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Efficient quadratic penalization through the partial
minimization technique

Aleksandr Y. Aravkin† Dmitriy Drusvyatskiy∗ Tristan van Leeuwen∗∗

Abstract—Common computational problems, such as param-
eter estimation in dynamic models and PDE constrained opti-
mization, require data fitting over a set of auxiliary parameters
subject to physical constraints over an underlying state. Naive
quadratically penalized formulations, commonly used in practice,
suffer from inherent ill-conditioning. We show that surprisingly
the partial minimization technique regularizes the problem,
making it well-conditioned. This viewpoint sheds new light on
variable projection techniques, as well as the penalty method for
PDE constrained optimization, and motivates robust extensions.
In addition, we outline an inexact analysis, showing that the
partial minimization subproblem can be solved very loosely
in each iteration. We illustrate the theory and algorithms on
boundary control, optimal transport, and parameter estimation
for robust dynamic inference.

I. INTRODUCTION

In this work, we consider a structured class of optimization
problems having the form

min
y,u

f(y) + g(u) subject to A(u)y = q. (1)

Here, f : Rn → R is convex and smooth, q ∈ Rn is a fixed
vector, and A(·) is a smoothly varying invertible matrix. For
now, we make no assumptions on g : Rd → R, though in
practice, it is typically either a smooth or a ‘simple’ nonsmooth
function. Optimization problems of this form often appear in
PDE constrained optimization [6], [21], [23], Kalman filtering
[2], [4], [15], boundary control problems [11], [19], and optimal
transport [1], [13]. Typically, u encodes auxiliary variables
while y encodes the state of the system; the constraint A(u)y =
q corresponds to a discretized PDE describing the physics.

Since the discretization A(u)y = q is already inexact, it is
appealing to relax it in the formulation. A seemingly naive
relaxation approach is based on the quadratic penalty:

min
y,u

F (y, u) := f(y) + g(u) + λ · ‖A(u)y − q‖2. (2)

Here λ > 0 is a relaxation parameter for the equality constraints
in (1), corresponding to relaxed physics. The classical quadratic
penalty method in nonlinear programming proceeds by applying
an iterative optimization algorithm to the unconstrained problem
(2) until some termination criterion is satisfied, then increasing
λ, and repeating the procedure with the previous iterate used
as a warm start. For a detailed discussion, see e.g. [17, Section
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Fig. 1: Top panel shows log(Fk−F
∗) of L-BFGS with partial

minimization applied to (2) for the boundary control problem
in Section III. Each partial minimization solves a least squares
problem in y. Bottom panel shows log(Fk − F

∗) of L-BFGS
without partial minimization applied to (2), for the same values
of λ. Both methods are initialized at random u, and y that
minimizes F (·, u)). Performance of L-BFGS without partial
minimization degrades as λ increases, while performance of
L-BFGS with partial minimization is insensitive to λ.

17.1]. The authors of [22] observe that this strategy helps
to avoid extraneous local minima, in contrast to the original
formulation (1). From this consideration alone, the formulation
(2) appears to be useful.

Conventional wisdom teaches us that the quadratic penalty
technique is rarely appropriate. The difficulty is that one must
allow λ to tend to infinity in order to force near-feasibility
in the original problem (1); the residual error ‖A(u)y − q‖ at
an optimal pair (u, y) for the problem (2) is at best on the
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order of O(1/λ). Consequently, the maximal eigenvalue of
the Hessian of the penalty term scales linearly with λ and
the problems (2) become computationally difficult. Indeed, the
maximal eigenvalue of the Hessian determines the behavior
of numerical methods (gradient descent, quasi-Newton) far
away from the solution – a regime in which most huge scale
problems are solved. Figure 1 is a simple numerical illustration
of this inherent difficulty on a boundary control problem; see
Section III for more details on the problem formulation. The
bottom panel in the figure tracks progress of the objective
function in (2) when an L-BFGS method is applied jointly in the
variables (u, y). After 1000 iterations of L-BFGS, the objective
value significantly increases with increasing λ, while the actual
minimal value of the objective function converges to that of (1),
and so hardly changes. In other words, performance of the
method scales poorly with λ, illustrating the ill-conditioning.

