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Chapter 8: Kernel learning

Motivation: the Kernel trick and dimension-free generalization
Introduction to Hilbert spaces

Representer Theorem

Positive definite kernels and the reproducing kernel Hilbert space (RKHS)
Moore-Aronszajn theorem and continuity of point evaluations
Translation-invariant kernels on R?

Generalization properties
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Motivation

Key Idea: Suppose that we observe i.i.d. samples (a;,b;) ~ P

® it may be that b; are not well-approximated by a linear function of a;,

® but b; may be nearly linear in ©(a;), where a feature map ¢: R — H
maps to a large (infinite) dimensional space H.

Informally, we will then encounter problems of the form

min 7Z€ 7y f7 04 >)+)‘Hf||§-l

This seems difficult because this is an infinite-dimensional problem ...
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Motivation

Problem:

min 725 i (fs0(ai) + M1

The are two issues to discuss:

1. Computation: We will see that a solution f € #H will lie in the span of
{¢(ai)}: and therefore the whole problem reduces to

;Tégi %Zf(bi,zyﬂﬂo( i), elai)) +>\Zyzy3 w(az))-

i=1 j=1 1,j=1

Thus, if we can evaluate the Kernel function (aj,a;) — K(aj,a;), the

problem becomes finite dimensional | This is called the “Kernel Trick.”

2. Generalization: Our generalization bounds based on (1) Rademacher
complexity for linear classes and (2) convexity and regularization were

dimension independent and therefore apply directly.
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Hilbert spaces

We will need to introduce some basic functional analysis.

Defn: An inner product (-,-) on a vector space H is a mapping from H x H to
R such that for all f,g,h € H and «, 8 € R the following hold:

* (f,9) =19, ) [Symmetry]
o (f, f) > 0 with equality if and only if f =0 [Positivity]
® <0£f+ﬁg,h> = Oé<f, h> +B<g7h> [Linearity]

The function || f|| := \/(f, f) is called the induced norm.

A sequence {f;} C H is called Cauchy if for all € > 0 we have

Ifi = fill < e

for all sufficiently large i and j. The vector space H is called a Hilbert Space if

any Cauchy sequence in H is guaranteed to converge to some element in .
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Hilbert spaces

Example: Sequence space £2(N) is
C(N) = {(24)52 Zml < oo}

equipped with the inner product (z,y) =Y " ziy:.
Example: The square integrable functions

1

L*([0,1]) := {f 0,1] = R: / f2(s)ds < oo}
0

equipped with the inner product (f, g) f f(s

Nonexample: The subspace of £%(N) consisting of all sequences with finite
support is not complete (why?).
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Basic properties

Cauchy-Schwarz inequality: All f, g € H satisfy

Il < IIFI- llgll

with equality if and only if f and g are collinear.

Pythagorean Theorem: If S C H is a finite set of pairwise orthogonal

elements, then
2

= > If1%

fes

i

fes

Closeness: For any set Q C 7, the set Q is a closed linear subspace.

Orthogonal Decomposition: For any closed linear subspace ¥V C H and any

f € H, there exist unique elements f; € V and fo € V* satisfying f = f1 + fo.
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Separable Hilbert Spaces

Defn. A Hilbert space H is called separable if it has a countable orthonormal
basis, that is there exists a countable orthonormal set of vectors {f; }ien such
that any f € H can be written as

= Z ;i fi for some « € KQ(N).
i=1

Remark:

1. Both ¢2(N) and L?[0, 1] are separable.

2. All infinite dimensional separable Hilbert spaces are isomorphic to 62(N).
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Riesz representation theorem

A linear function L: ‘H — R is called bounded if there exists M < oo such that
LN < MIIfIl Y eH.
One can show (do it!) that a linear functional is bounded iff it is continuous.

Theorem (Riesz representation theorem)

Let L: H — R be a bounded linear functional. Then there exists a unique
element g € H such that L(f) = (g, f) for all f € H.

Thus we can identify all bounded linear functionals with elements of H.
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Representer Theorem

The following theorem allows to reduce typical optimization problems over H
to optimization over a finite dimensional subspace.

Theorem (Representer)

Fix an arbitrary set X and a Hilbert space H. Let {a1,...,an} C X" be
arbitrary and let U: R"*! — R be any function that is non-decreasing in the
last coordinate. Then the two values

and
fGSpan%gfai)}I;l \Il(<f7 @(a1)>7 ceey <f7 @(an)% Hf” )
are equal.

