Homework 2

Question 1: Let X_{1}, \ldots, X_{n} be iid sampled from Poisson (λ). Let $\hat{\lambda}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Find the bias and variance of $\hat{\lambda}$.
Question 2: Let X_{1}, \ldots, X_{n} be iid sampled from $\operatorname{Uniform}(0, \theta)$. Let $\hat{\theta}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Find the bias and variance of $\hat{\theta}$.
Question 3: A number $M(X)$ is a median of a random variable X if $P(X>M(X)) \leq \frac{1}{2}$ and $P(X<M(X)) \leq \frac{1}{2}$.
(1) Show that $M(X)$ always exists, and that if X is absolutely continuous with strictly positive density function, then the median is unique
(2) If X has a finite second moment, show that

$$
M(X)=\mathbb{E}(X)+O(\sqrt{\operatorname{Var} X})
$$

for any median $M(X)$.
Complete the following exercises from Wainwright's book.
Exercise 4.3 (Maximum likelihood and uniform laws) Recall from Example 4.8 our discussion of empirical and population risks for maximum likelihood over a family of densities $\left\{p_{\theta}, \theta \in \Omega\right\}$.
(a) Compute the population risk $R\left(\theta, \theta^{*}\right)=\mathbb{E}_{\theta^{*}}\left[\log \frac{p_{\theta^{*}}(X)}{p_{\theta}(X)}\right]$ in the following cases:
(i) Bernoulli: $p_{\theta}(x)=\frac{e^{\theta^{x}}}{1+e^{x}}$ for $x \in\{0,1\}$;
(ii) Poisson: $p_{\theta}(x)=\frac{e^{\theta_{i} e^{-x e x p_{x}(\theta)}}}{x!}$ for $x \in\{0,1,2, \ldots\}$;
(iii) multivariate Gaussian: p_{θ} is the density of an $\mathcal{N}(\theta, \boldsymbol{\Sigma})$ vector, where the covariance matrix $\boldsymbol{\Sigma}$ is known and fixed.
(b) For each of the above cases:
(i) Letting $\bar{\theta}$ denote the maximum likelihood estimate, give an explicit expression for the excess risk $E\left(\widehat{\theta}, \theta^{*}\right)=R\left(\widehat{\theta}, \theta^{*}\right)-\inf _{\theta \in \Omega} R\left(\theta, \theta^{*}\right)$.
(ii) Give an upper bound on the excess risk in terms of an appropriate Rademacher complexity.

Exercise 4.6 (Too many linear classifiers) Consider the function class

$$
\mathscr{F}=\left\{x \mapsto \operatorname{sign}(\langle\theta, x\rangle) \mid \theta \in \mathbb{R}^{d},\|\theta\|_{2}=1\right\}
$$

corresponding to the $\{-1,+1\}$-valued classification rules defined by linear functions in \mathbb{R}^{d}. Supposing that $d \geq n$, let $x_{1}^{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a collection of vectors in \mathbb{R}^{d} that are linearly independent. Show that the empirical Rademacher complexity satisfies

$$
\mathcal{R}\left(\mathscr{F}\left(x_{1}^{n}\right) / n\right)=\mathbb{E}_{\varepsilon}\left[\sup _{f \in \mathscr{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f\left(x_{i}\right)\right|\right]=1 .
$$

Discuss the consequences for empirical risk minimization over the class \mathscr{F}.

Exercise 4.12 (VC dimension of left-sided intervals) Consider the class of left-sided halfintervals in \mathbb{R}^{d} :

$$
\mathcal{S}_{\text {left }}^{d}:=\left\{\left(-\infty, t_{1}\right] \times\left(-\infty, t_{2}\right] \times \cdots \times\left(-\infty, t_{d}\right] \mid\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{R}^{d}\right\}
$$

Show that for any collection of n points, we have $\operatorname{card}\left(\mathcal{S}_{\text {left }}^{d}\left(x_{1}^{n}\right)\right) \leq(n+1)^{d}$ and $v\left(\mathcal{S}_{\text {left }}^{d}\right)=d$.
Exercise 4.13 (VC dimension of spheres) Consider the class of all spheres in \mathbb{R}^{2}-that is

$$
\begin{equation*}
\mathcal{S}_{\text {sphere }}^{2}:=\left\{S_{a, b},(a, b) \in \mathbb{R}^{2} \times \mathbb{R}_{+}\right\}, \tag{4.34}
\end{equation*}
$$

where $S_{a, b}:=\left\{x \in \mathbb{R}^{2} \mid\|x-a\|_{2} \leq b\right\}$ is the sphere of radius $b \geq 0$ centered at $a=\left(a_{1}, a_{2}\right)$.
(a) Show that $\mathcal{S}_{\text {sphere }}^{2}$ can shatter any subset of three points that are not collinear.
(b) Show that no subset of four points can be shattered, and conclude that the VC dimension is $v\left(\mathcal{S}_{\text {sphere }}^{2}\right)=3$.