In this paper, we show that by using a simple partial mini-
mization step, this complexity blow-up can be avoided entirely.
The resulting algorithm is perfectly suited for many large-scale
problems, where satisfying the constraint A(u)y = q to high
accuracy is not required (or even possible). The strategy is
straightforward: we rewrite (2) as

min
u

ϕ̃(u) + g(u), (3)

where the function ϕ̃(u) is defined implicitly by

ϕ̃(u) = min
y

{
f(y) + λ · ‖A(u)y − q‖2

}
. (4)

We will call ϕ̃(·) the reduced function. Though this approach
of minimizing out the variable y, sometimes called variable
projection, is widely used (e.g. [7], [10], [22]), little theoretical
justification for its superiority is known. In this work, we
show that not only does partial minimization perform well
numerically for the problem class (2), but is also theoretically
grounded. We prove that surprisingly the Lipschitz constant
of ∇ϕ̃ is bounded by a constant independent of λ. Therefore,
iterative methods can be applied directly to the formulation (3).
The performance of the new method is illustrated using a toy
example (top panel of Figure 1). We use L-BFGS to attack the
outer problem; solving it within 35 iterations. The inner solver
for the toy example simply solves the least squares problem
in y.

The inner problem (4) can be solved efficiently since its
condition number is nearly independent of λ. When f is a
convex quadratic and A(u) is sparse, one can apply sparse
direct solvers or iterative methods such as LSQR [18]. More
generally, when f is an arbitrary smooth convex function, one
can apply first-order methods, which converge globally linearly
with the rate governed by the condition number of the strongly
convex objective in (4). Quasi-newton methods or variants of
Newton’s method are also available; even if g(u) is nonsmooth,
BFGS methods can still be applied.

The outline of the paper is as follows. In Section II, we
present complexity guarantees of the partial minimization
technique. In Section III, we numerically illustrate the overall
approach on boundary control and optimal transport problems,
and on tuning an oscillator from very noisy measurements.

II. THEORY

In this section, we show that the proposed framework is
insensitive to the parameter λ. Throughout we assume that f
and A(·) are C2-smooth, f is convex, and A(u) is invertible
for every u ∈ Rn.

To shorten the formulas, in this section, we will use the
symbol Au instead of A(u) throughout. Setting the stage, define
the function

ϕ(u, y) = f(y) +
λ

2
‖Auy − q‖

2.

A quick computation shows

∇yϕ(u, y) = ∇f(y) + λATu (Auy − q),
∇uϕ(u, y) = λG(u, y)T (Auy − q),

(5)

where G(u, y) is the Jacobian with respect to u of the map
u 7→ Auy. Clearly the Lipschitz constant Lip(∇ϕ) scales with
λ. This can be detrimental to numerical methods. For example,
basic gradient descent will find a point (uk, yk) satisfying
‖∇ϕ(uk, yk)‖2 < ε after at most O

(
Lip(∇ϕ)(ϕ(u0,x0)−ϕ∗

)
ε

)
iterations [16, Section 1.2.3].

As discussed in the introduction, minimizing ϕ amounts to
the minimization problem minu ϕ̃(u) for the reduced function
ϕ̃ defined in (4). Note since f is convex and Au is invertible, the
function ϕ(u, ·) admits a unique minimizer, which we denote
by yu. Appealing to the classical implicit function theorem
(e.g. [20, Theorem 10.58]) we deduce that ϕ̃ is differentiable
with

∇ϕ̃(u) = ∇uϕ(·, yu)
∣∣∣
u

= λG(u, yu)T (Auyu − q).

We aim to upper bound the Lipschitz constant of ∇ϕ̃ by a
quantity independent of λ. We start by estimating the residual
‖Auyu − q‖.

Throughout the paper, we use the following simple identity.
Given an invertible map F : Rn → Rn and invertible matrix
C, for any points x ∈ Rn and nonzero λ ∈ R, we have

1) F−1(λx) = (λ−1F )−1(x), and

2) C ◦ F−1 ◦ CT =
(
C−T ◦ F ◦ C−1

)−1

.

We often apply this observation to the invertible map F (x) =
∇f(x) +Bx, where B is a positive definite matrix.

