕ(x∗)≤
(

1− 1

25 + 10Lβγ

)
(ϕ(xk)−ϕ(x∗)). (6.1)

We have thus established the main result of this section.
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Theorem 6.3 (Natural rate of convergence). Consider the convex-composite problem
(5.1), where h is L-Lipschitz continuous and the Jacobian ∇c is β-Lipschitz. Let xk be the sequence
generated by Algorithm 1 with t≤ (Lβ)−1. Suppose that xk has some limit point x∗ around which
one of the equivalent properties in Theorem 6.2 hold. Define the fraction

q := 1− 1

45 + 50Lβ/α
.

Then for all large k, function values converge Q-linearly

ϕ(xk+1)−ϕ(x∗)≤ q · (ϕ(xk)−ϕ(x∗)),

while the xk asymptotically converge R-linearly: there exists an index r such that the inequality

‖xr+k−x∗‖2 ≤ qk ·C · (ϕ(xr)−ϕ∗),

holds for all k≥ 1, where we set C := 2

Lβ(1−
√

1−(1−q)−1)2
.

Proof. Strong regularity of the subdifferential in Theorem 6.2, in particular, implies that the
subdifferential mapping ∂ϕ is subregular at (x∗,0) with constant 1/α. Theorem 5.11 then implies
that the error bound condition holds near x∗ with constant 5

α
+ 2

Lβ
. Theorem 5.5 then shows that

the sequence xk converges to x∗. Consequently for all large indices k, the ratios ‖xk−x
∗‖

‖Gt(xk)‖ are bounded

by 5
α

+ 2
Lβ

. The inequality (6.1) immediately yields the claimed Q-linear rate. The R-linear rate
follows easily by a standard argument, as in the proof of Theorem 5.5. �

In summary, Theorem 6.3 shows that if the prox-linear method is initialized sufficiently close to
a stable strong local minimizer x∗ of ϕ with constant α, then the function values converge at a
linear rate on the order of 1− α

Lβ
. This is in contrast to the slower rate 1− ( α

Lβ
)2 established in

Theorem 5.5 under the weaker condition that ∂ϕ is subregular at (x∗,0) with constant 1/α.

7. Quadratic convergence of the prox-linear method In this section, we discuss local
quadratic convergence of the prox-linear scheme under a sharpness condition. Local quadratic
convergence under such conditions for the trust region variant of the scheme is already known from
[12]. The proximal setting, explored here, requires a different analysis. Before we proceed, some
commentary is in order.

First, in the previous sections, we have seen that local linear convergence is assured around x̄
when the subdifferential ∂ϕ is subregular at (x̄,0). Local quadratic convergence, however, requires
a stronger condition. One such condition is that of x̄ being an “isolated sharp minimizer” of ϕ – a
notion originating in [16, 44]. Indeed, under this condition, the proof of quadratic convergence is
immediate.

Theorem 7.1 (Local quadratic convergence: isolated sharpness). Consider the sequence
xk generated by Algorithm 1 with t≤ (Lβ)−1, and suppose that xk has some limit point x∗. Suppose
there is a neighborhood X of x∗ and a real c > 0 such that isolated sharpness holds:

ϕ(x)≥ϕ(x∗) + c · ‖x−x∗‖ for all x∈X . (7.1)

Then the iterates xk asymptotically converge quadratically to x∗:

‖xk+1−x∗‖ ≤ Lβ+t−1

2c
· ‖xk−x∗‖2 holds whenever xk+1 ∈X .
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Proof. Assuming xk+1 lies in X , observe

ϕ(xk+1)≤ϕt(xk;xk+1)≤ϕt(xk;x∗) =ϕ(xk;x
∗) + 1

2t
‖xk−x∗‖2

≤ϕ(x∗) + Lβ+t−1

2
‖xk−x∗‖2.

Rearranging and using isolated sharpness yields

Lβ+t−1

2
‖xk−x∗‖2 ≥ϕ(xk+1)−ϕ(x∗)≥ c · ‖xk+1−x∗‖.

The result follows. �

Despite the elementary proof, the theorem above has a serious deficiency. The isolated sharpness
assumption (7.1) is very restrictive, in particular implying that x̄ is an isolated local minimizer of
ϕ. A much looser condition is that there exists a neighborhood X of x̄ such that

ϕ(x)≥ϕ(projS(x)) + c ·dist(x,S) for all x∈X ,

where S is the set of critical points of ϕ. This notion originates in [11], under the name of “weak
sharp minima”. This condition in the composite setting is equivalent to requiring the quantity
dist(0, ∂f(x)) to be bounded away from zero for all x /∈ S near x̄, and thus is a natural strength-
ening of subdifferential subregularity. Our proof of quadratic convergence is based on two pillars:
(1) sharpness implies that the ‖Gt(x)‖ linearly upper bounds dist(x,S), and conversely (2) the
distance dist(x,S) always linearly upper bounds ‖Gt(x)‖. We have already established the first
pillar (Theorem 5.11); the following lemma establishes the second pillar. The argument is based
on Ekeland’s principle and follows closely the proof of Theorem 5.3.

Lemma 7.1 (Upper bounding the prox-gradient). Consider the convex-composite prob-
lem (5.1), where h is L-Lipschitz continuous and the Jacobian ∇c is β-Lipschitz. Suppose t ≤
(Lβ)−1 and let S be the set of critical points of ϕ. Then the inequality

‖Gt(x)‖ ≤ (3t−1 + 4Lβ) ·dist(x;S) holds for all x∈Rn.

