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Minimax risk: the definition

Setting:
® Family of probability distributions P on some space X.
® Surjective Function 6: P — ©, modeling the parameter to be estimated
® An estimator is a function 6: X — ©.
® A semi-metric' p(-,-) on ©

Goal: Establish a lower-bound on the minimax-risk:

M(6;p) == inf sup E [p(0(2), 6(P))].

0 Pepz~P

Examples: Estimating the mean, median, mode, density, variance, ...

It useful to rescale p by an increasing function @, yielding the minimax-risk:

M(0; P o p) := nf ;gg)fp[@(p(é(?ﬁ), 0(P)))]-

LA semi-metric p satisfies all the assumptions of a metric except distinct @ and 8’ may satisfy p(6,0’) = 0.
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Reduction to hypothesis testing
Lower-bounds on M (60; ® o p) are obtained by reducing to hypothesis testing.
Step 1 (discretize): Let {6:,...,0,,} C © be a 26-separated set, meaning

p(6:,0;) >26  Vi#j.

For each j, choose any P; satisfying 0(P;) = 0;.

Step 2 (mixture): Let J be uniformly sampled from {1,...,m} and let Z
have distribution P;j.

Step 3 (testing): The goal of hypothesis testing is to determine the index J
from the observation Z. This is done with a testing function ¥: X — [m],
which is judged by the mislabeling error Pr{y(Z) # J|.
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Key observation: any estimator 0 defines a testing function

A

Y(z) := argmin p(0;,0(2)).

j€lm]
The following follows immediately from 24-separation.
Lemma (Correct testing)

Equality 1 = J holds in the event E := {p(,0;) < 6} and therefore

PrlU(Z) # J) < Pr[p(d,05) > 4].

With this lemma, we can reduce the task of establishing minimax lower bounds

to hypothesis testing.

Theorem (Reduction to testing)

M(6:® 0 p) > @(0) - inf Pri(2) # J].

Remark: Typically, we will choose 6* such that Pr{y)(Z) # J] > %} and then

B(5*)

M(G; @0 p) > —5
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Proof

Fix an estimator 0. For any P € P define 0p = 0(P). Markov's inequality gives

E [@(p(0,0p))] > ®(8) - P[®(p(d,0p)) > ®(5))]

(RN

sup Plp(0,0) = )] = — S Py[p(6,6;) = 8)] = Prip(d,0,) > o).

PecpP m

Applying Lemma (correct testing) for 1 induced by 0 completes the proof.
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Le Cam’s method: binary testing

Surprisingly, one may obtain interesting lower-bounds even for a binary packing
{01,02}. In this setting, we must lower bound

Prig(2) # J) = 2P # 1] + £ Paly # 2]

Note that there is a one-to-one correspondence between 7 and measurable
partitions (A, A°) of ©. Therefore

| 1 c
lgf §P1 [A] -+ —PQ[A ]

inf Priy(Z2) # J] 5

(G

— 1(1 — sglp{Pl |A] — P2[A]})

DO

1
> 5(1 — [P — P2||Tv).

The right-hand-side measures the similarity between P; and P».

28 / 46



Interlude: controlling the total variation (TV) distance

Let P and () be two probability distributions with densities p and g with

respect some base measure v.

® Total Variation (TV) distance
|7 = Qllrv = sup |P(4) = Q(4)]

® Kullback-Leibler (KL) divergence

D(P||Q) = / pla) log (ZL"”)) (dz)

q(z)

® Squared Hellinger distance

H(PlIQ) = [ (Vi) - Vat@) vl
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Basic properties of the three distances

The TV norm between P and (@ is related to the Li-norm between p and q.

Lemma (TV and L; norm)

1
|P — Q|lTv = §Hp —qlz,

30/ 46



Proof
Define

Iy . ={x:p(x) >q(x)} and I- ={z:p(x) <q(x)}.

We claim fH p—q| = fI_ lp — q|. Indeed, this follows from the computation

0:/p—/q=/1+(p—Q)—/I(q—P)'

Next, observe f p—q| = 2f1+ p—q| = 2f1— |p — q|. Consequently

1
P~ Qlrv = [PI) = @) = [ o= al = 51P - @l
I

Conversely, for any measurable A, we have
P -ewi=|[ w-0-[ @-»
ANI+ ANI—

f
gmax</ <—q/ (4 p>}
ANI+t ANI—
Smax</ Ip—q|/ g — pl}_Q/IP—CH
(J [T

where the first inequality uses the identity |a — b| < max(a,b) for all a,b > 0.
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Deviations of products

The main issue with the TV distance is that it is difficult to compute for
product distributions P" and Q™. The KL-divergence and square Hellinger

behave much nicer. You will prove the following for homework.

