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Motivation

Key Idea: Suppose that we observe i.i.d. samples (ai, bi) ∼ P

• it may be that bi are not well-approximated by a linear function of ai,
• but bi may be nearly linear in φ(ai), where a feature map φ : Rd ! H

maps to a large (infinite) dimensional space H.

Informally, we will then encounter problems of the form

min
f∈H

1
n

n∑
i=1

ℓ(bi, ⟨f, φ(ai)⟩) + λ∥f∥2
H.

This seems difficult because this is an infinite-dimensional problem . . .
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Motivation

Problem:

min
f∈H

1
n

n∑
i=1

ℓ(bi, ⟨f, φ(ai)⟩) + λ∥f∥2
H.

The are two issues to discuss:

1. Computation: We will see that a solution f ∈ H will lie in the span of
{φ(ai)}i and therefore the whole problem reduces to

min
y∈Rn

1
n

n∑
i=1

ℓ(bi,
n∑
j=1

yj⟨φ(aj), φ(ai)⟩) + λ

n∑
i,j=1

yiyj⟨φ(ai), φ(aj)⟩.

Thus, if we can evaluate the Kernel function (aj , ai) 7! K(aj , ai), the
problem becomes finite dimensional ! This is called the “Kernel Trick.”

2. Generalization: Our generalization bounds based on (1) Rademacher
complexity for linear classes and (2) convexity and regularization were
dimension independent and therefore apply directly.
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Hilbert spaces

We will need to introduce some basic functional analysis.

Defn: An inner product ⟨·, ·⟩ on a vector space H is a mapping from H × H to
R such that for all f, g, h ∈ H and α, β ∈ R the following hold:

• ⟨f, g⟩ = ⟨g, f⟩ [Symmetry]
• ⟨f, f⟩ ≥ 0 with equality if and only if f = 0 [Positivity]
• ⟨αf + βg, h⟩ = α⟨f, h⟩ + β⟨g, h⟩ [Linearity]

The function ∥f∥ :=
√

⟨f, f⟩ is called the induced norm.

A sequence {fi} ⊂ H is called Cauchy if for all ϵ > 0 we have

∥fi − fj∥ ≤ ϵ

for all sufficiently large i and j. The vector space H is called a Hilbert Space if
any Cauchy sequence in H is guaranteed to converge to some element in H.
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Hilbert spaces

Example: Sequence space ℓ2(N) is

ℓ2(N) := {(xi)∞
i=1 :

n∑
i=1

x2
i < ∞}

equipped with the inner product ⟨x, y⟩ =
∑∞

i=1 xiyi.

Example: The square integrable functions

L2([0, 1]) :=
{
f : [0, 1] ! R :

∫ 1

0
f2(s) ds < ∞

}
equipped with the inner product ⟨f, g⟩ =

∫ 1
i=0 f(s)g(s) ds.

Nonexample: The subspace of ℓ2(N) consisting of all sequences with finite
support is not complete (why?).
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Basic properties

Cauchy–Schwarz inequality: All f, g ∈ H satisfy

|⟨f, g⟩| ≤ ∥f∥ · ∥g∥

with equality if and only if f and g are collinear.

Pythagorean Theorem: If S ⊂ H is a finite set of pairwise orthogonal
elements, then ∥∥∥∥∥∑

f∈S

f

∥∥∥∥∥
2

=
∑
f∈S

∥f∥2.

Closeness: For any set Q ⊂ H, the set Q⊥ is a closed linear subspace.

Orthogonal Decomposition: For any closed linear subspace V ⊂ H and any
f ∈ H, there exist unique elements f1 ∈ V and f2 ∈ V⊥ satisfying f = f1 + f2.
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Separable Hilbert Spaces

Defn. A Hilbert space H is called separable if it has a countable orthonormal
basis, that is there exists a countable orthonormal set of vectors {fi}i∈N such
that any f ∈ H can be written as

f =
∞∑
i=1

αifi for some α ∈ ℓ2(N).