Proof. Define the function ψ(y) := ϕ(y) +Lβ‖y−x‖2. Notice that ψ is Lβ-strongly convex and
therefore has some minimizer x̄ := argminy ψ(y). Let x∗ ∈ S be arbitrary. We deduce(

ϕ(x̄) +Lβ‖x̄−x‖2
)
≤
(
ϕ(x∗) +Lβ‖x∗−x‖2

)
− Lβ

2
‖x∗− x̄‖2

Since x∗ is a critical point of ϕ, we deduce ϕ(x∗)≤ϕ(x̄) + Lβ
2
‖x∗− x̄‖2. Plugging this back into the

inequality above and rearranging, we deduce ‖x̄− x‖ ≤ ‖x∗ − x‖. Thus to prove the theorem, we
must only upper bound ‖Gt(x)‖ by a multiple of ‖x̄−x‖.

The argument proceeds analogously to Theorem 5.3. The inequalities (5.2) imply

ϕt(x;y)≥ψ(x̄) +
t−1− 3Lβ

2
‖y−x‖2 ≥ψ(x̄)−Lβ‖y−x‖2 for all y ∈Rn.

Defining ζ(y) :=ϕt(x;y) +Lβ‖y−x‖2, a short computation using (5.2) then shows

ζ(x̄)− inf ζ ≤
(
ϕt(x; x̄) +Lβ‖x̄−x‖2

)
−ψ(x̄)≤ t−1‖x̄−x‖2.

Setting ε := t−1‖x̄−x‖2 and ρ= t−1‖x̄−x‖ and applying the variational principle (Theorem 5.2) to
ζ, we deduce that there exists a point x̂ satisfying ‖x̄− x̂‖ ≤ ‖x̄−x‖ and dist(0;∂ζ(x̂))≤ t−1‖x̄−x‖.
The triangle inequality in turn implies

dist(0;∂ϕt(x; x̂))≤ 2Lβ · ‖x̂−x‖+ dist(0;∂ζ(x̂))≤ 2Lβ‖x̂−x‖+ t−1‖x̄−x‖. (7.2)
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Next since ϕt(x; ·) is t−1-strongly convex, we deduce

dist(0;∂ϕt(x; x̂))≥ t−1‖x̂−xt‖ ≥ t−1‖xt−x‖− t−1‖x− x̂‖.

Combining this estimate with (7.2), we obtain

‖Gt(x)‖ ≤ (t−1 + 2Lβ)‖x− x̂‖+ t−1‖x̄−x‖ ≤ (3t−1 + 4Lβ)‖x̄−x‖.

The result follows. �

We can now establish the desired quadratic convergence guarantee.

Theorem 7.2 (Local quadratic convergence: sharpness). Consider the sequence xk gen-
erated by Algorithm 1 with t≤ (Lβ)−1, and suppose that xk has some limit point x∗. Let S be the
set of critical points of ϕ and suppose there is a neighborhood X of x∗ and a real c > 0 such that
the sharpness condition holds:

ϕ(x)≥ϕ(projS(x)) + c ·dist(x,S) for all x∈X .

Then the iterates xk converge quadratically: there is a constant q such that the inequality

‖xk+1−x∗‖ ≤ q · ‖xk−x∗‖2 holds for all large k.

Proof. We first claim that for all x /∈ S near x̄, the quantity dist(0;∂ϕ(x)) is bounded away from
zero. Indeed, fix a point x∈X \S and v ∈ ∂f(x) and set z := projS(x). Then we deduce

ϕ(x)− c · ‖x− z‖ ≥ϕ(z)≥ϕ(x) + 〈v, z−x〉− Lβ
2
‖z−x‖2,

where the last inequality follows from Lemma 5.6. Canceling ϕ(x) from both sides and dividing
through by ‖z−x‖, we deduce

‖v‖− c≥−Lβ
2
‖z−x‖ ≥−Lβ

2
‖x−x∗‖.

Therefore we can be sure that v must be bounded away from zero whenever x is close to x∗. In
particular, ∂f is subregular at (x∗,0). It follows from Theorems 5.5 and 5.11 that the iterates xk
converge to x∗.

Moreover, taking into account (5.7) and Theorem 5.11, we deduce that there exists a constant
a> 0 such that

ϕ(xk+1)−ϕ(x∗)≤ a · ‖Gt(xk)‖2,

for all large k. Taking into account the sharpness assumption and Lemma 7.1, we deduce

‖xk+1−x∗‖ ≤ a · (3t−1 + 4Lβ)2‖xk−x∗‖2,

for all large k, as claimed. �

8. Proximal gradient method without convexity In this section, we revisit the proximal
gradient method, discussed in Section 3 in absence of convexity in f . To this end, consider the
optimization problem

min
x∈Rn

ϕ(x) := f(x) + g(x),

where f : Rn→R is a C1-smooth function with β-Lipschitz gradient and g : Rn→R is a closed
convex function. Observe that the proximal gradient method:

xk+1 = xk− tGt(xk),
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with the gradient mapping

Gt(x) := t−1
(
x−proxtg(x− t∇f(x))

)
,

is simply an instance of the prox-linear algorithm (Algorithm 1) applied to the function ϕ= g+
Id◦f . Here Id is the identity map on R. Hence all the results of sections 5 and 6 apply immediately
with L = 1. The arguments in this additive case are much simpler, starting with the fact that
Ekeland’s variational principle is no longer required to prove that subdifferential subregularity is
equivalent to the error bound property.

Indeed, the key perturbation result Theorem 5.3 simplifies drastically: in the notation of the
theorem, we can set x̂ := xt. Then the optimality conditions for the proximal subproblem

Gt(x)∈∇f(x) + ∂g(xt)

immediately imply the slightly improved estimate in Theorem 5.3:

dist(0, ∂ϕ(xt))≤ (1 +βt)‖Gt(x)‖. (8.1)

As in Theorem 5.11, consider now the two properties:
1. the subdifferential ∂ϕ is subregular at (x̄,0) with constant l.
2. the prox-gradient mapping Gt(·) is subregular at (x̄,0) with constant l̂.

