Chapter 7: Minimax lower bounds

- 1. Minimax risk
- 2. Reduction to hypothesis testing
- 3. Le Cam's method: binary testing
- 4. Interlude: Deviations between probability distributions
- 5. Fano's method for multi-hypothesis testing

Minimax risk: the definition

Setting:

- Family of probability distributions \mathcal{P} on some space \mathcal{X} .
- Surjective Function $\theta \colon \mathcal{P} \to \Theta$, modeling the parameter to be estimated
- An estimator is a function $\hat{\theta} \colon \mathcal{X} \to \Theta$.
- ullet A semi-metric $\rho(\cdot,\cdot)$ on Θ

Goal: Establish a lower-bound on the minimax-risk:

$$\mathcal{M}(\theta; \rho) := \inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_{z \sim P}[\rho(\hat{\theta}(z), \theta(P))].$$

Examples: Estimating the mean, median, mode, density, variance, ...

It useful to rescale ρ by an increasing function Φ , yielding the minimax-risk:

$$\mathcal{M}(\theta; \Phi \circ \rho) := \inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} \underset{z \sim P}{\mathbb{E}} [\Phi(\rho(\hat{\theta}(z), \theta(P)))].$$

¹A semi-metric ρ satisfies all the assumptions of a metric except distinct θ and θ' may satisfy $\rho(\theta, \theta') = 0$.

Reduction to hypothesis testing

Lower-bounds on $\mathcal{M}(\theta; \Phi \circ \rho)$ are obtained by reducing to hypothesis testing.

Step 1 (discretize): Let $\{\theta_1,\ldots,\theta_m\}\subset\Theta$ be a 2δ -separated set, meaning

$$\rho(\theta_i, \theta_j) \ge 2\delta \qquad \forall i \ne j.$$

For each j, choose any P_j satisfying $\theta(P_j) = \theta_j$.

Step 2 (mixture): Let J be uniformly sampled from $\{1, \ldots, m\}$ and let Z have distribution P_J .

Step 3 (testing): The goal of hypothesis testing is to determine the index J from the observation Z. This is done with a testing function $\psi \colon \mathcal{X} \to [m]$, which is judged by the mislabeling error $Pr[\psi(Z) \neq J]$.

Key observation: any estimator $\hat{\theta}$ defines a testing function

$$\psi(z) := \underset{j \in [m]}{\arg \min} \rho(\theta_j, \hat{\theta}(z)).$$

The following follows immediately from 2δ -separation.

Lemma (Correct testing)

Equality $\psi = J$ holds in the event $E := \{ \rho(\hat{\theta}, \theta_J) < \delta \}$ and therefore

$$Pr[\Psi(Z) \neq J] \leq Pr[\rho(\hat{\theta}, \theta_J) \geq \delta].$$

With this lemma, we can reduce the task of establishing minimax lower bounds to hypothesis testing.

Theorem (Reduction to testing)

$$\mathcal{M}(\theta; \Phi \circ \rho) \ge \Phi(\delta) \cdot \inf_{\psi} Pr[\psi(Z) \ne J].$$

Remark: Typically, we will choose δ^* such that $Pr[\psi(Z) \neq J] \geq \frac{1}{2}$ and then

$$\mathcal{M}(\theta; \Phi \circ \rho) \geq \frac{\Phi(\delta^*)}{2}.$$

Proof

Fix an estimator $\hat{\theta}$. For any $P \in \mathcal{P}$ define $\theta_P = \theta(P)$. Markov's inequality gives

$$\mathbb{E}_{P} \left[\Phi(\rho(\hat{\theta}, \theta_{P})) \right] \ge \Phi(\delta) \cdot P[\Phi(\rho(\hat{\theta}, \theta_{P})) \ge \Phi(\delta))]$$

$$\ge \Phi(\delta) \cdot P[\rho(\hat{\theta}, \theta_{P}) \ge \delta)].$$

Next, since the supremum is greater than the average we have

$$\sup_{P \in \mathcal{P}} P[\rho(\hat{\theta}, \theta_P) \ge \delta)] \ge \frac{1}{m} \sum_{j=1}^m P_j[\rho(\hat{\theta}, \theta_j) \ge \delta)] = Pr[\rho(\hat{\theta}, \theta_J) \ge \delta].$$