Remark:

1. Both ℓ2(N) and L2[0, 1] are separable.

2. All infinite dimensional separable Hilbert spaces are isomorphic to ℓ2(N).
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Riesz representation theorem

A linear function L : H ! R is called bounded if there exists M < ∞ such that

|L(f)| ≤ M∥f∥ ∀f ∈ H.

One can show (do it!) that a linear functional is bounded iff it is continuous.

Theorem (Riesz representation theorem)
Let L : H ! R be a bounded linear functional. Then there exists a unique
element g ∈ H such that L(f) = ⟨g, f⟩ for all f ∈ H.

Thus we can identify all bounded linear functionals with elements of H.
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Representer Theorem

The following theorem allows to reduce typical optimization problems over H
to optimization over a finite dimensional subspace.

Theorem (Representer)
Fix an arbitrary set X and a Hilbert space H. Let {a1, . . . , an} ⊂ Xn be
arbitrary and let Ψ: Rn+1 ! R be any function that is non-decreasing in the
last coordinate. Then the two values

inf
f∈H

Ψ(⟨f, φ(a1)⟩, . . . , ⟨f, φ(an)⟩, ∥f∥2) (27)

and
inf

f∈span{φ(ai)}n
i=1

Ψ(⟨f, φ(a1)⟩, . . . , ⟨f, φ(an)⟩, ∥f∥2)

are equal.

The typical examples to think about are Ψ being a regularized loss function
(e.g. least squares or logistic).
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Proof

Set V := span(φ(a1), . . . , φ(an)). Any f ∈ H may be uniquely written as
f = fV + f⊥ for some fV ∈ V and f⊥ ∈ V⊥. Thus for all i we have

⟨f, φ(a1)⟩ = ⟨fV , φ(ai)⟩ + ⟨f⊥, φ(ai)⟩︸ ︷︷ ︸
=0

.

From Pythagorean theorem, we have ∥f∥2 = ∥fV∥2 + ∥f⊥∥2. Therefore

Ψ(⟨f, φ(a1)⟩, . . . , ⟨f, φ(an)⟩, ∥f∥2)

≥ Ψ(⟨fV , φ(a1)⟩, . . . , ⟨fV , φ(an)⟩, ∥fV∥2),

as claimed. □
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The kernel trick
In particular, if we define the Kernel matrix Ki,j = ⟨φ(ai), φ(aj)⟩, then the
optimization problem (27) is equivalent to

inf
y∈Rn

Ψ((Ky)1, (Ky)2, . . . , (Ky)2, ∥y∥2
K)

meaning that the optimal f∗ can be constructed from the the optimal y∗ as

f∗ =
n∑
i=1

y∗
i φ(ai),

Moreover, for any a ∈ X we may write the prediction function

⟨f∗, φ(a)⟩ =
n∑
i=1

y∗
iK(a, ai)

where we define the kernel map K(a, a′) = ⟨φ(a), φ(a′)⟩. Thus optimizing over
the hypothesis class {a 7! ⟨f, φ(a)⟩}f∈H is the same as optimizing over all
finite sums of the form

a 7!

n∑
i=1

yiK(a, ai).
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Positive definite kernels
Often, we would like to reason in reverse. That is, we would like to fit the
observed data {(ai, bi)}ni=1 using functions of the form a 7!

∑n

i=1 yiK(a, ai),
for some bivariate function K(·, ·). In order to speak about generalization, we
would like to know which K(·, ·) can be written as K(a, a′) = ⟨φ(a), φ(a′)⟩ for
some feature map φ : X ! H. The following is the key definition.

Definition (PSD kernel)
A symmetric bivariate function K : X × X ! R is called a positive semidefinite
(PSD) kernel if for all integers n ≥ 1 and any elements a1, . . . , an ∈ X , the
matrix {K(ai, aj)}ni,j=1 is positive semidefinite.