The same argument as in Theorem 5.11 shows that if (1) holds, then (2) holds with l̂= l(βt+1)+ t.
Conversely if (2) is valid, then (1) holds with l= 2l̂.

Next, we reevaluate convergence guarantees under tilt-stability. To this end, suppose that one of
the equivalent conditions in Theorem 6.2 holds. Set for simplicity t= β−1 and let v be the minimal
norm element of ∂ϕ(xt). We then deduce for all points x and y near x∗ the inequality

ϕ(y)≥ϕ(xt) + 〈v, y−xt〉.

Plugging in y= x∗ yields

ϕ(xt)−ϕ(x∗)≤ ‖Gt(x)‖2
(
‖v‖ · ‖x∗−xt‖
‖Gt(x)‖2

)
.

Appealing to Theorem 6.2 and the equivalence of subdifferential subregularity and the error bound

property above, we deduce ‖x
∗−xt‖
‖Gt(x)‖ ≤

‖x∗−x‖
‖Gt(x)‖ +t≤ α−1(βt+1)+2t Taking into account the inequality

(8.1), we obtain

ϕ(xt)−ϕ(x∗)≤ ‖Gt(x)‖2
(
1 +βt)(α−1(βt+ 1) + 2t)

)
≤ 8β(ϕ(x)−ϕ(xt))

(
α−1 +β−1

)
.

where the last inequality follows from (5.5). Trivial algebraic manipulations then yield the Q-linear
rate of convergence

ϕ(xk+1)−ϕ(x∗)≤
(

1− 1

9 + 8β/α

)
(ϕ(xk)−ϕ(x∗))

for all sufficiently large indices k. As an aside, this estimate slightly improves on the constants
appearing in Theorem 6.3 for this class of problems.
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9. The proximal subproblem in full generality In this final section, we build on the
convex composite framework explored in sections 5 and 6 by dropping convexity and finite-valued-
ness assumptions. Specifically, we begin in great generality with the problem

min
x

ϕ(x) := g(x) +h(c(x)), (9.1)

where c : Rn→Rm is a C1-smooth mapping and g,h : Rn→R are merely closed functions. As in
section 5, define for any points x, y ∈Rn the linearized function

ϕ(x;y) := g(y) +h
(
c(x) +∇c(x)(y−x)

)
,

and for any real t > 0, the quadratic perturbation

ϕt(x;y) :=ϕ(x;y) +
1

2t
‖x− y‖2.

It is tempting to simply apply the prox-linear algorithm directly to this setting by iteratively solving
the proximal subproblems miny ϕt(x;y) for appropriately chosen reals t > 0. This naive strategy is
fundamentally flawed. There are two main difficulties. First, in contrast to the previous sections,
the functions ϕ(x; ·) and ϕt(x; ·) are typically nonconvex. Hence when solving the subproblems,
one must settle only for “stationary points” of ϕt(x; ·). Second, and much more importantly, the
iterates generated by such a scheme can quickly yield infeasible proximal subproblems, thereby
stalling the algorithm. Designing a variant of the prox-linear algorithm that overcomes the latter
difficulty is an ongoing research direction and will be pursued in future work. Nonetheless, it is
intuitively clear that the proximal subproblems may still enter the picture. In this section, we
show that the equivalence between the “error bound property” and subdifferential subregularity
in Theorem 5.11 extends to this broader setting. The technical content of this section is based on
a careful mix of variational analytic techniques, which we believe is of independent interest.

For simplicity, we will assume g= 0 throughout, that is we consider the problem

min
x

ϕ(x) = h(c(x)), (9.2)

where c : Rn→Rm is C1-smooth and h : Rn→R is closed. The assumption g = 0 is purely for
convenience: all results in this section extend verbatim to the more general setting with identical
proofs. As alluded to above, we will be interested in “stationary points” of nonsmooth and non-
convex functions ϕ and ϕt(x; ·). To make this notion precise, we appeal to a central variational
analytic construction, the subdifferential; see e.g. [26, 33, 50].

Definition 9.1 (Subdifferentials and stationary points).
Consider a closed function f : Rn→R and a point x̄ with f(x̄) finite.

1. The proximal subdifferential of f at x̄, denoted ∂pf(x̄), consists of all v ∈Rn for which there
is a neighborhood X of x̄ and a constant r > 0 satisfying

f(x)≥ f(x̄) + 〈v,x− x̄〉− r
2
‖x− x̄‖2 for all x∈X .

2. The limiting subdifferential of f at x̄, denoted ∂f(x̄), consists of all vectors v ∈Rn for which
there exist sequences xi ∈Rn and vi ∈ ∂pf(xi) with (xi, f(xi), vi) converging to (x̄, f(x̄), v).

3. The horizon subdifferential of f at x̄, denoted ∂∞f(x̄), consists of all vectors v ∈ Rn for
which there exist points xi ∈Rn, vectors vi ∈ ∂f(xi), and real numbers ti↘ 0 with (xi, f(xi), tivi)
converging to (x̄, f(x̄), v).
We say that x̄ is a stationary point of f whenever the inclusion 0∈ ∂f(x̄) holds.
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Proximal and limiting subdifferentials of a convex function coincide with the usual convex subdif-
ferential, as defined in section 2. The horizon subdifferential plays an entirely different role, detect-
ing horizontal normals to the epigraph of the function. For example, a closed function f : Rn→R
is locally Lipschitz continuous around x̄ if and only if ∂∞f(x̄) = {0}. Moreover, the horizon subd-
ifferential plays a decisive role in establishing calculus rules and in stability analysis. We introduce
the following notation to help the exposition.

