Lecture 2: Parametric Curves and Rates of Change

i) **Parametric Curves**

Definition: Given functions \(f \) and \(g \), the curve traced out by the points \(t \mapsto (f(t), g(t)) \) is called a parametric curve.

Example:

\[
x = f(t) = 5t + 1
\]
\[
y = g(t) = 5t - 1
\]

Sketching: \(x^2 - y^2 = 2 \) with \(x \geq \sqrt{2}, \ y \geq 0 \)

Example:

\[
x = \sin(2t)
\]
\[
y = \cos(2t)
\]

Notice \(x^2 + y^2 = 1 \)

The particle moves around the circle clockwise making two full rotations.
Motivation of the limit.

Consider function \(f : \mathbb{R} \rightarrow \mathbb{R} \). and two points \(a, b \).

If \(f \) describes the position of an object on the real line, the quantity \(\frac{f(b) - f(a)}{b-a} \) is called the average velocity from \(t=a \) to \(t=b \).

What is the instantaneous velocity at \(a \)?

Instantaneous velocity at \(a \) is \(\lim_{b \to a} \frac{f(b) - f(a)}{b-a} \).

= slope of the "tangent line" to \(f \) at \(a \).

Eqn at \(b \): \(y = m(x-a) + f(a) \)

\(m \) is instantaneous velocity.
Limit of a function

Write \(\lim_{x \to a} f(x) = L \) (read "limit of \(f \) as \(x \) approaches \(a \) equals \(L \)"")

if we can make the values \(f(x) \) arbitrarily close to \(L \) by taking \(x \) sufficiently close to \(a \) (on either side of \(a \)) but not equal to \(a \).

Also write \(f(x) \to L \) as \(x \to a \).

\[
\lim_{x \to a} f(x) = L \quad \text{Note: We don't care about \(f(a) \).}
\]

\[
\lim_{x \to a} f(x) \text{ does not exist}
\]

In all three cases \(\lim_{x \to a} f(x) = L \).
How to find the limit?

Brute-force method:

Let $x \to a$ from both sides.

Tabulate $f(x)$ as $x \to a$ and see if the limit leads to a fixed value.

<table>
<thead>
<tr>
<th>x</th>
<th>$\frac{\sin x}{x}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 1.0</td>
<td>0.84147</td>
</tr>
<tr>
<td>± 0.5</td>
<td>0.95885</td>
</tr>
<tr>
<td>± 0.4</td>
<td>0.973545</td>
</tr>
<tr>
<td>± 0.3</td>
<td>0.98506</td>
</tr>
<tr>
<td>± 0.2</td>
<td>0.99334</td>
</tr>
<tr>
<td>± 0.1</td>
<td>0.99833</td>
</tr>
<tr>
<td>± 0.05</td>
<td>0.99958</td>
</tr>
<tr>
<td>± 0.01</td>
<td>0.99993</td>
</tr>
<tr>
<td>± 0.005</td>
<td>0.999993</td>
</tr>
<tr>
<td>± 0.001</td>
<td>0.999999</td>
</tr>
</tbody>
</table>

We guess $\lim_{x \to 0} \frac{\sin x}{x} = 1$.

Ex: What is $\lim_{x \to 0} \frac{\sin \pi x}{x}$?

If $x = \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$, then $\sin \pi x = 0$.

But for infinitely many x near 0, we have $\sin \pi x = 0$.

$\Rightarrow \lim_{x \to 0} \frac{\sin \pi x}{x}$ does not exist.
One-sided limits

\(\lim_{x \to a^-} f(x) = L \) means \(f(x) \) approaches \(L \) as \(x \to a^- \).

Similarly,

\(\lim_{x \to a^+} f(x) = L \) means \(f(x) \) approaches \(L \) as \(x \to a^+ \).

\[\begin{align*}
\lim_{x \to 2^-} f(x) &= -1, & \lim_{x \to 2^+} f(x) &= 1 \\
\therefore \lim_{x \to 2} f(x) \text{ does not exist. Because} & \quad \lim_{x \to 2^-} f(x) \neq \lim_{x \to 2^+} f(x) \\
\lim_{x \to 2^-} f(x) &= 1 & \lim_{x \to 2} f(x) \text{ does not exist} \\
\lim_{x \to 2^+} f(x) &= 2 &
\end{align*} \]

2 = \lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x) = \lim_{x \to 4} f(x) = 2.
Infinite limits

Definition: \(\lim_{x \to a} f(x) = +\infty \)

\(f(x) \) can be made arbitrarily large as \(x \to a \).

The term \(\lim_{x \to a} f(x) = -\infty \) is defined similarly.

Ex: \(\lim_{x \to a^+} f(x) = +\infty \) or \(\lim_{x \to a^-} f(x) = -\infty \)

Ex: \(\lim_{x \to 0^+} \ln x = -\infty \)

So \(x = 0 \) is a vertical asymptote.

Ex: Find the vertical asymptotes of \(f(x) = \tan x \)

So vertical asymptotes are at \(x = \left(\frac{k\pi}{2}\right) \) where \(k \) is an integer.