Lemma 1 (Residual bound). For any point u, the inequality
holds:

‖Auyu − q‖ ≤
‖∇(f ◦A−1

u )(q)‖
λ

.

Proof. Note that the minimizers yu of ϕ(u, ·) are characterized
by first order optimality conditions

0 = ∇f(y) + λ ·ATu (Auy − q). (6)

Applying the implicit function theorem, we deduce that yu
depends C2-smoothly on u with ∇uyu given by

−
(
∇2f(yu) + λATuAu

)−1

∇u
(
λA(·)T (A(·)yu − q)

)
(u).

On the other hand, from the equality (6) we have

yu = (∇f + λATuAu)−1(λATu q) =

(
∇f
λ

+ATuAu

)−1

ATu q.
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Therefore, we deduce

Auyu − q = Au

(
1

λ
∇f +ATuAu

)−1

ATu q − q

=

((
1

λ
A−Tu ◦ ∇f ◦A−1

u + I

)−1

− I

)
q.

Define now the operator

F :=
1

λ
A−Tu ◦ ∇f ◦A−1

u + I

and the point z := F (q). Note that

F (x)− x =
1

λ
∇(f ◦A−1

u )(x).

Letting L be a Lipschitz constant of F−1, we obtain

‖Auyu − q‖ = ‖F−1(q)− F−1(z)‖ ≤ L‖q − z‖

= L‖q − F (q)‖ =
L

λ
‖A−Tu ∇f(A−1

u q)‖.

Now the inverse function theorem yields for any point y the
inequality

‖∇F−1(y)‖ = ‖∇F (F−1(y))−1‖

=

∥∥∥∥∥
(

1

λ
∇2(f ◦A−1

u )(F−1(y)) + I

)−1
∥∥∥∥∥ ≤ 1,

where the last inequality follows from the fact that by convexity
of f ◦ A−1

u all eigenvalues of ∇2(f ◦ A−1
u ) are nonnegative.

Thus we may set L = 1, completing the proof.

For ease of reference, we record the following direct
corollary.

Corollary 1. For any point u, we have

‖yu−A
−1
u q‖ ≤ ‖A−1

u ‖‖Auyu−q‖ ≤
‖A−1

u ‖‖∇(f ◦A−1
u )(q)‖

λ
.

Next we will compute the Hessian of ϕ(u, y), and use it
to show that the norm of the Hessian of ϕ̃ is bounded by a
constant independent of λ. Defining

R(u, y, v) = ∇u
[
G(u, y)T v

]
and K(u, v) = ∇u

[
ATu v

]
,

we can partition the Hessian as follows:

∇2ϕ =

[
ϕuu ϕuy
ϕyu ϕyy

]
where

ϕuu(u, y) = λ
(
G(u, y)TG(u, y) +R(u, y,Auy − q)

)
,

ϕyy(u, y) = ∇2f(y) + λATuAu,

ϕyu(u, y) = λ
(
K(u,Auy − q) +ATuG(u, y)

)
.

See [22, Section 4] for more details. Moreover, it is known that
the Hessian of the reduced function ϕ̃ admits the expression
[22, Equation 22]

∇2ϕ̃(u) = ϕuu(u, yu)− ϕuy(u, yu)ϕyy(u, yu)−1ϕyu(u, yu),
(7)

which is simply the Schur complement of ϕyy(u, yu) in
∇2ϕ(u, yu). We define the operator norms∥∥∥∇uG(u, y)T

∥∥∥ := sup
‖v‖≤1

∥∥∥∇u [G(u, y)T v
]∥∥∥ ,∥∥∥∇uATu∥∥∥ := sup

‖v‖≤1

∥∥∥∇u [ATu v]∥∥∥ .
Using this notation, we can prove the following key bounds.

Corollary 2. For any points u and y, the inequalities hold:

‖ϕyy(u, y)−1‖ ≤ ‖A
−1
u ‖

2

λ
,

‖R(u, yu, Auyu − q)‖ ≤
‖∇(f ◦A−1

u )(q)‖ ‖∇uG(u, yu)‖
λ

,

‖K(u,Auyu − q)‖ ≤
‖∇(f ◦A−1

u )(q)‖
∥∥∥∇uATu∥∥∥

λ
.