The typical examples to think about are ¥ being a regularized loss function

(e.g. least squares or logistic).
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Proof

Set V :=span(¢(ai),...,p(an)). Any f € H may be uniquely written as
f=fv+ fL forsome fy € V and fi € V1. Thus for all i we have

(felar)) = (fv,p(ai)) + (f1,p(a:)) .
~———

=0

From Pythagorean theorem, we have ||f||> = || fv||* + || fL||*>. Therefore

\II(<f7g,p(a1)>7_..7<f7<p(a,n)>7HfHQ)
= \P(<fy7<p(a1)>,. EEN) <fV7 a")) HfV” )

as claimed.
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The kernel trick

In particular, if we define the Kernel matrix K; ; = (¢(ai), p(a;)), then the
optimization problem (27) is equivalent to

inf U((Ky)1, (Ky)z, ..., (Ky)e, lylli)

yER™

meaning that the optimal f* can be constructed from the the optimal y* as

=3 i),
i=1
Moreover, for any a € X we may write the prediction function
(F7 (@) =D yiK(a,a)
i=1

where we define the kernel map K(a,a’) = {p(a),¢(a’)). Thus optimizing over
the hypothesis class {a — (f, p(a))}sen is the same as optimizing over all

finite sums of the form

a— ZyiK(a, ai).
=1
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Positive definite kernels
Often, we would like to reason in reverse. That is, we would like to fit the
observed data {(ai,b;)}i=; using functions of the form a — »"" | 4:K(a,a:),
for some bivariate function K (-, -). In order to speak about generalization, we
would like to know which K(-,-) can be written as K (a,a’) = {p(a), ¢(a’)) for
some feature map ¢: X — H. The following is the key definition.

Definition (PSD kernel)

A symmetric bivariate function K: X x X — R is called a positive semidefinite

(PSD) kernel if for all integers n > 1 and any elements aq,...,an € X, the
matrix {K(a;,a;)}i =1 is positive semidefinite.

Example: If K has the form K(a,a’) = {p(a), ¢(a’)) for some feature map

p: X — H, then K is PSD since

n 2

> vi(a)

i,j=1

>0

D vk (aia;) = Y yays(elan), la;)) =

i,j=1 4,j=1

)

forall y1,...,y» € Rand a1,...,a, € X.

We will see shortly that all PSD kernels arise in this way !
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Examples

Example: [Linear kernel]
K(a,a’) = (a,d)

Example: [Homogeneous polynomial kernel] Define
K(a,a') = {a,a’)™
for some fixed m > 2. We may write

d m
K(a,a') = (Z amé) = Z Bry,..ry(@ra)™ ... (aqay)"™

i=1 r1+...+rg=m

where By, ... r, are the binomial coefficients. So we may explicitly write

K(a,a’) = {p(a),p(a’)) for the feature map

pla) = (\/ BT17~<~7Tda§1 "'a:ld)n-‘rm-‘rm:m'
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Reproducing kernel Hilbert space (RKHS)

A natural guess at a feature map ¢(-) that may represent a PSD kernel is the
function ¢(x) = K(-,z). The goal is now to construct a Hilbert space H that
contains all such functions and satisfies the key relation

K(xvy) = <K('7$)7K('7y)>'

Definition (RKHS associated to a kernel)

Let K(-,-) be a PSD kernel on some set X'. A Hilbert space H of functions on
X is called a reproducing kernel Hilbert space (RKHS) associated with K if for
any z € X the function K (-, z) lies in H and we have

In this case, if we define the feature map ¢(z) = K (-, z), we have as needed:

(p(y), () = (K (- y), K(,2)) = K(z,9y).

Theorem (From kernels to features (Moore-Aronszajn))

Given any PSD kernel K (-,-), there exists a unique RKHS associated to K.
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Proof

Define the set of function
H= {ZajK(-,xj):ml,...,mn €eX,a GR",nEN}.
j=1

We may define the inner product between f = Z?:l o; K(-,z;) and
f= Z?:l a;K(-,Z;) by the expression

(£ ) =) it K (2:, 7).

This expression does not depend on the representation of f since

(f, f) =>,a;f(x;). Let us check that this is an inner product. Symmetry

and linearity follow trivially.
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Proof continued

The inequality (f, f) > 0 follows from the fact that K is PSD. Suppose now
(f, fy =0, that is
0= Z ozioch(mi, acj).
5]

Take any (ao,x) € R x X. We have
2 n
= oK (z,x) 4 200 Z a; K (z,x;).

1=1

0<

aoK (-, ) + Z a; K (-, x;)
i=1

Letting oo tend to zero, we deduce that " | oK (z,z;) = 0. Thus (-,-) is an
inner product on H. The space H can be enlarged to a complete inner product
space H, and therefore a Hilbert space. I'll omit the details.

To see uniqueness, suppose that G is another RKHS for K. Then clearly

H C G. Let us write G = H ® HL. Let g € H* be arbitrary. Then for any z

we must have
and therefore g = 0. Thus H* = {0} and H = G. O
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RKHS and point evaluations

The RKHS property implies that for any x € X, the evaluation map
E.(f) = f(x) is a bounded linear functional on the RKHS H, since it is
represented by K (-, z). It turns out this property characterizes RKHS.

Definition (Continuity of point evaluations)

An RKHS H is a Hilbert space of functions on X’ such that for every z € X,
the point evaluation E,: H — R is a bounded linear functional.

An RKHS is automatically generated by a unique kernel.

Theorem (Building a kernel for RKHS)
For any RKHS on X, there exists a unique PSD kernel K(-,-) that induces it.
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Proof

By Riesz representation, any point evaluation F, is represented by some
fo € H. Define K(z,y) := (fz, fy). Let us see that K is a kernel. Clearly, K
is symmetric and we compute

ZainK(ZEi,l‘j) = Zaz’a]’<ﬂcwij> = Hf50||2 > 07

3

where T = ZZ a;xi;. The RKHS property follows from the computation

K(z,y) = fy(x) and  (f,K(,y)) = (f,fo) = f(y).

