Homework 2

Question 1: Let X_1, \ldots, X_n be iid sampled from Poisson (λ) . Let $\hat{\lambda} = \frac{1}{n} \sum_{i=1}^n X_i$. Find the bias and variance of $\hat{\lambda}$.

Question 2: Let X_1, \ldots, X_n be iid sampled from Uniform $(0, \theta)$. Let $\hat{\theta} = \max\{X_1, \ldots, X_n\}$. Find the bias and variance of $\hat{\theta}$.

Question 3: A number M(X) is a median of a random variable X if $P(X > M(X)) \le \frac{1}{2}$ and $P(X < M(X)) \le \frac{1}{2}$.

- (1) Show that M(X) always exists, and that if X is absolutely continuous with strictly positive density function, then the median is unique
- (2) If X has a finite second moment, show that

$$M(X) = \mathbb{E}(X) + O(\sqrt{\operatorname{Var} X})$$

for any median M(X).

Complete the following exercises from Wainwright's book.

Exercise 4.3 (Maximum likelihood and uniform laws) Recall from Example 4.8 our discussion of empirical and population risks for maximum likelihood over a family of densities $\{p_{\theta}, \theta \in \Omega\}$.

(a) Compute the population risk $R(\theta, \theta^*) = \mathbb{E}_{\theta^*} \left[\log \frac{p_{\theta^*}(X)}{p_{\theta}(X)} \right]$ in the following cases:

- (i) Bernoulli: $p_{\theta}(x) = \frac{e^{\theta x}}{1+e^{\theta x}}$ for $x \in \{0, 1\}$;
- (ii) Poisson: $p_{\theta}(x) = \frac{e^{\theta x_{\theta} \exp(\theta)}}{x!}$ for $x \in \{0, 1, 2, ...\};$
- (iii) multivariate Gaussian: p_{θ} is the density of an $\mathcal{N}(\theta, \Sigma)$ vector, where the covariance matrix Σ is known and fixed.
- (b) For each of the above cases:
- (i) Letting $\widehat{\theta}$ denote the maximum likelihood estimate, give an explicit expression for the excess risk $E(\widehat{\theta}, \theta^*) = R(\widehat{\theta}, \theta^*) \inf_{\theta \in \Omega} R(\theta, \theta^*)$.
- (ii) Give an upper bound on the excess risk in terms of an appropriate Rademacher complexity.

Exercise 4.6 (Too many linear classifiers) Consider the function class

$$\mathscr{F} = \{ x \mapsto \operatorname{sign}(\langle \theta, x \rangle) \mid \theta \in \mathbb{R}^d, \|\theta\|_2 = 1 \}.$$

corresponding to the $\{-1, +1\}$ -valued classification rules defined by linear functions in \mathbb{R}^d . Supposing that $d \ge n$, let $x_1^n = \{x_1, \ldots, x_n\}$ be a collection of vectors in \mathbb{R}^d that are linearly independent. Show that the empirical Rademacher complexity satisfies

$$\mathcal{R}(\mathscr{F}(x_1^n)/n) = \mathbb{E}_{\varepsilon}\left[\sup_{f\in\mathscr{F}}\left|\frac{1}{n}\sum_{i=1}^n\varepsilon_i f(x_i)\right|\right] = 1.$$

Discuss the consequences for empirical risk minimization over the class \mathcal{F} .

Exercise 4.12 (VC dimension of left-sided intervals) Consider the class of left-sided halfintervals in \mathbb{R}^d :

$$S^d_{\text{loft}} := \{(-\infty, t_1] \times (-\infty, t_2] \times \cdots \times (-\infty, t_d] \mid (t_1, \dots, t_d) \in \mathbb{R}^d\}.$$

Show that for any collection of *n* points, we have $\operatorname{card}(S_{\operatorname{left}}^d(x_1^n)) \leq (n+1)^d$ and $\nu(S_{\operatorname{left}}^d) = d$.

Exercise 4.13 (VC dimension of spheres) Consider the class of all spheres in \mathbb{R}^2 —that is

$$S_{\text{sphere}}^2 := \{S_{a,b}, (a,b) \in \mathbb{R}^2 \times \mathbb{R}_+\}, \tag{4.34}$$

where $S_{a,b} := \{x \in \mathbb{R}^2 \mid ||x - a||_2 \le b\}$ is the sphere of radius $b \ge 0$ centered at $a = (a_1, a_2)$.

- (a) Show that S²_{sphere} can shatter any subset of three points that are not collinear.
 (b) Show that no subset of four points can be shattered, and conclude that the VC dimension is $v(S_{\text{sphere}}^2) = 3$.