Example: If K has the form K(a, a′) = ⟨φ(a), φ(a′)⟩ for some feature map
φ : X ! H, then K is PSD since

n∑
i,j=1

yiyjK(ai, aj) =
n∑

i,j=1

yiyj⟨φ(ai), φ(aj)⟩ =

∥∥∥∥∥
n∑

i,j=1

yiφ(ai)

∥∥∥∥∥
2

≥ 0,

for all y1, . . . , yn ∈ R and a1, . . . , an ∈ X .

We will see shortly that all PSD kernels arise in this way !
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Examples

Example: [Linear kernel]
K(a, a′) = ⟨a, a′⟩

Example: [Homogeneous polynomial kernel] Define

K(a, a′) = ⟨a, a′⟩m

for some fixed m ≥ 2. We may write

K(a, a′) =

(
d∑
i=1

aia
′
i

)m
=

∑
r1+...+rd=m

Br1,...,rd (a1a
′
1)r1 . . . (ada′

d)rd

where Br1,...,rd are the binomial coefficients. So we may explicitly write
K(a, a′) = ⟨φ(a), φ(a′)⟩ for the feature map

φ(a) = (
√
Br1,...,rda

r1
1 · · · ard

d )r1+...+rd=m.
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Reproducing kernel Hilbert space (RKHS)
A natural guess at a feature map φ(·) that may represent a PSD kernel is the
function φ(x) = K(·, x). The goal is now to construct a Hilbert space H that
contains all such functions and satisfies the key relation

K(x, y) = ⟨K(·, x),K(·, y)⟩.

Definition (RKHS associated to a kernel)
Let K(·, ·) be a PSD kernel on some set X . A Hilbert space H of functions on
X is called a reproducing kernel Hilbert space (RKHS) associated with K if for
any x ∈ X the function K(·, x) lies in H and we have

⟨f,K(·, x)⟩ = f(x) ∀f ∈ H.

In this case, if we define the feature map φ(x) = K(·, x), we have as needed:

⟨φ(y), φ(x)⟩ = ⟨K(·, y),K(·, x)⟩ = K(x, y).

Theorem (From kernels to features (Moore-Aronszajn))
Given any PSD kernel K(·, ·), there exists a unique RKHS associated to K.
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Proof

Define the set of function

H̃ =

{
n∑
j=1

αjK(·, xj) : x1, . . . , xn ∈ X , α ∈ Rn, n ∈ N

}
.

We may define the inner product between f =
∑n

j=1 αjK(·, xj) and
f̄ =

∑n̄

j=1 ᾱjK(·, x̄j) by the expression

⟨f, f̄⟩ =
∑
i,j

αiᾱjK(xi, x̄j).

This expression does not depend on the representation of f since
⟨f, f̄⟩ =

∑
i
ᾱjf(x̄j). Let us check that this is an inner product. Symmetry

and linearity follow trivially.
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Proof continued

The inequality ⟨f, f⟩ ≥ 0 follows from the fact that K is PSD. Suppose now
⟨f, f⟩ = 0, that is

0 =
∑
i,j

αiαjK(xi, xj).

Take any (α0, x) ∈ R × X . We have

0 ≤

∥∥∥∥∥α0K(·, x) +
n∑
i=1

αiK(·, xi)

∥∥∥∥∥
2

= α2
0K(x, x) + 2α0

n∑
i=1

αiK(x, xi).

Letting α0 tend to zero, we deduce that
∑n

i=1 αiK(x, xi) = 0. Thus ⟨·, ·⟩ is an
inner product on H̃. The space H̃ can be enlarged to a complete inner product
space H, and therefore a Hilbert space. I’ll omit the details.

To see uniqueness, suppose that G is another RKHS for K. Then clearly
H ⊂ G. Let us write G = H ⊕ H⊥. Let g ∈ H⊥ be arbitrary. Then for any x
we must have

0 = ⟨g,K(·, x)⟩ = g(x)

and therefore g = 0. Thus H⊥ = {0} and H = G. □
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RKHS and point evaluations

The RKHS property implies that for any x ∈ X , the evaluation map
Ex(f) = f(x) is a bounded linear functional on the RKHS H, since it is
represented by K(·, x). It turns out this property characterizes RKHS.

