Lecture 4: Continuity

Definition: A function \(f \) is continuous at \(a \) if
\[
\lim_{{x \to a}} f(x) = f(a)
\]

In other words:
1. \(\lim_{{x \to a}} f(x) \) exists
2. \(f(a) \) is defined
3. \(\lim_{{x \to a}} f(x) = f(a) \)

We say that \(f \) is discontinuous at \(a \) if \(f \) is not continuous at \(a \).

Example:

\(f(x) = \begin{cases} x^2 - x & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases} \)

Continuous at \(x = 1 \)

\[
\lim_{{x \to 1}} f(x) = \lim_{{x \to 1}} \frac{x^2 - x}{x^2 - 1} = \lim_{{x \to 1}} \frac{x(x-1)}{(x-1)(x+1)} = \lim_{{x \to 1}} \frac{x}{x+1} = \frac{1}{2} \neq 1 = f(1)
\]

So \(f \) is discontinuous at \(x = 1 \).
Defn: \(f \) is continuous from left at \(a \)
\[
\text{if } \lim_{x \to a^-} f(x) = f(a).
\]
Continuity from right is similar.

Defn: \(f \) is continuous on \([a, b]\) if
\(f \) is continuous at any \(x \) in \((a, b)\)
right continuous at \(a \) and
left continuous at \(b \).

Thm: If \(f, g \) are continuous at \(a \) and \(c \) is a constant, then
\(f + g \), \(f - g \), \(c f \), \(f \cdot g \) (if \(g(x) \neq 0 \))
are continuous at \(a \).

- Polynomials are continuous everywhere.
- Polynomial is continuous at any point in its domain.
- All functions below are continuous at points in their domain.
 - Power functions, trig, inverse trig,
 - Exponential, logarithm.

Ex: Compute \(\lim_{x \to 1} \frac{2x - 3x^2}{1 + x^3} \)

\[
\begin{align*}
2x - 3x^2 - \frac{1}{1 + x^3} &\quad \text{continuous} \\
\Rightarrow &\quad \frac{2x - 3x^2}{1 + x^3} \text{ continuous} \Rightarrow \lim_{x \to 1} \frac{2x - 3x^2}{1 + x^3} = \frac{2(1) - 3(1)^2}{1 + (1)^3} = -\frac{1}{2}
\end{align*}
\]
Theorem: If \(f \) is continuous at \(b \) and \(\lim_{{x \to a}} g(x) = b \), then
\[
\lim_{{x \to a}} f(g(x)) = f(\lim_{{x \to a}} g(x)) = f(b).
\]

Example:
\[
\lim_{{x \to 1}} e^{x^2 - x} = e^{\lim_{{x \to 1}} x^2 - x} = e^0 = 1
\]

Theorem: If \(g \) is continuous at \(a \) and \(f \) is continuous at \(g(a) \), then \(f \circ g \) is continuous at \(a \).

Intermediate Value Theorem (IVT):
If \(f \) is continuous on \([a, b]\) and \(z \) is any number between \(f(a) \) and \(f(b) \), then there exists \(c \) in \([a, b]\) such that \(f(c) = z \).

Example: Show that \(e^x = 3 - 2x \) has a solution \(x \) in \((0, 1)\).

Define \(f(x) = e^x - 3 + 2x \).

Then \(f(0) = 1 - 3 = -2 < 0 \) and \(f(1) = e - 3 + 2 > 0 \).

Apply Intermediate Value Theorem (IVT).