Applying Lemma (correct testing) for ψ induced by $\hat{\theta}$ completes the proof. \Box

Le Cam's method: binary testing

Surprisingly, one may obtain interesting lower-bounds even for a binary packing $\{\theta_1, \theta_2\}$. In this setting, we must lower bound

$$Pr[\psi(Z) \neq J] = \frac{1}{2}P_1[\psi \neq 1] + \frac{1}{2}P_2[\psi \neq 2].$$

Note that there is a one-to-one correspondence between ψ and measurable partitions (A,A^c) of Θ . Therefore

$$\inf_{\psi} Pr[\psi(Z) \neq J] = \inf_{A} \frac{1}{2} P_1[A] + \frac{1}{2} P_2[A^c]$$

$$= \frac{1}{2} (1 - \sup_{A} \{P_1[A] - P_2[A]\})$$

$$\geq \frac{1}{2} (1 - \|P_1 - P_2\|_{\text{TV}}).$$

The right-hand-side measures the similarity between P_1 and P_2 .

Interlude: controlling the total variation (TV) distance

Let P and Q be two probability distributions with densities p and q with respect some base measure ν .

Total Variation (TV) distance

$$||P - Q||_{\text{TV}} = \sup_{A} |P(A) - Q(A)|$$

Kullback-Leibler (KL) divergence

$$D(P||Q) = \int p(x) \log \left(\frac{p(x)}{q(x)}\right) \nu(dx)$$

Squared Hellinger distance

$$H^{2}(P||Q) = \int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^{2} \nu(dx)$$

Basic properties of the three distances

The TV norm between P and Q is related to the L_1 -norm between p and q.

Lemma (TV and L_1 norm)

$$||P - Q||_{\text{TV}} = \frac{1}{2}||p - q||_{L_1}$$

Proof

Define

$$I_{+} := \{x : p(x) \ge q(x)\}$$
 and $I_{-} = \{x : p(x) < q(x)\}.$

We claim $\int_{I^+} |p-q| = \int_{I^-} |p-q|$. Indeed, this follows from the computation

$$0 = \int p - \int q = \int_{I^{+}} (p - q) - \int_{I^{-}} (q - p).$$

Next, observe $\int |p-q| = 2 \int_{I^+} |p-q| = 2 \int_{I^-} |p-q|$. Consequently

$$||P - Q||_{\text{TV}} \ge |P(I^+) - Q(I^+)| = \int_{I^+} |p - q| = \frac{1}{2} ||P - Q||_{L_1}.$$

Conversely, for any measurable A, we have

$$|P(A) - Q(A)| = \left| \int_{A \cap I^{+}} (p - q) - \int_{A \cap I^{-}} (q - p) \right|$$

$$\leq \max \left\{ \int_{A \cap I^{+}} (p - q), \int_{A \cap I^{-}} (q - p) \right\}$$

$$\leq \max \left\{ \int_{I^{+}} |p - q|, \int_{I^{-}} |q - p| \right\} \leq \frac{1}{2} \int |p - q|,$$

where the first inequality uses the identity $|a - b| \le \max(a, b)$ for all $a, b \ge 0$.

Deviations of products

The main issue with the TV distance is that it is difficult to compute for product distributions P^n and Q^n . The KL-divergence and square Hellinger behave much nicer. You will prove the following for homework.

Lemma

Let (P_1, \ldots, P_n) and (Q_1, \ldots, Q_n) be probability distributions and let $P^{1:n}$ and $Q^{1:n}$ be the product measures. Then

$$D(P^{1:n}||Q^{1:n}) = \sum_{i=1}^{n} D(P_i||Q_i)$$

$$\frac{1}{2}H^{2}(P^{1:n}||Q^{1:n}) = 1 - \prod_{i=1}^{n} (1 - \frac{1}{2}H^{2}(P_{i}||Q_{i}))$$

In particular, of $P_i = P_1$ and $Q_i = Q_1$ for each i, then

$$D(P^{1:n}||Q^{1:n}) = nD(P_1||Q_1)$$

$$\frac{1}{2}H^2(P^{1:n}||Q^{1:n}) = 1 - (1 - \frac{1}{2}H^2(P_1||Q_1))^n \le \frac{1}{2}nH^2(P_1||Q_1)$$

Pinsker's and Le Cam's inequalities

Thus we may try to bound the TV distance by the KL divergence and/or the square Hellinger distance.