Definition (Continuity of point evaluations)
An RKHS H is a Hilbert space of functions on X such that for every x ∈ X ,
the point evaluation Ex : H ! R is a bounded linear functional.

An RKHS is automatically generated by a unique kernel.

Theorem (Building a kernel for RKHS)
For any RKHS on X , there exists a unique PSD kernel K(·, ·) that induces it.

123 / 132



Proof

By Riesz representation, any point evaluation Ex is represented by some
fx ∈ H. Define K(x, y) := ⟨fx, fy⟩. Let us see that K is a kernel. Clearly, K
is symmetric and we compute∑

i,j

αiαjK(xi, xj) =
∑
i,j

αiαj⟨fxi , fxj ⟩ = ∥fx̄∥2 ≥ 0,

where x̄ =
∑

i
αixi. The RKHS property follows from the computation

K(x, y) = fy(x) and ⟨f,K(·, y)⟩ = ⟨f, fy⟩ = f(y).

Uniqueness of the kernel follows quickly (check this!). □
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Examples

Nonexample: [L2[0, 1]] The space L2[0, 1] is not an RKHS on [0, 1] because
there is no function gx satisfying∫ 1

0
gx(y)f(y) = f(x) ∀f ∈ L2[0, 1].

Sobolev space: [H1[0, 1]] Let H1[0, 1] be the space of absolutely continuous
functions f : [0, 1] ! R with f(0) = 0, and f ′ ∈ L2[0, 1] with

⟨f, g⟩ =
∫ 1

0
f ′(t)g′(t) dt.

This is an RKHS. To see this, for any x define gx(t) = min{x, t}. Then

⟨f, gx⟩ =
∫ x

0
f ′(t) dt = f(x).

Then kernel is then K(z, x) = ⟨gx, gz⟩ = gx(z) = min{x, z}.
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Translation-invariant kernels on Rd

Numerous kernels have the form K(x, x′) = q(x− x′) where q : Rd ! R is a
translation-invariant function. Positive semi-definiteness of such kernels can be
characterized using the Fourier transform:

q̂(w) =
∫
Rd

e−i⟨w,x⟩q(x) dx

Thm: (Böchner) If q is Lebesgue integrable and its Fourier transform only
takes non-negative real values, then K(x, x′) = q(x− x′) is a PSD kernel.
Moreover, the norm in the corresponding RKHS is given by

∥f∥2 = 1
(2π)d

∫
Rd

|f̂(w)|2

q̂(w) dw.

This expression has an intuitive meaning when 1/q̂(w) is a polynomial due to
Parseval’s theorem:

1
(2π)d

∫
Rd

|w[r]|2 · |f̂(w)|2 dw =
∫
Rd

∣∣∣∣∂[r]f

∂x[r] (x)
∣∣∣∣2 dx

where we use the multi-index notation [r] = (r1, r2, . . . , rd).
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Proof

The inverse Fourier transform formula gives:

q(x− x′) = 1
(2π)d

∫
Rd

ei⟨w,x−x′⟩q̂(w) dw.

Then we compute
n∑

i,j=1

αiαjK(xi, xj) = 1
(2π)d

n∑
i,j=1

αiαj

∫
Rd

ei⟨w,xi−xj ⟩q̂(w) dw

= 1
(2π)d

∫
Rd

n∑
i,j=1

αiαje
i⟨w,xi⟩ei⟨w,xj ⟩q̂(w) dw

= 1
(2π)d

∫
Rd

∣∣∣∣∣
n∑
i

αie
i⟨w,xi⟩

∣∣∣∣∣
2

q̂(w) dw ≥ 0,

as needed.
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Now consider any function of the form f(x) =
∑

i
yiK(x, xi). Then we have

the identity
f̂(w) =

∑
i

yie
−i⟨w,xi⟩q̂(w)

and therefore

∥f∥2 =
n∑

i,j=1

αiαjK(xi, xj) = 1
(2π)d

∫
Rd

∣∣∣∣∣
n∑
i

αie
i⟨w,xi⟩

∣∣∣∣∣
2

q̂(w) dw

= 1
(2π)d

∫
Rd

|f̂(w)|2

q̂(w) dw,

as claimed. □
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Examples
Example: [Laplace Kernel] The Laplace kernel is given by