Lemma

Let (P1,...,P,) and (Q1,...,Q) be probability distributions and let P'"
and Q'™ be the product measures. Then

D(P*[|Q*") = > ~D(Pi[|Q:)
1=1

n

1 2 1:n 1:n 1 2
SH(PQT =1 -] [a - B (PiQ:)

i=1
In particular, of P, = P; and ); = ()1 for each 7, then
D(P"™||Q"™) = nD(P1[|Q1)

SHAPYIQM™) = 1— (1 - SHA(PI|QU)" < 5nH(Pi]|Q)
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Pinsker’s and Le Cam’s inequalities

Thus we may try to bound the TV distance by the KL divergence and/or the
square Hellinger distance.

Theorem (Pinsker)

1P~ Qllrv < \/ S D(PI|Q)

Theorem (Le Cam'’s inequality)

_ H2(P]IQ)
4

|1P— Qv < H(P||Q) - \/1
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Proof of Pinsker’s inequality (due to John M. Pollard)

We will use to basic facts. First, the inequality

t2

V¢,
141t/3

(14+t)log(l1+41¢t) —

DO | —

This can be verified by elementary calculus (do it!) Secondly, for any random
variable X and a nonnegative random variable Y the Cauchy-Schwarz

inequality gives

X2

(E|X|)2:<Em\/?> <E|%5;

VY

Now setting r(x) = ggg — 1, we compute

D(P[|Q) = Eq[(1 + r(z))log(1 + 7(z)) — r(z)]
)

e

1 r(z)?
25 “ [1+r(:1:)/3]
1 (Eglr(x)|)? 1 1
= 519:@(1Q+ r(w)/3) 2 elr@l)T =5 (/ 'p_q‘)

as claimed.



Proof of Le Cam'’s inequality

The Cauchy-Schwarz inequality gives

2P - Q||Tv—/|p—q| /M Val(/F + va)

</ [wp-var-/ [wr+ vy

=H<PH@>-\/2+2/¢M

Taking into account

2/¢M=—/<<@—ﬂ>2—p—q>
20— B(P||Q).

completes the proof.
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Lower bounds for estimating the mean of a 1D Gaussian

For a fixed variance o2, set Py = N(0,0°) and define
P={Py :0cR}.
Let us lower-bound the minimax risk:

R = infsup E[(§ — 6)?].
0 OcR Py
Let us use the Le Cam’s two point estimate for Py’ and P,5 where 6 > 0 will

be specified shortly. Then we know

1 n n
Ro> 6" (30— 1B = Psllav)).
Pinsker's inequality gives || Py’ — Pss|lTv < \/%D(P(’;”"HP%) and algebra shows
n n 20 2 27?/(52
D3 ||P3s) = nD(Pol [ Pas) = n 0 = 20

Choosing § = \/% gives

2

o
Ro > — |.
2_877,

The sample mean achieves this lower-bound up to a constant.
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Lower bounds for estimating the CDF of a 1D Gaussian
For 8 € R, set P = N(6,1) and define

P={P; :0 R}
Let Fp be the CDF of Py. Let us lower-bound the minimax risk:

R :=infsup E[||F — Fo| o).
F 0eR Py

For any 8 > 0, we have

6
1 _ _
Fo(0) — Fp(0) = \/—27/ e 2t > \/92_776 o°/2
0

Therefore we may set 20 to be equal to the right-hand side and then
| Fo — Folloo > 20. Le Cam'’s two point estimate for FPy* and P,' implies

1 n n
R>6. (5(1 _|Pr — P} I\Tv)) |

Pinsker's inequality gives | Py — Py'|ltv < v/2D(P§||Py) = 1/ 2=, Setting
0 = \/Lﬁ and noting 6 > Sien, we deduce
1 1
R > : .
~ 8/2me Vn

The empirical CDF matches this lower bound (recall DKW inequality). 37 /46



Lower bounds for estimating a shifted uniform distribution
For any 0 € R, set Py be uniformly distributed on (6,6 + 1) and define

P={P; :0 R}
Let us lower-bound the minimax risk:

Ro :=supsup E[(0 — 0)?].
6 O€eR Py

Let us again use the Le Cam'’s two point estimate for Py’ and Py5. Then
1 T mn
Ro2 8% (50 = I = Phsllv))

We can not use Pinsker's inequality because D(Py, Py:) = oo whenever 6 # 6’
(why?). Let us compute the Hellinger distance instead. We may assume with
loss of generality 6" > 6. It is easy to show that if 6’ € (0,60 + 1], then
H?(Ps||Pyr) = 2|0 — 0'|. Therefore as long as 25 < 1, we have

H? (P}||P3y) < nH?(Po||Pas) = 4né.

Le Cam implies || Py™ — P3i"||rv < 2vndv/1 —nd. With § = - get

Ry > —
n

for a constant ¢ > 0. This rate is matched by 0(z) = min{z1,...,2zn} (HW).
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Fano’s method for multi-hypothesis testing.

Recall the basic inequality:

M(O:® 0 p) > ©(6) - inf Pr{v(2) # J]

Le Cam’s method for binary testing used a binary 2§ separating set {61,602}
yielding the lower bound

inf Prig(Z) # J] 2 51— [P = Pallrv).

We next discuss Fano's method which provides a different lower-bound on
inf,, Pr{y(Z) # J|, which is valid for non-binary packings.