Definition 9.2 (Transversality). Consider a C1-smooth mapping c : Rn→Rm, a function
h : Rm→R, and a point x̄ with h(c(x̄)) finite. We say that c is transverse to h at x̄, denoted ctx̄ h,
if the condition holds:

∂∞h(c(x̄))∩Null(∇c(x̄)∗) = {0}, (9.3)

If this condition holds with h an indicator function of a set Q, then we say that c is transverse to
Q at x̄, and denote it by ctx̄Q.

Transversality unifies both the classical notion of “transverse intersections” in differential mani-
fold theory (e.g. [28, Section 6]) and the Mangasarian-Fromovitz constraint qualification in nonlin-
ear programming (e.g. [50, Example 9.44], [49, Example 4D.3]). Whenever a C1-smooth mapping
c is transverse to a closed function h at x̄, the key inclusion

∂ϕ(x̄)⊆∇c(x̄)∗∂h(c(x̄)) holds,

resembling the usual chain rule for smooth compositions. Equality is valid under additional assump-
tions, such as that ∂ph(c(x̄)) and ∂h(c(x̄)) coincide for example.

We now define the stationary point map

St(x) = {z ∈Rn : z is a stationary point of ϕt(x, ·)}

and the prox-gradient mapping
Gt(x) = t−1

(
x−St(x)

)
.

Notice that both St and Gt are now set-valued operators. Our goal is to relate subregularity of Gt
to subregularity of the subdifferential ∂ϕ itself. The general trend of our arguments follows that of
section 5. There are important complications, however, that must be surmounted. An immediate
difficulty is that since h is possibly infinite-valued, it is not possible to directly relate the values ϕ(y)
and ϕ(x;y), as in inequality (5.2) – the starting point of the analysis in section 5. For example, ϕ(y)
can easily be infinite while ϕ(x;y) is finite, or vice versa. The key idea is that such a comparison
is possible if we allow a small perturbation of the point y. The following section is dedicated to
establishing this result (Theorem 9.6).

9.1. The comparison theorem We will establish Theorem 9.6 by appealing to the fun-
damental relationship between transversality (9.3), metric regularity of constraint systems, and
stability of metric regularity under linear perturbations [18]. We begin by recalling the concept of
metric regularity – a uniform version of subregularity (Definition 5.8). For a discussion on the role
of metric regularity in nonsmooth optimization, see for example [26, 49].

Definition 9.3 (Metric regularity). A set-valued mapping G : Rn⇒Rm is metrically reg-
ular around (x̄, ȳ) ∈ gphG with constant l > 0 if there exists a neighborhood X of x̄ and a neigh-
borhood Y of ȳ satisfying

dist
(
x;G−1(y)

)
≤ l ·dist (y;G(x)) for all x∈X , y ∈Y.

Metric regularity, unlike subregularity, is stable under small linear perturbations. The following
is a direct consequence of the proof of [18, Theorem 3.3], as described in [29, Theorem 4.2].
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Theorem 9.4 (Metric regularity under perturbation). Consider a closed set-valued
mapping G : Rn⇒Rm that is metrically regular around (x̄, ȳ)∈ gphG. Then there exist constants
ε, γ > 0 and neighborhoods X of x̄ and Y of ȳ, so that the estimate

dist(x, (G+H)−1(y))≤ γ ·dist(y, (G+H)(x)) holds

for any affine mapping H with ‖∇H‖< ε, any x∈X , and any y ∈H(x̄) +Y.

The following consequence for stability of constraint systems is now immediate. For any set
Q⊂Rn and a point x∈Q, we define the limiting normal cone by NQ(x) := ∂δQ(x).

Corollary 9.5 (Uniform metric regularity of constraint systems).
Fix a C1-smooth mapping F : Rn → Rm and a closed set Q ⊂ Rm, and consider the constraint
system

F (x)∈Q.

Suppose that F is transverse to Q at some point x̄, with F (x̄)∈Q. Then there are constants ε, γ > 0
and a neighborhood X of x̄ so that for any x ∈ X and any affine mapping H with ‖∇H‖< ε and
‖H(x̄)‖< ε, there exists a point z satisfying

(F +H)(z)∈Q and ‖x− z‖ ≤ γ ·dist
(

(F +H)(x);Q
)
.

Proof. Consider the set-valued mapping G(x) := F (x)−Q. It is well-known (e.g. [50, Example
9.44]) that the condition F tx̄Q is equivalent to G being metrically regular around (x̄,0). Appealing
to Theorem 9.4, we deduce that there are constants ε, γ > 0 and neighborhoods X of x̄ and Y of 0,
so that for any x ∈X and y ∈H(x̄) +Y and any affine mapping H with ‖∇H‖< ε, there exists a
point z satisfying

F (z) +H(z)∈ y+Q and ‖x− z‖ ≤ γ dist(F (x) +H(x), y+Q).

In light of the assumption ‖H(x̄)‖< ε, decreasing ε, we can be sure that −H(x̄) lies in Y and hence
we can set y := 0 above. The result follows immediately. �

Armed with Corollary 9.5, we can now prove the main result of this section, playing the role of
inequalities (5.2).

Theorem 9.6 (Comparison inequalities). Consider the composite problem (9.2) satisfying
ctx̄ h for some point x̄∈ domϕ, around which ∇c is Lipschitz continuous. Then there exist ε, γ > 0
and a neighborhood X of x̄ such that the following hold.