K(x, y) = exp
(

−∥x− y∥
σ

)
,

where σ > 0 is called the bandwidth. The Fourier transform of
q(z) = exp(−∥z∥/σ) is

q̂(w) = 2dπ
d−1

2 Γ
(
d+ 1

2

)
σ−1

(σ−2 + ∥w∥2
2)(d+1)/2 .

Therefore K(·) is a PSD kernel and the norm on RKHS penalizes all the
derivatives of f of order up to (d+ 1)/2.
Example: [Gaussian Kernel] The Gaussian kernel is given by

K(x, y) = exp
(

−∥x− y∥2

σ2

)
,

The Fourier transform of q(z) = exp(−∥z∥/σ2) is

q̂(w) = (πσ2)d/2 exp(−σ2∥w∥2/4).

Therefore K(·) is a PSD kernel. Expanding 1/q̂(w) as a Taylor series, we see
that the norm on RKHS penalizes all derivatives.
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Generalization

Let us now apply what we have learned previously to obtain generalization
guarantees for learning with kernels. Namely, suppose we want to solve:

min
f∈H

L(f) = E
(x,y)∼P

ℓ(y, ⟨f, φ(x)⟩).

We will suppose that ℓ(y, ·) is G-Lipschitz continuous for each y and let f∗ be
the minimizer of L. Suppose that ∥φ(x)∥2 = K(x, x) ≤ R2 almost surely.

There are two approaches: constrained ERM

min
f∈H

Ln(f) := 1
n

n∑
i=1

ℓ(yi, ⟨f, φ(xi)⟩) subject to ∥f∥ ≤ D

and regularized ERM

min
f∈H

Lrn(f) := Ln(f) + λ∥f∥2.

The parameters D, λ > 0 need to be chosen. Generalization of the constrained
ERM problem can be analyzed with Rademacher bounds while regularized ERM
can be understood using stability bounds when ℓ(y, ·) is convex.
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Generalization of constrained ERM

Consider the constrained ERM:

min
f∈H

Ln(f) := 1
n

n∑
i=1

ℓ(yi, ⟨f, φ(xi)⟩) subject to ∥f∥ ≤ D,

and let fcn be its minimizer. Using Rademacher complexity, we have already
proved that

E
[
L(fcn) − min

∥f∥≤R
L(f)

]
≤ 4GRD√

n
.

Therefore we deduce

EL(fcn) − L(f∗) ≤ 4GRD√
n︸ ︷︷ ︸

estimation error

+ min
∥f∥≤D

L(f) − L(f∗)︸ ︷︷ ︸
approximation error

.

Note that we may bound the second term as L(f) −L(f∗) ≤ GR∥f − f∗∥ and
therefore

EL(fcn) − L(f∗) ≤ 4GRD√
n

+GR(∥f∗∥ −D)+.
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Generalization of regularized ERM

Consider the regularized ERM:

min
f∈H

Ln(f) := 1
n

n∑
i=1

ℓ(yi, ⟨f, φ(xi)⟩) + λ∥f∥2,

and let fλn be its minimizer. Suppose moreover that ℓ(y, ·) is convex. Then the
stability bounds we have derived give:

EL(fλn ) − minL ≤ λ∥f∗∥2

2 + 2G2R2

4λn .

With the optimal choice of λ =
√

G2R2

n∥f∗∥2 we get

EL(fλn ) − minL ≤ 2GR∥f∗∥√
n

,

which up to a constant is the same as the constrained ERM.
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