Uniqueness of the kernel follows quickly (check this!). g

124 /132



Examples

Nonexample: [L?[0, 1]] The space L?[0,1] is not an RKHS on [0, 1] because

there is no function g, satisfying
1
[ s =s@)  vre o
0

Sobolev space: [H'[0,1]] Let H'[0,1] be the space of absolutely continuous
functions f: [0,1] — R with £(0) =0, and f’ € L?[0, 1] with

1
(fr9) = / f (g (t)dt.
0
This is an RKHS. To see this, for any x define g, (t) = min{z, t}. Then
(f192) = / f(t)dt = f(x).
0

Then kernel is then K(z,2) = (gz,9-) = g=(z) = min{z, z}.
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Translation-invariant kernels on R?

Numerous kernels have the form K (z,z') = q(z — z’) where ¢: R — R is a
translation-invariant function. Positive semi-definiteness of such kernels can be

characterized using the Fourier transform:

d(w) = / ) g(2) da
Rd

Thm: (Béchner) If ¢ is Lebesgue integrable and its Fourier transform only
takes non-negative real values, then K (z,z') = q(x — ') is a PSD kernel.

Moreover, the norm in the corresponding RKHS is given by

[ P,
1 = o [, ey

This expression has an intuitive meaning when 1/4(w) is a polynomial due to

Parseval's theorem:

1 2 |7 _
— / w2 If(w)lzdw—/Rd

where we use the multi-index notation [r] = (r1,72,...,74).

2

[
IF ol de

9207 (%)
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Proof

The inverse Fourier transform formula gives:

gz —a') =

Then we compute

E oo K (i, x5)

i,j=1

as needed.

1 i(w,x—x') A
@ /Rd el ?G(w) dw.

o 3 [ e ) aw

4,j=1

/ S avsngel 0 G o) o

i,j=1

n 2
E aiei(w»xﬁ
d -
1
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Now consider any function of the form f(x Z yi K (z, ;). Then we have
the identity

and therefore
I = Y vk oz =
J EadV) (27’l’)d

1w,
= @ / i)

as claimed.
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Examples

Example: [Laplace Kernel] The Laplace kernel is given by

) = o (12221

where o > 0 is called the bandwidth. The Fourier transform of

q(z) = exp(—||z[l/o) is

d+ 1) o !

2 ) G+ )@
Therefore K (-) is a PSD kernel and the norm on RKHS penalizes all the
derivatives of f of order up to (d + 1)/2.

G(w) = 297 T T (

Example: [Gaussian Kernel] The Gaussian kernel is given by

T — 2
K(x,y):exp (_|2y|| )

o
The Fourier transform of ¢(z) = exp(—||z||/o?) is
d(w) = (r0*)? exp(—o®||w||?/4).

Therefore K(-) is a PSD kernel. Expanding 1/§(w) as a Taylor series, we see

that the norm on RKHS penalizes all derivatives.
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Generalization

Let us now apply what we have learned previously to obtain generalization
guarantees for learning with kernels. Namely, suppose we want to solve:

min L(f) = E Ly, (f,p()))-

feEH (z,y)~P
We will suppose that £(y, -) is G-Lipschitz continuous for each y and let f* be
the minimizer of L. Suppose that |¢(x)||*> = K(x,z) < R? almost surely.
There are two approaches: constrained ERM

min Lo(f) = jb_zle(yi, (f,(x:))  subject to || f]| < D

and regularized ERM

. s R 2
;Iél?l_lt Ly (f) == Lo (f) + AL

The parameters D, A > 0 need to be chosen. Generalization of the constrained
ERM problem can be analyzed with Rademacher bounds while regularized ERM

can be understood using stability bounds when £(y, ) is convex.
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Generalization of constrained ERM

Consider the constrained ERM:

iy L) = 3, 3 o gl subict o ) < D,

and let f,. be its minimizer. Using Rademacher complexity, we have already
proved that

4GRD
E|L(f;) — min L < .
[ (Fn) IflI<r <l vn
Therefore we deduce
4GRD
EL(fr) — L(f") < + min L(f)— L(f").
U LU S TS min L) - LUT)
——
estimation error approximation error

Note that we may bound the second term as L(f) — L(f*) < GR||f — f*|| and

therefore
4GRD

vn

EL(fn) = L(f7) < +GR(If7]l = D)+
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Generalization of regularized ERM

Consider the regularized ERM:

n

min Lo(f) = jlz;ayi, (o) + M,

and let f; be its minimizer. Suppose moreover that £(y,-) is convex. Then the
stability bounds we have derived give:
AlFI?, 2G2R?
p< Al Ly 2=
- 2 + 4 n

With the optimal choice of A\ = , /% we get

2GR| 17
vno

which up to a constant is the same as the constrained ERM.

EL(f;) — min

EL(f;) —min L <

132 /132