39/ 46



Fano’s inequality
The main tool we will use is Fano's inequality, which we will prove later.

Theorem (Fano's inequality)

Consider a 20-separated set {01,602, ...,0,} and let J be uniform over |m].
Then for any testing function v we have

1

mZ?l D( J||PJ>‘|‘10g2
logm

Priv(Z) #J] > 1 -

Typically, we choose a 2J-separated set so that the right side is at least 1/2.

The main difficulty is in controlling D(P;||Ps). One upper bound we can use is

D(P;||Py) = E; 1 <—§E-1 ek _——EDP-PZ-,
( jH J) J Og(—l g f:nlpi) o mi - J 08 (pz) ™m P ( jH )

where the inequality follows from concavity of the log. Thus we deduce

7 S0y D(BIIP) +log2

logm

Prip(Z) #J| 21—
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Lower bounds for mean estimation of multivariate Gaussians
Suppose d > 2 and for a fixed variance o, set Py = N (8, O'QId) and define

P={P}:0¢cR}.
Let us lower-bound the minimax risk:

R = inf sup E[||0 — 6]|3].
0 QeRd PQ

Let us choose a 26-separated set {61, ...,0,,} of the unit ball 7B of radius r to
be chosen. As we have seen, we may ensure log(m) > dlog(55). Then an easy

: : Uy 6:i=6517 _ 2,2
computation gives D(FP;||P;) = —55— < =5. Therefore
LS D(PM|PM) 4 log 2 2rn 4 o0(2
Prip(Z) #J] > 1— 21z DU >1— = rg( )
logm dlog(zz)
Setting 1% = 1%(§+"2 and § = 7 makes the right-hand-side at least 1/4 and
therefore
log(2)do?
> :
Ra 2 512n

The sample mean matches this rate up to a constant.
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Lower bounds for linear regression
Consider the regression observation model
y=X0"+g

where X € R"*% is a fixed design matrix and g ~ N(0,0°I,) is the noise.
Equivalently, we observe y ~ N(X0*,0°I,,) Define the family of distributions

P ={N(v,0°I,) : v € Range(X)}.
We aim to lower-bound the quantity

: 1 A
Ro = 1r9;fgs:£”]DE; [ﬁ HX(H — 6)“2} :

From the lower-bound on mean-estimation for Gaussians, we have

log(2) o” - rank(X)
> :
M2 2 0 n

This bound is achieved by the ordinary least squares estimator. Why doesn’t
the efficiency of the ridge estimator contradict this?
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Towards a proof of Fano’s inequality

We will need to introduce some notation from information theory.

Definition (Entropy)

Let () be a probability distribution with density ¢ = % with respect to some
base measure . The Shannon entropy is the function

H(Q) = —Eqlog (q) = — / () o)) )

If X is discrete with mass function ¢(x) = Pr(X = x) then

Zq ) log(q

rxEX
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Conditional entropy

Definition (Conditional entropy)

Given a pair of random variables (X,Y) with conditional distribution Q) x|y,

the conditional entropy of XY is given by
H(X|Y) =Ey[H(Qxv)],

If X and Y are discrete with joint mass function p(x,y), then

H(X[Y) = ZZlog (| y)p(z | y)p(y)

xy’;j ) p(x,y)

:_;;bg (pp

Elementary properties: You will verify these for homework

H(X) < log(|support(X)])

H(X|Y)< H(X) [contractive]
H(X,Y)=H(Y)+ H(X|Y) [chain rule]
H(X, Y|Z) HY|Z)+ HX|Y, Z) [conditional chain rule]
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Proof of Fano’s inequality

Define the random binary random variable

V = lw@z)=n,
and let Z be distributed according to P;. We will prove the following.

Lemma

H(V)+ Pr[V =1]log(m —1) > H(J|Z)

Chain rule plus a short computation (do it!) gives

H(J|Z) = H(J) —[H(Z) + H(J) - H(Z,J)]

J/

—tostm) = D D(P;IIPy)
Since H(V') <log(2), we deduce

log(2) + Priu(Z) # J]log(m) > log(m) — — 3 D(P||Py).

m

which after rearranging is Fano's inequlity.
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Proof of the lemma

We expand H(V, J|Z) in two different ways

H(V,J|Z) = H(J|Z) + H(V|J,Z) = H(J|Z)
H(V,J|Z) = H(V|Z)+ HJ|V, Z) < HV) + H(J|V, Z),

where the first inequality holds because J is constant conditioned on J and Z.

Nest, by definition of the conditional entropy we have
HJWV,Z)=Pr(V=1)HJ|Z,V =1)+ Pr(V=0)H(J|Z,V =0).

If V=0, then J = ¢(Z) and therefore H(J|Z,V = 0) = 0. On the other
hand, if V =1, then J # ¥(Z) so that J conditioned Z, [V = 1] can take at
most m — 1 values and therefore H(J|Z,V = 1) < log(m — 1). We have shown

H(V,J|Z) < H(V) + Prip(Z) # 1] log(m — 1),

which completes the proof. []
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