1. For any two points x, y ∈X with |ϕ(y)−ϕ(x̄)|< ε, there exists a point y− satisfying

‖y− y−‖ ≤ γ‖y−x‖2 and ϕ(x;y−)≤ϕ(y) + γ‖y−x‖2.

2. For any two points x, y ∈X with |ϕ(x;y)−ϕ(x̄)|< ε, there exists a point y+ satisfying

‖y− y+‖ ≤ γ‖y−x‖2 and ϕ(y+)≤ϕ(x;y) + γ‖y−x‖2.

Proof. The second claim appears as [29, Theorem 4.6].5 To see the first claim, for any point x
define the affine mapping Lx(z) = c(x)+∇c(x)(z−x). Consider now the affine mapping F : Rn+1→
Rm+1 given by

F (z, t) := (c(x̄) +∇c(x̄)(z− x̄), t).

5 In [29, Theorem 4.6], it is assumed that c is C2-smooth; however, it is easy to verify from the proof that the same
result holds if ∇c is only locally Lipschitz continuous around x̄.
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Then the transversality condition ctx̄ h, along with the epigraphical characterization of subgra-
dients [50, Theorem 8.9], implies that F is transverse to epih at (x̄,ϕ(x̄)). Hence we can apply
Corollary 9.5 with Q := epih. Let ε, γ > 0 and X be the resulting constants and a neighborhood of
(x̄,ϕ(x̄)), respectively. Define now the affine mappings Hx(z, t) := (Lx(z)−Lx̄(z),0). Observe that
for all x sufficiently close to x̄, the inequalities ‖∇Hx‖< ε and ‖Hx(x̄)‖< ε hold.

We deduce that for all pairs (y,ϕ(y)) sufficiently close to (x̄,ϕ(x̄)), and for all points x sufficiently
close to x̄, there exists a pair (y−, t) satisfying

(Lx(y
−), t) = (F +Hx)(y

−, t)∈ epih

and

‖(y,ϕ(y))− (y−, t)‖ ≤ γ dist
(

(F +Hx)(y,ϕ(y)); epih
)

= γ dist
(

(Lx(y),ϕ(y)); epih
)

≤ γ‖Lx(y)− c(y)‖

≤ γβ

2
‖x− y‖2,

where β is a Lipschitz constant of ∇c(·) on a neighborhood of x̄. Hence we deduce

ϕ(x;y−) = h(Lx(y
−))≤ t≤ϕ(y) +

γβ

2
‖x− y‖2

and ‖y− y−‖ ≤ γβ
2
‖x− y‖2, as claimed. �

9.2. Prox-regularity of the subproblems The final ingredient we need to study subreg-
ularity of the mapping Gt is the notion of prox-regularity. The idea is that we must focus on
functions whose limiting subgradients yields uniformly varying quadratic minorants. These are the
prox-regular functions introduced in [41].

Definition 9.7 (Prox-regularity). A closed function f : Rn → R is prox-regular at x̄ for
v̄ ∈ ∂f(x̄) if there exist neighborhoods X of x̄ and V of v̄, along with constants ε, r > 0 so that the
inequality

f(y)≥ f(x) + 〈v, y−x〉− r
2
‖y−x‖2,

holds for all x, y ∈X with |f(x)− f(x̄)|< ε, and for every subgradient v ∈ V ∩ ∂f(x).

Prox-regular functions are common in nonsmooth optimization, encompassing for example all
C1-smooth functions with Lipschitz gradients and all closed convex functions. More generally, the
authors of [43] showed that the composite function ϕ = h ◦ c is prox-regular at x̄ for v̄ ∈ ∂ϕ(x̄)
whenever c is C1-smooth with a Lipschitz gradient, c is transverse to h at x̄, and h is prox-regular
at c(x̄) for every vector w ∈ ∂h(c(x̄)) satisfying v̄=∇c(x̄)∗w. The following proposition shows that
under these conditions, the linearized functions ϕ(x, ·) are also prox-regular, uniformly in x.

Theorem 9.8 (Uniform prox-regularity of the subproblems).
Consider the composite problem (9.2) satisfying ctx̄ h for some point x̄∈ domϕ. Then there exists
a neighborhood X of x̄ and a constant ε > 0 so that the affine functions z 7→ c(x) +∇c(x)(z − x)
are tranverse to h at z, for any x, z ∈X with |ϕ(x;z)−ϕ(x̄)|< ε.

Consider a vector v̄ ∈ ∂ϕ(x̄), and suppose also that ∇c is Lipschitz continuous around x̄ and
that h is prox-regular at c(x̄) for every subgradient w ∈ ∂h(c(x̄)) satisfying v̄=∇c(x̄)∗w. Then the
linearized functions ϕ(x; ·) are prox-regular at x̄ for v̄ uniformly in x in the following sense. After



Drusvyatskiy and Lewis: Error bounds, quadratic growth, and linear convergence of proximal methods
30 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

possibly shrinking X and ε > 0, there exists a neighborhood V of v̄ and a constant γ > 0 so that the
inequality

ϕ(x;y)≥ϕ(x;z) + 〈v, y− z〉− γ
2
‖y− z‖2 (9.4)

holds for any x, y, z ∈X with |ϕ(x;z)−ϕ(x̄)|< ε, and for every subgradient v ∈ V ∩ ∂zϕ(x;z).

Proof. For the sake of contradiction, suppose there exist sequences xi → x̄ and zi → x̄ along
with unit vectors wi ∈ ∂∞h

(
c(xi) +∇c(xi)(zi − xi)

)
∩Null(∇c(xi)∗), so that the values h

(
c(xi) +

∇c(xi)(zi − xi)
)

tend to h(c(x̄)). Passing to a subsequence, we may suppose that wi converge to
some unit vector w ∈ ∂∞h(c(x̄)) ∩ Null(∇c(x̄)∗), a contradiction. Hence the transversality claim
holds.