Theorem (Pinsker)

$$||P - Q||_{\text{TV}} \le \sqrt{\frac{1}{2}D(P||Q)}$$

Theorem (Le Cam's inequality)

$$||P - Q||_{\text{TV}} \le H(P||Q) \cdot \sqrt{1 - \frac{H^2(P||Q)}{4}}$$

Proof of Pinsker's inequality (due to John M. Pollard)

We will use to basic facts. First, the inequality

$$(1+t)\log(1+t) - t \ge \frac{1}{2} \cdot \frac{t^2}{1+t/3}$$
 $\forall t.$

This can be verified by elementary calculus (do it!) Secondly, for any random variable X and a nonnegative random variable Y the Cauchy-Schwarz inequality gives

$$(\mathbb{E}|X|)^2 = \left(\mathbb{E}\frac{|X|}{\sqrt{Y}}\sqrt{Y}\right)^2 \le \mathbb{E}\left[\frac{X^2}{Y}\right] \cdot \mathbb{E}Y.$$

Now setting $r(x) = \frac{p(x)}{q(x)} - 1$, we compute

$$D(P||Q) = \mathbb{E}_{Q}[(1+r(x))\log(1+r(x)) - r(x)]$$

$$\geq \frac{1}{2}\mathbb{E}_{Q}\left[\frac{r(x)^{2}}{1+r(x)/3}\right]$$

$$\geq \frac{1}{2}\frac{(\mathbb{E}_{Q}|r(x)|)^{2}}{\mathbb{E}_{Q}(1+r(x)/3)} = \frac{1}{2}(\mathbb{E}_{Q}|r(x)|)^{2} = \frac{1}{2}\left(\int |p-q|\right)^{2},$$

as claimed.

Proof of Le Cam's inequality

The Cauchy-Schwarz inequality gives

$$2||P - Q||_{\text{TV}} = \int |p - q| = \int |\sqrt{p} - \sqrt{q}|(\sqrt{p} + \sqrt{q})$$

$$\leq \sqrt{\int (\sqrt{p} - \sqrt{q})^2} \cdot \sqrt{\int (\sqrt{p} + \sqrt{q})^2}$$

$$= H(P||Q) \cdot \sqrt{2 + 2 \int \sqrt{p}\sqrt{q}}$$

Taking into account

$$2 \int \sqrt{p} \sqrt{q} = -\int ((\sqrt{p} - \sqrt{q})^2 - p - q)$$
$$= 2 - H^2(P||Q),$$

completes the proof.

Lower bounds for estimating the mean of a 1D Gaussian

For a fixed variance σ^2 , set $P_{\theta} = N(\theta, \sigma^2)$ and define

$$\mathcal{P} = \{ P_{\theta}^n : \theta \in \mathbb{R} \}.$$

Let us lower-bound the minimax risk:

$$\mathcal{R}_2 := \inf_{\hat{ heta}} \sup_{ heta \in \mathbb{R}} \mathop{\mathbb{E}}_{P_{ heta}} [(\hat{ heta} - heta)^2].$$

Let us use the Le Cam's two point estimate for P_0^n and $P_{2\delta}^n$ where $\delta > 0$ will be specified shortly. Then we know

$$\mathcal{R}_2 \ge \delta^2 \cdot \left(\frac{1}{2}(1 - \|P_0^n - P_{2\delta}^n\|_{\text{TV}})\right).$$

Pinsker's inequality gives $||P_0^n - P_{2\delta}^n||_{TV} \le \sqrt{\frac{1}{2}D(P_0^n||P_{2\delta}^n)}$ and algebra shows

$$D(P_0^n||P_{2\delta}^n) = nD(P_0||P_{2\delta}) = n\frac{(2\delta)^2}{2\sigma^2} = \frac{2n\delta^2}{\sigma^2}.$$

Choosing $\delta = \sqrt{\frac{\sigma^2}{4n}}$ gives

$$\mathcal{R}_2 \ge \frac{\sigma^2}{8n} \, .$$

The sample mean achieves this lower-bound up to a constant.