Proof. The first bound follows by the inequality

‖ϕyy(u, y)−1‖ =
1

λ

∥∥∥∥∥A−1
u

(
1

λ
A−Tu ∇

2f(y)A−1
u + I

)−1

A−Tu

∥∥∥∥∥
≤ ‖A

−1
u ‖

2

λ
,

and the remaining bounds are immediate from Lemma 1.

Next, we need the following elementary linear algebraic fact.

Lemma 2. For any positive semidefinite matrix B and a real
λ > 0, we have ‖I −

(
I + 1

λB
)−1 ‖2 ≤

‖B‖
λ .

Proof. Define the matrix F = I−
(
I + 1

λB
)−1

and consider an
arbitrary point z. Observing the inequality ‖

(
I + 1

λB
)−1 ‖ ≤ 1

and defining the point p := (I + 1
λB)z, we obtain

‖Fz‖ =

∥∥∥∥∥z −
(
I +

1

λ
B

)−1

z

∥∥∥∥∥
=

∥∥∥∥∥
(
I +

1

λ
B

)−1

p−
(
I +

1

λ
B

)−1

z

∥∥∥∥∥
≤

∥∥∥∥∥
(
I +

1

λ
B

)−1
∥∥∥∥∥ ‖p− z‖

≤
∥∥∥∥ 1

λ
Bz

∥∥∥∥ ≤ ‖B‖λ ‖z‖.
Since this holds for all z, the result follows.

Putting all the pieces together, we can now prove the main
theorem of this section.

Theorem 1 (Norm of the reduced Hessian). The operator
norm of ∇2ϕ̃(u) is bounded by a quantity C(A(·), f, q, u)
independent of λ.

Proof. To simplify the proof, define G := G(u, yu), R :=
R(u, yu, Auy−q), K := K(u,Auyu−q), and ∆ = ϕyy(u, yu).
When λ ≤ 1, the operator norm of ∇2φ̃ has a trivial bound
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directly from equation (7). For large λ, after rearranging (7),
we can write ∇2ϕ̃ as follows:

λR− λ2
(
KT∆−1K +KT∆−1ATuG+GTAu∆−1K

)
+ λGTG− λ2GTAu∆−1ATuG.

(8)
Corollary 2 implies that the operator norm of the first row
of (8) is bounded above by the quantity

Lu‖∇uG‖+
1

λ
L2
u‖∇uA

T
u ‖

2‖A−1
u ‖

2

+ 2Lu‖∇uA
T
u ‖‖A

−1
u ‖

2‖ATuG‖,
(9)

where we set Lu := ‖∇(f ◦ A−1
u )(q)‖. Notice that the

expression in (9) is independent of λ. We rewrite the second
row of (8) using the explicit expression for ∆:

λGTG− λ2GTAu∆−1ATuG

= λ

(
GTG−GT

(
1

λ
A−Tu ∇

2f(yu)A−1
u + I

)−1

G

)

= λ

(
GT
(
I −

(
1

λ
A−Tu ∇

2f(yu)A−1
u + I

)−1
)
G

)
.

Applying Lemma 2 with B = A−Tu ∇
2f(yu)A−1

u , we have∥∥∥λGTG− λ2GTAu∆−1ATuG
∥∥∥ ≤ ‖G‖2‖A−Tu ∇2f(yu)A−1

u ‖.

Setting

C(A(·), f, q, u) := Lu‖∇uG‖+ 2Lu‖∇uA
T
u ‖‖A

−1
u ‖

2‖ATuG‖
+ ‖G‖2‖A−1

u ‖
2‖∇2f(yu)‖

+
1

λ
L2
u‖∇uA

T
u ‖

2‖A−1
u ‖

2.

For λ > 1, the last term is always trivially bounded by
L2
u‖∇uA

T
u ‖

2‖A−1
u ‖

2 and the result follows.

A. Inexact analysis of the projection subproblem

In practice, one can rarely evaluate ϕ̃(u) exactly. It is
therefore important to understand how inexact solutions of
the inner problems (4) impact iteration complexity of the outer
problem. The results presented in the previous section form
the foundation for such an analysis. For simplicity, we assume
that g is smooth, though the results can be generalized, as we
comment on shortly.