By the prox-regularity assumption on h, for every subgradient w ∈ ∂h(c(x̄)) satisfying v̄ =
∇c(x̄)∗w, there exist constants δw, rw > 0 such that the inequality

h(ξ2)≥ h(ξ1) + 〈η, ξ2− ξ1〉−
rw
2
‖ξ2− ξ1‖2

holds for all ξ1, ξ2 ∈ Bδw(c(x̄)) with |h(ξ1)− ϕ(x̄)| < δw, and for any subgradient η ∈ ∂h(ξ1) with
‖η−w‖< δw. We claim that there exist uniform constants δ, r > 0 (independent of w) so that the
inequality

h(ξ2)≥ h(ξ1) + 〈η, ξ2− ξ1〉−
r

2
‖ξ2− ξ1‖2 (9.5)

holds for all ξ1, ξ2 ∈ Bδ(c(x̄)) with |h(ξ1) − ϕ(x̄)| < δ, and for any subgradient η ∈ ∂h(ξ1) with
‖∇c(x̄)∗η− v̄‖< δ. To see that, suppose otherwise and consider sequences ξ1, ξ2→ c(x̄) with h(ξ1)→
ϕ(x̄), and a sequence η ∈ ∂h(ξ1) with ∇c(x̄)∗η→ v̄ and so that the fractions h(ξ2)−(h(ξ1)+〈η,ξ2−ξ1〉)

‖ξ2−ξ1‖2
are

not lower-bounded. The transversality condition (9.3) immediately implies that the vectors η are
bounded and hence we can assume that η converge to some vector w ∈ ∂h(c(x̄)) with ∇c(x)∗w= v̄.
This immediately yields the contradiction h(ξ2)−(h(ξ1)+〈η,ξ2−ξ1〉)

‖ξ2−ξ1‖2
≥−rw for the tails of the sequences.

Fix now points x, y, z ∈ X with |ϕ(x;z)−ϕ(x̄)|< ε. Consider a subgradient v ∈ ∂zϕ(x;z). Since
we have already proved that the affine function c(x) +∇c(x)(· − x) is transverse to h at z, we
may write v =∇c(x)∗η for some subgradient η ∈ ∂h(c(x) +∇c(x)(z − x)). Define now the points
ξ1 := c(x) +∇c(x)(z − x) and ξ2 := c(x) +∇c(x)(y − x). Shrinking X and ε > 0, we can ensure
ξ1, ξ2 ∈ Bδ(c(x̄)) with |h(ξ1) − ϕ(x̄)| < δ. Moreover, if v is sufficiently close to v̄ we can ensure
‖∇c(x̄)∗η− v̄‖< δ. Hence we may apply inequality (9.5), yielding

ϕ(x;y) = h(ξ2)≥ h(ξ1) + 〈η,∇c(x)(y− z)〉− r
2
‖∇c(x)(y− z)‖2,

and therefore ϕ(x;y)≥ ϕ(x;z) + 〈v, y− z〉 − rL2

2
‖y− z‖2, where L := maxx∈X ‖∇c(x)‖. The result

follows. �

We are ready to prove out main tool generalizing Theorem 5.3.

Theorem 9.9 (Prox-gradient and near-stationarity). Consider the composite problem
(9.2) satisfying ctx̄ h for some point x̄ with 0∈ ∂ϕ(x̄). Suppose that ∇c is locally Lipschitz around
x̄ and that h is prox-regular at c(x̄) for every subgradient w ∈ ∂h(c(x̄)) satisfying 0 = ∇c(x̄)∗w.
Then there are constants γ, ε, a, b > 0 and a neighborhood X of x̄ such that for any t > 0, x ∈ X ,
and xt ∈X ∩St(x) with |ϕ(x,xt)−ϕ(x̄)|< ε, there exists a point x̂ satisfying the properties

1. (point proximity) ‖xt− x̂‖ ≤
(
1 + γ‖xt−x‖

)
· ‖xt−x‖,

2. (functional proximity) ϕ(x̂)≤ϕ(x;xt) + (a+ b/t) · ‖xt−x‖2,
3. (near-stationarity) dist (0;∂ϕ(x̂))≤ (a+ b/t) · ‖xt−x‖.
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Proof. Fix a neighborhood X of x̄ and constants ε, γ > 0 given by Theorem 9.6. Shrinking X we
can assume that X is closed and has diameter smaller than one (for simplicity). Suppose x lies in X
and fix a point xt ∈X ∩St(x) with |ϕ(x,xt)−ϕ(x̄)|< ε. Then for any y ∈X with |ϕ(y)−ϕ(x̄)|< ε,
there exists a point y− satisfying

‖y− y−‖ ≤ γ‖y−x‖2 and ϕ(y) + γ‖y−x‖2 ≥ϕ(x;y−). (9.6)

Appealing to Theorem 9.8, we can be sure there is a constant r > 0 so that for all x,xt, y ∈X with
|ϕ(y)−ϕ(x̄)|< ε, we have

ϕ(x;y−)≥ϕ(x,xt) + 〈t−1(x−xt), y−−xt〉− r
2
‖y−−xt‖2

=ϕt(x,x
t)− 1

2t

(
‖x−xt‖2− 2〈x−xt, y−−xt〉+ rt‖y−−xt‖2

)
=ϕt(x,x

t)− 1

2t

(
‖x− y−‖2 + (rt− 1)‖y−−xt‖2

)
,

(9.7)

where the last inequality follows by completing the square. On the other hand, the triangle inequal-
ity, along with the assumption that the diameter of X is smaller than one, yields

‖x− y−‖ ≤ (γ+ 1)‖x− y‖ and ‖y−−xt‖ ≤ (γ+ 1)‖x− y‖+ ‖x−xt‖.