Lower bounds for estimating the CDF of a 1D Gaussian

For $\theta \in \mathbb{R}$, set $P_{\theta} = N(\theta, 1)$ and define

$$\mathcal{P} = \{ P_{\theta}^n : \theta \in \mathbb{R} \}.$$

Let F_{θ} be the CDF of P_{θ} . Let us lower-bound the minimax risk:

$$\mathcal{R} := \inf_{\hat{F}} \sup_{\theta \in \mathbb{R}} \mathbb{E}_{P_{\theta}} [\|\hat{F} - F_{\theta}\|_{\infty}].$$

For any $\theta > 0$, we have

$$F_0(0) - F_{\theta}(0) = \frac{1}{\sqrt{2\pi}} \int_0^{\theta} e^{-t^2/2} dt \ge \frac{\theta}{\sqrt{2\pi}} e^{-\theta^2/2}.$$

Therefore we may set 2δ to be equal to the right-hand side and then $||F_0 - F_\theta||_{\infty} \ge 2\delta$. Le Cam's two point estimate for P_0^n and P_θ^n implies

$$\mathcal{R} \ge \delta \cdot \left(\frac{1}{2} (1 - \|P_0^n - P_\theta^n\|_{\text{TV}})\right).$$

Pinsker's inequality gives $||P_0^n - P_\theta^n||_{\mathrm{TV}} \leq \sqrt{\frac{1}{2}D(P_0^n||P_\theta^n)} = \sqrt{\frac{n\theta^2}{4}}$. Setting $\theta = \frac{1}{\sqrt{n}}$ and noting $\delta \geq \frac{1}{\sqrt{8\pi e n}}$, we deduce

$$\mathcal{R} \ge \frac{1}{8\sqrt{2\pi e}} \cdot \frac{1}{\sqrt{n}} \, .$$

The empirical CDF matches this lower bound (recall DKW inequality).

Lower bounds for estimating a shifted uniform distribution

For any $\theta \in \mathbb{R}$, set P_{θ} be uniformly distributed on $(\theta, \theta + 1)$ and define

$$\mathcal{P} = \{P_{\theta}^n : \theta \in \mathbb{R}\}.$$

Let us lower-bound the minimax risk:

$$\mathcal{R}_2 := \sup_{\hat{ heta}} \sup_{ heta \in \mathbb{R}} \mathbb{E}_{P_{ heta}}[(\hat{ heta} - heta)^2].$$

Let us again use the Le Cam's two point estimate for P_0^n and $P_{2\delta}^n$. Then

$$\mathcal{R}_2 \ge \delta^2 \cdot \left(\frac{1}{2}(1 - \|P_0^n - P_{2\delta}^n\|_{\text{TV}})\right).$$

We can not use Pinsker's inequality because $D(P_{\theta},P_{\theta'})=\infty$ whenever $\theta \neq \theta'$ (why?). Let us compute the Hellinger distance instead. We may assume with loss of generality $\theta'>\theta$. It is easy to show that if $\theta'\in(\theta,\theta+1]$, then $H^2(P_{\theta}||P_{\theta'})=2|\theta-\theta'|$. Therefore as long as $2\delta<1$, we have

$$H^{2}(P_{0}^{n}||P_{2\delta}^{n}) \leq nH^{2}(P_{0}||P_{2\delta}) = 4n\delta.$$

Le Cam implies $||P_0^{1:n} - P_{2\delta}^{1:n}||_{\mathrm{TV}} \leq 2\sqrt{n\delta}\sqrt{1-n\delta}$. With $\delta = \frac{1}{8n}$ get

$$\boxed{\mathcal{R}_2 \ge \frac{c}{n^2}}$$

for a constant c>0. This rate is matched by $\hat{\theta}(z)=\min\{z_1,\ldots,z_n\}$ (HW).