In this section, we compute the overall complexity of the
partial minimization technique when the outer nonconvex min-
imization problem (3) is solved by an inexact gradient descent
algorithm. When g is nonsmooth, a completely analogous
analysis applies to the prox-gradient method. We only focus
here on gradient descent, as opposed to more sophisticated
methods, since the analysis is straightforward. We expect quasi-
Newton methods and limited memory variants to exhibit exactly
the same behavior (e.g. Figure 1). We do not perform a similar
analysis here for inexact quasi-Newton methods, as the global
efficiency estimates even for exact quasi-Newton methods for
nonconvex problems are poorly understood.

Define the function H(u) := g(u) + ϕ̃(u). Let β > 0 be
the Lipschitz constant of the gradient ∇H = ∇g +∇ϕ̃. Fix
a constant c > 0, and suppose that in each iteration k, we
compute a vector vk with ‖vk−∇H(uk)‖ ≤ c

k . Consider then
the inexact gradient descent method uk+1 = uk − 1

β vk. Then
we deduce

H(uk+1)−H(uk) ≤ −〈∇H(uk), β−1vk〉+
β

2
‖β−1vk‖

2

=
1

2β

(
‖vk −∇H(uk)‖2 − ‖∇H(uk)‖2

)
.

(10)
Hence we obtain the convergence guarantee:

min
i=1,...,k

‖∇H(ui)‖
2 ≤ 1

k

k∑
i=1

‖∇H(ui)‖
2

≤
2β
(
H(u1)−H∗

)
k

+
1

k

k∑
i=1

‖vk −∇H(uk)‖2

≤
2β
(
H(u1)−H∗

)
k

+
c2π2

6k
≤
β2
∥∥u1 − u

∗∥∥2
+ c2π2/6

k
.

where (10) is used to go from line 1 to line 2. Now, if we
compute ∇g exactly, the question is how many inner iterations
are needed to guarantee ‖vk−∇H(uk)‖ ≤ c

k . For fixed u = uk,
the inner objective is

ϕ(uk, y) = f(y) +
λ

2
‖A(uk)y − q‖2.

The condition number (ratio of Lipschitz constant of the
gradient over the strong convexity constant) of ϕ(uk, y) in
y is

κk :=
1

λ
Lip(f)‖A(uk)−1‖2 + ‖A(uk)‖2‖A(uk)−1‖2.

Notice that κk converges to the squared condition number of
A(uk) as λ ↑ ∞. Gradient descent on the function ϕ(uk, ·)
guarantees ‖yi − y

∗‖2 ≤ ε after κk log
(
‖y0−y

∗‖2

ε

)
iterations.

Then we have

‖∇uϕ(uk, yi)−∇uϕ(uk, y
∗)‖ ≤ λ‖∇uG(u, y∗)‖‖yi − y

∗‖.

Since we want the left hand side to be bounded by c
k , we

simply need to ensure

‖yi − y
∗‖2 ≤ c2

k2λ2‖∇uG(uk, y
∗)‖2

.

Therefore the total number of inner iterations is no larger than

κk log

(
‖y0 − y

∗‖2‖∇uG(uk, y
∗)‖2

c2
k2λ2

)
,

which grows very slowly with k and with λ. In particular,
the number of iterations to solve the inner problem scales as
log(kλ) to achieve a global 1

k rate in ‖∇H‖2. If instead we
use a fast-gradient method [16, Section 2.2] for minimizing
ϕ(uk, ·), we can replace κk with the much better quantity

√
κk

throughout.
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III. NUMERICAL ILLUSTRATIONS

In this section, we present two representative examples of
PDE constrained optimization (boundary control and optimal
transport) and a problem of robust dynamic inference. In each
case, we show that practical experience supports theoretical
results from the previous section. In particular, in each
numerical experiment, we study the convergence behavior of
the proposed method as λ increases.