Defining for notational convenience q := γ+ 1 and p := max{0, rt− 1}, we obtain the inequality

ϕ(x;y−)≥ϕt(x,xt)−
q2(1 + p)

2t
‖x− y‖2− p

2t

(
‖xt−x‖2 + 2qmax{‖y−x‖,‖xt−x‖}2

)
.

Define now the function

ζ(y) := δX (y)+ϕ(y) +
(
γ+

q2(1 + p)

2t

)
‖x− y‖2+

+
p

2t

(
‖xt−x‖2 + 2qmax{‖y−x‖,‖xt−x‖}2

)
.

Taking into account (9.6), we deduce that the inequality ζ(y)≥ ϕt(x,xt) holds for all y ∈ X with
|ϕ(y)−ϕ(x̄)|< ε. Moreover, since ϕ is closed, shrinking X we can assume ϕ(y)≥ ϕ(x̄)− ε for all
y ∈X . A trivial argument now shows that again shrinking X , we can finally ensure ζ(y)≥ϕt(x,xt)
for all y ∈X .

Taking into account the inequality |ϕ(x,xt)−ϕ(x̄)|< ε and applying claim 2 of Theorem 9.6, a
quick computation shows

ζ(xt+)− ζ∗ ≤ l · ‖xt−x‖2,

where we set

l := 2γ+
q2(1 + p) + p(1 + 2q)− 1

2t
,

and ζ∗ is the minimal value of ζ. Define now the constants ε̂ := l‖xt − x‖2 and ρ := l‖xt − x‖.
Applying Ekeland’s variational principle, we obtain a point x̂ satisfying the inequalities ζ(x̂) ≤
ζ(xt+) and ‖xt+− x̂‖ ≤ ε̂/ρ, and the inclusion 0∈ ∂ζ(x̂) +ρB. The point proximity estimate is now
immediate from the inequality

‖xt− x̂‖ ≤ ‖xt−xt+‖+ ‖xt+− x̂‖ ≤ γ‖xt−x‖2 + ‖xt−x‖= (1 + γ‖xt−x‖)‖xt−x‖.

Using the inequalities ϕ(x̂) + p
2t
‖xt−x‖2 ≤ ζ(x̂)≤ ζ(xt+), we deduce

ϕ(x̂)≤ϕ(x,xt) +

(
l− p− 1

2t

)
· ‖xt−x‖2.
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Finally, we conclude the near-stationarity condition

dist(0, ∂ϕ(x̂))≤ ρ+

(
γ+

q2(1 + p) + 2pq

2t

)
‖x̂−x‖

≤
[
l+ (2 + γ‖xt−x‖)

(
γ+

q2(1 + p) + 2pq

2t

)]
‖xt−x‖.

The result follows after noting the inequality p
t
≤ r. �

We can now prove the main result of this section comparing subregularity of the subdifferential
∂ϕ and of the prox-gradient mapping Gt. Naturally, to make such a comparison precise, we must
focus on the subgraphs of gph∂ϕ and gphGt that arise from points x and xt ∈ St(x) at which the
function values ϕ(x) and ϕ(x;xt) are close to ϕ(x̄). In most important circumstances, nearness
in the graphs, gph∂ϕ and gphSt, automatically implies nearness in function value. To illustrate,
consider the composite problem (9.2) satisfying ctx̄ h for some point x̄ with 0 ∈ ∂ϕ(x̄). It follows
quickly from [50, Example 13.30] that if h is either convex or continuous on its domain, then h
is subdifferentially continuous at (x̄,0): for any sequence (xi, vi) ∈ gph∂ϕ converging to (x̄,0) the
values ϕ(xi) converge to ϕ(x̄). Similarly, it is easy to check that if h is either convex or continuous on
its domain, then for any sequence (xi, yi)∈ gphSt converging to (x̄, x̄) the values ϕ(xi;yi) converge
to ϕ(x̄).

When h is not convex, nor is continuous on its domain, we must focus only on the relevant parts
of the graphs, gph∂ϕ and gphGt. This idea of a functionally attentive localization is not new, and
goes back at least to [41].

Definition 9.10 (ϕ and ϕ(·, ·)-attentive localizations). Consider the composite problem
(9.2) satisfying ctx̄ h for some point x̄ with 0∈ ∂ϕ(x̄).

1. A set-valued mapping W : Rn ⇒ Rn is a ϕ-attentive localization of the subdifferential ∂ϕ
around (x̄,0) if there exist neighborhoods X of x̄ and V of 0 and a real number ε > 0 so that for
any points x∈X and v ∈ V with |ϕ(x)−ϕ(x̄)|< ε, the equivalence v ∈ ∂ϕ(x)⇐⇒ v ∈W (x) holds.

2. A set-valued mapping W : Rn⇒Rn is a ϕ(·, ·)-attentive localization of the stationary point
map St around (x̄, x̄) if there exist neighborhoods X of x̄ and Y of 0 and a real number ε > 0 so that
for any points x ∈ X and y ∈ Y with |ϕ(x, y)−ϕ(x̄)|< ε, the equivalence y ∈ St(x)⇐⇒ y ∈W (x)
holds.

3. A set-valued mapping W : Rn ⇒ Rn is a ϕ(·, ·)-attentive localization of the prox-gradient

mapping Gt around (x̄,0) if it can be written as W = t−1(I − Ŵ (x)), where Ŵ is a ϕ(·, ·)-attentive
localization of St around (x̄, x̄).