Fano's method for multi-hypothesis testing.

Recall the basic inequality:

$$\mathcal{M}(\theta; \Phi \circ \rho) \ge \Phi(\delta) \cdot \inf_{\psi} Pr[\psi(Z) \ne J].$$

Le Cam's method for binary testing used a binary 2δ separating set $\{\theta_1, \theta_2\}$ yielding the lower bound

$$\inf_{\psi} Pr[\psi(Z) \neq J] \ge \frac{1}{2} (1 - \|P_1 - P_2\|_{\text{TV}}).$$

We next discuss Fano's method which provides a different lower-bound on $\inf_{\psi} Pr[\psi(Z) \neq J]$, which is valid for non-binary packings.

Fano's inequality

The main tool we will use is Fano's inequality, which we will prove later.

Theorem (Fano's inequality)

Consider a 2δ -separated set $\{\theta_1, \theta_2, \dots, \theta_m\}$ and let J be uniform over [m]. Then for any testing function ψ we have

$$Pr[\psi(Z) \neq J] \ge 1 - \frac{\frac{1}{m} \sum_{j=1}^{m} D(P_j||P_J) + \log 2}{\log m}.$$

Typically, we choose a 2δ -separated set so that the right side is at least 1/2. The main difficulty is in controlling $D(P_j||P_J)$. One upper bound we can use is

$$D(P_j||P_J) = \mathbb{E}_j \log \left(\frac{p_j}{\frac{1}{m} \sum_{i=1}^m p_i} \right) \le \frac{1}{m} \sum_{i=1}^m \mathbb{E}_j \log \left(\frac{p_j}{p_i} \right) = \frac{1}{m} \sum_{i=1}^m D(P_j||P_i),$$

where the inequality follows from concavity of the log. Thus we deduce

$$Pr[\psi(Z) \neq J] \ge 1 - \frac{\frac{1}{m^2} \sum_{i,j=1}^m D(P_j||P_i) + \log 2}{\log m}.$$

Lower bounds for mean estimation of multivariate Gaussians

Suppose $d \geq 2$ and for a fixed variance σ^2 , set $P_{\theta} = N(\theta, \sigma^2 I_d)$ and define

$$\mathcal{P} = \{ P_{\theta}^n : \theta \in \mathbb{R}^d \}.$$

Let us lower-bound the minimax risk:

$$\mathcal{R}_2 := \inf_{\hat{\theta}} \sup_{\theta \in \mathbb{R}^d} \mathbb{E}_{P_{\theta}}[\|\hat{\theta} - \theta\|_2^2].$$

Let us choose a 2δ -separated set $\{\theta_1, \ldots, \theta_m\}$ of the unit ball $r\mathbb{B}$ of radius r to be chosen. As we have seen, we may ensure $\log(m) \geq d\log(\frac{r}{2\delta})$. Then an easy computation gives $D(P_i||P_j) = \frac{\|\theta_i - \theta_j\|^2}{2\sigma^2} \leq \frac{2r^2}{\sigma^2}$. Therefore

$$Pr[\psi(Z) \neq J] \ge 1 - \frac{\frac{1}{m^2} \sum_{i,j=1}^m D(P_j^n || P_i^n) + \log 2}{\log m} \ge 1 - \frac{\frac{2r^2n}{\sigma^2} + \log(2)}{d \log(\frac{r}{2\delta})}.$$

Setting $r^2=\frac{\log(2)d\sigma^2}{8n}$ and $\delta=\frac{r}{4}$ makes the right-hand-side at least 1/4 and therefore

$$\mathcal{R}_2 \ge \frac{\log(2)d\sigma^2}{512n} \ .$$

The sample mean matches this rate up to a constant.