A. Boundary control

In boundary control, the goal is to steer a system towards a
desired state by controlling its boundary conditions. Perhaps the
simplest example of such a problem is the following. Given
a source q(x), defined on a domain Ω, we seek boundary
conditions u such that the solution to the Poisson problem

∆y = q for x ∈ Ω

y|∂Ω = u

is close to a desired state yd. Discretizing the PDE yields the
system

Ay +Bu = q

where A is a discretization of the Laplace operator on the
interior of the domain and B couples the interior gridpoints to
the boundary. The corresponding PDE-constrained optimization
problem is given by

min
u,y

1
2‖y − yd‖

2
2 subject to Ay +Bu = q,

whereas the penalty formulation reads

min
u,y

1
2‖y − yd‖

2
2 + λ

2 ‖Ay +Bu− q‖22.

Since both terms are quadratic in y, we can quickly solve for
y explicitly.

1) Numerical experiments: In this example, we consider
an L-shaped domain with a source q shaped like a Gaussian
bell, as depicted in figure 2. Our goal is to get a constant
distribution yd = 1 in the entire domain. The solution for
u = 1 is shown in figure 3 (a). To solve the optimization
problem we use a steepest-descent method with a fixed step-
size, determined from the Lipschitz constant of the gradient.
The result of the constrained formulation is shown in figure 3
(b). We see that by adapting the boundary conditions we get a
more even distribution. The convergence behavior for various
values of λ is shown in figure 4 (a). We see that as λ ↑ ∞, the
behaviour tends towards that of the constrained formulation,
as expected. The Lipschitz constant of the gradient (evaluated
at the initial point u), as a function of λ is shown in figure 4
(b); the curve levels off as the theory predicts.

B. Optimal transport

The second class of PDE-constrained problems we consider
comes from optimal transport, where the goal is to determine
a mapping, or flow, that optimally transforms one mass density
function into another. Say we have two density functions y0(x)
and yT (x), with x ∈ Ω, we can formulate the problem as
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Fig. 2: L-shaped domain with the source function q.
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Fig. 3: Boundary values, u, and solution in the interior for the
initial and optimized boundary values are depicted in (a) and
(b) respectively.
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Fig. 4: The convergence plots for various values of λ are
depicted in (a), while (b) shows the dependence of the
(numerically computed) Lipschitz constant on λ.

finding a flowfield, u(t, x) =

(
u1(t, x)
u2(t, x)

)
, such that yT (x) =

y(T, x) and y0(x) = y(0, x), where y(t, x) solves

yt +∇ · (yu) = 0.

Discretizing using an implicit Lax-Friedrichs scheme [12], the
PDE reads

A(u)y = q,
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the corresponding time-averaged flow field (right) are shown.

where q contains the initial condition and we have

A(u) =


I + ∆tB(u

1
)

−M I + ∆tB(u
2
)

−M

−M I + ∆tB(u
N

)

 ,

with M a four-point averaging matrix and B containing the
discretization of the derivative terms. Adding regularization to
promote smoothness of u and y in time [12], we obtain the
problem

min
u,y

1
2‖Py − yT ‖

2
2 + α

2

2 y
TLdiag(u)u

subject to A(u)y = q.
(11)
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Fig. 7: Convergence plots for various values of λ are shown
in (a), while (b) shows the (numerically computed) Lipschitz
constant as a function of λ.

Fig. 8: Left: Densities, Gaussian (black dash), Huber (red solid),
and Student’s t (blue dot). Right: Negative Log Likelihoods.

Here, P restricts the solution y to t = T , α is a regularization
parameter and L is a block matrix with I on the main and
upper diagonal. The penalized formulation is

min
u,y

1
2‖Py − yT ‖

2
2 + α

2

2 y
TLdiag(u)u+ 1

2λ‖A(u)y − q‖2.
(12)

Again the partial minimization in y amount to minimizing a
quadratic function.

1) Numerical experiments: For the numerical example we
consider the domain Ω = [0, 1]2, discretized with ∆x = 1/16
and T = 1/32 with a stepsize of ∆t = 1/8. The initial
and desired state are depicted in figure 5. The resulting
state obtained at time T and the corresponding time-averaged
flowfield are depicted in figure 6. The initial flow u0 was
generated by i.i.d. samples from a standard Gaussian random
variable. To minimize (12), we used a steepest-descent method
with constant step size, using the largest eigenvalue of the
Gauss-Newton Hessian at the initial u as an estimate of the
Lipschitz constant. The convergence behavior for various values
of λ as well as the corresponding estimates of the Lipschitz
constant at the final solution are shown in figure 7.