The following is the main result of this section.

Theorem 9.11 (Subdifferential subregularity and the error bound property).
Consider the composite problem (9.2) satisfying ctx̄ h for some point x̄ with 0 ∈ ∂ϕ(x̄). Suppose
that ∇c is Lipschitz around x̄ and that h is prox-regular at c(x̄) for every subgradient w ∈ ∂h(c(x̄))
satisfying 0 =∇c(x̄)∗w. Consider the following two conditions:

1. there exists a ϕ-attentive localization of ∂ϕ that is metrically subregular at (x̄,0).
2. there exists a ϕ(·, ·)-attentive localization of the mapping Gt that is metrically subregular at

(x̄,0).
Then the implication (1)⇒ (2) always holds. Conversely, there exists a number t̄≥ 0 so that for all
t ∈ (0, t̄), the implication (2)⇒ (1) holds. When h is convex, the localizations are not needed: the
following two conditions are equivalent for any t > 0:

1’. The subdifferential ∂ϕ is metrically subregular at (x̄,0).
2’. The prox-gradient Gt is metrically subregular at (x̄,0).
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Proof. Suppose there exists a ϕ-attentive localization W of ∂ϕ that is metrically subregular at
(x̄,0) with constant l. Fix a neighborhood X of x̄ and constants γ, ε, a, b > 0 guaranteed to exist by
Theorem 9.9. Then for any points x∈X and xt ∈X ∩St(x) with |ϕ(x,xt)−ϕ(x̄)|< ε, there exists
a point x̂ satisfying

‖xt− x̂‖ ≤
(
1 + γ‖xt−x‖

)
· ‖xt−x‖, (9.8)

ϕ(x̂)≤ϕ(x;xt) + (a+ b/t) · ‖xt−x‖2, (9.9)
dist(0;∂ϕ(x̂))≤ (at+ b) · ‖t−1(xt−x)‖. (9.10)

Due to inequality (9.9), the subdifferential ∂ϕ(x̂) coincides with the localization W (x̂) near the
origin. Hence we deduce

dist(x̂;W−1(0))≤ l ·dist(0;W (x̂)) = l ·dist(0;∂ϕ(x̂))≤ l(at+ b) · ‖t−1(xt−x)‖.
On the other hand, we have

dist(x̂,W−1(0))≥ dist(x;W−1(0))−‖xt−x‖−‖xt− x̂‖,
and therefore

dist(x;W−1(0))≤ ((2 + la+ γ‖xt−x‖)t+ lb) · ‖t−1(xt−x)‖.
Hence property (2) holds, as claimed.

Next, we show the converse. Fix the neighborhoods X ,V and the constants ε, γ guaranteed by
Theorem 9.8. After possibly shrinking X , the local existence result [29, Thorem 4.5(a)] guarantees

that there is a constant t̄ so that provided t < t̄, for any x∈X there exists a point xt ∈ Ŵ (x) so that
the inclusion x−xt ∈ V holds and we have |ϕ(x;xt)−ϕ(x̄)|< ε. Henceforth suppose that the map

W = t−1(I − Ŵ ) is subregular at (x̄,0) for some t < t̄, where Ŵ is a ϕ(·; ·)-attentive localization of
St around (x̄, x̄).

Fix a pair (x, v) ∈ (X × V) ∩ gph∂ϕ with |ϕ(x)− ϕ(x̄)| < ε. Then v lies in ∂zϕ(x;z) with the
choice z := x, and hence setting y := xt in (9.4) we deduce

ϕ(x,xt)≥ϕ(x) + 〈v,xt−x〉− γ
2
‖xt−x‖2. (9.11)

Appealing to (9.4) again with the choices y = x, z = xt, and t−1(x−xt)∈ ∂zϕ(x;z), we obtain the
inequality

ϕ(x)≥ϕ(x;xt) + t−1〈x−xt, x−xt〉− γ
2
‖xt−x‖2

=ϕ(x,xt) +
(
t−1− γ

2

)
‖xt−x‖2.

(9.12)

Taking into account (9.11), we deduce ‖v‖ · ‖xt−x‖ ≥ (t−1−γ)‖xt−x‖2. Choosing t <min{t̄, γ−1}
so as to ensure t−1− γ > 0, we finally conclude

(t−1− γ)−1 · ‖v‖ ≥ ‖xt−x‖ ≥ t ·dist(0,W (x))≥ tl ·dist(x,W−1(0)),

where l is the constant of subregularity of W at (x̄,0). On the other hand, observe z ∈W−1(0)⇔
z = Ŵ (z). Hence if z ∈W−1(0) is close to x̄, then we can be sure that ϕ(z) is close to ϕ(x̄). It
follows that the set W−1(0) coincides near x̄ with F−1(0), where F is some ϕ-attentive localization
of ∂ϕ. Hence Property (1) holds, as claimed.

Finally, when h is convex, the functionally attentive localizations are not needed, as was explained
prior to Definition 9.10. Moreover, the inequalities (9.11) and (9.12) hold with γ = 0 and according
to [29, Thorem 4.5(c)], we could have set t̄ = +∞ at the onset. Consequently, the implication
(2)⇒ (1) holds for arbitrary t > 0, as claimed. �

To summarize, with Theorem 9.11 we have shown an equivalence between subregularity of the
subdifferential ∂ϕ and the error bound property, thereby extending Theorem 5.11 to the case where
h need not be convex nor finite-valued, but merely prox-regular. We believe that this result can
serve the same role as Theorem 5.11 in section 5 for understanding linear convergence of proximal
algorithms for composite problems (9.1).
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