Lower bounds for linear regression

Consider the regression observation model

$$y = X\theta^* + g$$

where $X \in \mathbb{R}^{n \times d}$ is a fixed design matrix and $g \sim N(0, \sigma^2 I_n)$ is the noise. Equivalently, we observe $y \sim N(X\theta^\star, \sigma^2 I_n)$ Define the family of distributions

$$\mathcal{P} = \{N(v, \sigma^2 I_n) : v \in \text{Range}(X)\}.$$

We aim to lower-bound the quantity

$$\mathcal{R}_2 := \inf_{\hat{\theta}} \sup_{\theta \in \mathbb{R}^d} \mathbb{E}_{P_{\theta}} \left[\frac{1}{n} \left\| X(\hat{\theta} - \theta) \right\|_2^2 \right].$$

From the lower-bound on mean-estimation for Gaussians, we have

$$\left| \mathcal{R}_2 \ge \frac{\log(2)}{512} \frac{\sigma^2 \cdot \operatorname{rank}(X)}{n} \right|.$$

This bound is achieved by the ordinary least squares estimator. Why doesn't the efficiency of the ridge estimator contradict this?

Towards a proof of Fano's inequality

We will need to introduce some notation from information theory.

Definition (Entropy)

Let Q be a probability distribution with density $q=\frac{dQ}{d\mu}$ with respect to some base measure μ . The Shannon entropy is the function

$$H(Q) = -\mathbb{E}_Q \log(q) = -\int q(x) \log(q(x)) d\mu(x).$$

If X is discrete with mass function q(x) = Pr(X = x) then

$$H(X) = -\sum_{x \in \mathcal{X}} q(x) \log(q(x))$$

Conditional entropy

Definition (Conditional entropy)

Given a pair of random variables (X,Y) with conditional distribution $Q_{X|Y}$, the conditional entropy of X|Y is given by

$$H(X|Y) = \mathbb{E}_Y[H(Q_{X|Y})],$$

If X and Y are discrete with joint mass function p(x,y), then

$$H(X|Y) = -\sum_{y} \sum_{x} \log(p(x \mid y)) p(x \mid y) p(y)$$
$$= -\sum_{y} \sum_{x} \log\left(\frac{p(x, y)}{p(y)}\right) p(x, y)$$

Elementary properties: You will verify these for homework

$$H(X) \leq \log(|\operatorname{support}(X)|)$$

$$H(X|Y) \leq H(X) \qquad \qquad \text{[contractive]}$$

$$H(X,Y) = H(Y) + H(X|Y) \qquad \qquad \text{[chain rule]}$$

$$H(X,Y|Z) = H(Y|Z) + H(X|Y,Z) \qquad \qquad \text{[conditional chain rule]}$$

Proof of Fano's inequality

Define the random binary random variable

$$V = 1_{[\psi(Z) \neq J]},$$

and let Z be distributed according to P_J . We will prove the following.

Lemma

$$H(V) + Pr[V = 1] \log(m - 1) \ge H(J|Z)$$

Chain rule plus a short computation (do it!) gives

$$H(J|Z) = \underbrace{H(J)}_{=\log(m)} - \underbrace{[H(Z) + H(J) - H(Z, J)]}_{=\frac{1}{m} \sum_{j=1}^{m} D(P_j||P_J)}$$

Since $H(V) \leq \log(2)$, we deduce

$$\log(2) + \Pr[\psi(Z) \neq J] \log(m) \ge \log(m) - \frac{1}{m} \sum_{j=1}^{m} D(P_j || P_J),$$

which after rearranging is Fano's inequlity.

Proof of the lemma

We expand H(V, J|Z) in two different ways

$$H(V, J|Z) = H(J|Z) + H(V|J, Z) = H(J|Z)$$

 $H(V, J|Z) = H(V|Z) + H(J|V, Z) \le H(V) + H(J|V, Z),$

where the first inequality holds because J is constant conditioned on J and Z. Nest, by definition of the conditional entropy we have

$$H(J|V,Z) = Pr(V=1)H(J|Z,V=1) + Pr(V=0)H(J|Z,V=0).$$

If V=0, then $J=\psi(Z)$ and therefore H(J|Z,V=0)=0. On the other hand, if V=1, then $J\neq \psi(Z)$ so that J conditioned Z,[V=1] can take at most m-1 values and therefore $H(J|Z,V=1)\leq \log(m-1)$. We have shown

$$H(V, J|Z) \le H(V) + Pr[\psi(Z) \ne 1] \log(m-1),$$

which completes the proof.