C. Robust dynamic inference with the penalty method

In many settings, data is naturally very noisy, and a lot of
effort must be spent in pre-processing and cleaning before
applying standard inversion techniques.

To narrow the scope, consider dynamic inference, where
we wish to infer both hidden states and unknown parameters
driven by an underlying ODE. Recent efforts have focused on
developing inference formulations that are robust to outliers
in the data [3], [4], [9], using convex penalties such as `1,
Huber [14] and non-convex penalties such as the Student’s t
log likelihood in place of the least squares penalty. The goal is
to develop formulations and estimators that achieve adequate
performance when faced with outliers; these may arise either
as gross measurement errors, or real-world events that are not
modeled by the dynamics.

Figure 8 shows the probability density functions and penalties
corresponding to Gaussian, Huber, and Student’s t densities.
Quadratic tail growth corresponds to extreme decay of the
Gaussian density for large inputs, and linear growth of the
influence of any measurement on the fit. In contrast, Huber and
Student’s t have linear and sublinear tail growth, respectively,
which ensures every observation has bounded influence.

We focus on the Huber function [14], since it is both C1-
smooth and convex. In particular, the function f(y) in (1)
and (4) is chosen to be a composition of the Huber with an
observation model. Note that Huber is not C2, so this case is
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not immediately captured by the theory we propose. However,
Huber can be closely approximated by a C2 function [8], and
then the theory fully applies. For our numerical examples, we
apply the algorithm developed in this paper directly to the
Huber formulation.

We illustrate robust modeling using a simple representative
example. Consider a 2-dimensional oscillator, governed by the
following equations:[

y1

y2

]′
=

[
−2u1u2 −u2

1

1 0

] [
y1

y2

]
+

[
sin(ωt)

0

]
(13)

where we can interpret u1 as the frequency, and u2 is the
damping. Discretizing in time, we have[
y1

y2

]k+1

=

[
1− 2∆tu1u2 −∆tu2

1

∆t 1

] [
y1

y2

]k
+∆t

[
sin(ωtk)

0

]
.

We now consider direct observations of the second component,

zk =
[
0 1

] [y1

y2

]k
+ wk, wk ∼ N(0, Rk).

We can formulate the joint inference problem on states and
measurements as follows:

min
u,y

φ(u, y) :=
1

2
ρ
(
R−1/2(Hy − z)

)
s.t. Gy = v, (14)

with vk = sin(ωtk), v1 the initial condition for y, and ρ is
either the least squares or Huber penalty, and we use the
following definitions:

R = diag({Rk})
H = diag({Hk})

y = vec({yk})
z = vec({z1, . . . , zN})

G =


I 0

−G2 I
. . .

. . . . . . 0
−GN I


Note in particular that there are only two unknown parameters,
i.e. u ∈ R2, while the state y lies in R2N , with N the number
of modeled time points.

The reduced optimization problem for u is given by

min
u
f(u) :=

1

2
ρ(R−1/2(HG(u)−1v − z).

To compute the derivative of the ODE-constrained problem,
we can use the adjoint state method. Defining the Lagrangian

L(y, x, u) =
1

2
ρ
(
R−1/2(Hy − z)

)
+ 〈x,Gy − v〉,

we write down the optimality conditions ∇L = 0 and obtain
y = G−1v

x = −G−T (HTR−1/2∇ρ(R−1/2HG−1v − z))

∇uf =

〈
x,
∂(G(u)y)

∂u

〉
 .

The inexact (penalized) problem is given by

min
u,y

ϕ(u, y) =
1

2
ρ
(
R−1/2(Hy − z)

)
+
λ

2
‖Gy− v‖2. (15)

TABLE I: Results for Kalman experiment. Penalty method
for both least squares and huber achieves the same results for
moderate values of λ as does the projected formulation. While
Huber results converge to nearly the true parameters u, least
squares results converge to an incorrect parameter estimate.

λ ρ Iter Opt u

10
3

`2 9 3.1× 10
−7

(.45, .98)

10
5

`2 18 3.2× 10
−7

(.15, 4.3)

10
7

`2 26 5× 10
−5

(.07, 11.1)

10
9

`2 31 4× 10
−6

(.07, 11.8)

∞ `2 29 3.3× 10
−7

(.07, 11.8)

10
3 h 9 2.4× 10

−7
(1.92.14)

10
5 h 12 5× 10

−6
(1.98, .11)

10
7 h 10 5× 10

−6
(1.99, .11)

10
9 h 13 1× 10

−5
(1.99, .11)

∞ h 17 2× 10
−6

(1.99, .11)

We then immediately find

y = arg min
y

1

2
ρ
(
R−1/2(Hy − z)

)
+
λ

2
‖Gy − v‖2

∇φ̃(u) = λ
∂(G(u)y)

∂u
(Gy − v).

When ρ is the least squares penalty, y is available in closed form.
However, when ρ is the Huber, y requires an iterative algorithm.
Rather than solving for y using a first-order method, we use
IPsolve, an interior point method well suited for Huber [5].
Even though each iteration requires inversions of systems of
size O(N), these systems are very sparse, and the complexity
of each iteration to compute y is O(N) for any piecewise
linear quadratic function [5]. Once again, we see that the
computational cost does not scale with λ.

1) Numerical Experiments: We simulate a data contami-
nation scenario by solving the ODE (13) for the particular
parameter value u = (2, 0.1). The second component of
the resulting state y is observed, and the observations are
contaminated. In particular, in addition to Gaussian noise with
standard deviation σ = 0.1, for 10% of the measurements
uniformly distributed errors in [0, 2] are added. The state
y ∈ R2(4000) is finely sampled over 40 periods.

For the least squares and the Huber penalty with κ = 0.1,
we solved both the ODE constrained problem (14) and the
penalized version (15) for λ ∈ {103, 105, 107, 109}. The results
are presented in Table I. The Huber formulation behaves
analogously to the formulation using least squares; in particular
the outer (projected) function in u is no more difficult to
minimize. And, as expected, the robust Huber penalty finds
the correct values for the parameters.

A state estimate generated from u-estimates corresponding
to large λ is shown in Figure 9. The huberized approach is
able to ignore the outliers, and recover both better estimates of
the underlying dynamics parameters u, and the true observed
and hidden components of the state y.

IV. CONCLUSIONS

In this paper, we showed that, contrary to conventional
wisdom, the quadratic penalty technique can be used effectively



0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2754474, IEEE
Transactions on Automatic Control

8

0 10 20 30 40 50 60 70 80 90 100
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

True
L2 recovery
Huber recovery
measurements

0 10 20 30 40 50 60 70 80 90 100
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

True
L2 recovery
Huber recovery

Fig. 9: Top panel: first 100 samples of state y2 (solid black),
least squares recovery (red dash-dot) and huber recovery (blue
dash). Noisy measurements z appear as blue diamonds on
the plot, with outliers shown at the top of the panel. Bottom
panel: first 100 samples of state y1 (solid black), least squares
recovery (red dash-dot) and Huber recovery (blue dash).

for control and PDE constrained optimization problems, if
done correctly. In particular, when combined with the partial
minimization technique, we showed that the penalized projected
scheme

min
u

g(u) + min
y

{
f(y) +

λ

2
‖A(u)y − b‖2

}
has the following advantages:

1) The Lipschitz constant of the gradient of the outer
function in u is bounded as λ ↑ ∞, and hence we can
effectively analyze the global convergence of first-order
methods.

2) Convergence behavior of the data-regularized convex
inner problem is controlled by parametric matrix A(·), a
fundamental quantity that does not depend on λ.

3) The inner problem can be solved inexactly, and in this
case, the number of inner iterations (of a first-order
algorithm) needs to grow only logarithmically with λ
and the outer iterations counter, to preserve the natural
rate of gradient descent.

As an immediate application, we extended the penalty
method in [22] to convex robust formulations, using the Huber

penalty composed with a linear model as the function f(y).
Numerical results illustrated the overall approach, including
convergence behavior of the penalized projected scheme, as
well as modeling advantages of robust penalized formulations.
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