
Chapter 7: Optimization for learning

1. Two paradigms: empirical risk minimization vs stochastic approximation

2. Illustration: gradient descent for least squares

3. Convexity: an interlude

4. Gradient descent

5. Accelerated gradient descent

6. Projected subgradient method

7. Minimax lower bound for deterministic convex optimization

8. Stochastic gradient method and Polyak-Juditsky averaging

9. Stochastic variance reduced gradient (SVRG)

55 / 171



Two paradigms: Empirical Risk Minimization & Stochastic
Approximation

We have seen that many learning tasks, such as in regression and maximum
likelihood estimation, amount to a stochastic optimization problem:

min
x∈Rd

E
z∼P

ℓ(x, z). (1)

In this chapter, we will discuss algorithms for solving such problems.

56 / 171



Two paradigms: Empirical Risk Minimization & Stochastic
Approximation

There are essentially two strategies, which yield similar guarantees.

Strategy 1 (Empirical Risk Minimization): Draw z1, . . . , zn
iid∼ P and declare

xn = arg min
x

1
n

n∑
i=1

ℓ(x, z).

There are variants where one would add a regularizer (e.g. ridge regression) or
impose a constraint on x. A key observation is that when forming the ERM, an
error on the order of 1/n or 1/

√
n is already incurred for the true problem (1)

to be solved. Therefore one should not solve ERM to higher accuracy than this
“estimation error”, lest one “overfits” to the observed data.

Strategy 2 (Stochastic approximation): These are algorithms that proceed in
each iteration t by drawing a single sample zt ∼ P and taking a step from xt

using some information gathered from the random function f(·, zt). A prime
example is the stochastic gradient method, which we will discuss in detail.

57 / 171



Gradient descent for least squares

As a warm, consider the least squares objective

min
x∈Rd

f(x) = 1
2n∥Ax− b∥2

2.

Let x̄ be a minimizer of f and set f∗ = f(x̄). Optimality conditions imply

A⊤Ax̄ = A⊤b

The simple gradient descent algorithm takes the form

xt+1 = xt − η

n
A⊤(Axt − b),

for some parameter η > 0 to be chosen. Note that we may equivalently write

xt+1 − x̄ =
(
I − η

n
A⊤A

)
(xt − x̄).

58 / 171



Gradient descent for least squares

Setting H = 1
n
A⊤A we further arrive at

xt − x̄ = (I − ηH)t (x0 − x̄) (2)

Since f is a pure quadratic, we may write

f(x) = f(x̄) + ⟨∇f(x̄)︸ ︷︷ ︸
=0

, x− x̄⟩ + 1
2 ⟨∇2f(x̄)︸ ︷︷ ︸

=H

(x− x̄), x− x̄⟩.

Thus, we conclude

f(xt) − f∗ = 1
2(x0 − x̄)⊤ (I − ηH)2tH(x0 − x̄) (3)

Set β = λmax(H), α = λmin(H), and define the condition number κ = β
α

.

59 / 171



Gradient descent for least squares
Let us analyze the decay of (2) and (3), beginning with the former:

∥xt − x̄∥2
2 ≤

(
max
λ∈[α,β]

|1 − ηλ|
)2t

∥x0 − x̄∥2.

It is easy to see that minη>0 maxλ∈[α,β] |1 − ηλ| is attained by η = 2
α+β

thereby yielding the linear rate κ−1
κ+1 . Since α > 0 is often difficult to estimate,

it suffices to choose η = 1
β

which results in the same rate up to a constant:

∥xt − x̄∥2
2 ≤

(
1 − κ−1)2t ∥x0 − x̄∥2 .

We may further upper bound the right side by exp(−t/κ)∥x0 − x̄∥2. Setting
this quantity to ϵ, we see that it suffices to perform t = κ · log(∥x0 − x̄∥2/ϵ)
iterations to find a point x satisfying ∥x− x̄∥2 ≤ ϵ.

A similar argument with the step-size η = 1
β

shows

f(xt) − f∗ ≤
(

1 − 1
κ

)2t
(f(x0) − f∗) .

60 / 171



Gradient descent for least squares

The convergence rates we have obtained are highly sensitive to κ, and in
particular to α, which is typically on the order of n−1 or n−1/2. Let us next
show how to obtain a rate that is insensitive to α, but which is sublinear in t.

From (3) we have

f(xt) − f∗ ≤ 1
2 max
λ∈[α,β]

|λ(1 − λ/β)2t| · ∥x0 − x̄∥2

Observe |λ(1 − λ/β)t| ≤ λ exp(−λ/β)2t = β
2t

2tλ
β

exp(−2tλ/β) ≤ β
2te where

we used that maxs≥0 se
−s = e−1. Thus we conclude

f(xt) − f∗ ≤ β∥x0 − x̄∥2

8t .

Our next goal is to develop similar guarantees for gradient type methods
beyond least squares.

61 / 171



Gradient descent for smooth minimization

Will aim to minimize a C1-smooth function f on Rd by the gradient method:

xt+1 = xt − η∇f(xt)

where η > 0 is to be chosen. Suppose f has a minimizer x̄ and set f⋆ := f(x̄).

In order to make progress it will be important to quantify “how smooth” is f .

Definition (Quantifying smoothness)
A function f : Rd ! R is called β-smooth if it is C1-smooth and satisfies

∥∇f(x) − ∇f(y)∥ ≤ β · ∥x− y∥ ∀x, y.

You will check the following for homework.

Lemma: A C2-smooth function f is β-smooth if and only if ∇2f(x) ⪯ β · Id
for all x ∈ Rd.

62 / 171



Gradient descent for smooth minimization
In order to analyze gradient descent, we will need the following.

Corollary (Accuracy in approximation)

Suppose that f : Rd ! R is a β-smooth function. Then for any points
x, y ∈ Rd the inequality∣∣∣f(y) − f(x) − ⟨∇f(x), y − x⟩

∣∣∣ ≤ β

2 ∥y − x∥2 holds. (4)

-3 -2 -1 1 2 3

-30

-20

-10

10

20

30

40

50

Figure: The black curve depicts the graph of a β-smooth function f ; the blue and red
curves depict graphs of the quadratics Q1(y) = f(x) + ∇f(x), y − x⟩ + β

2 ∥y − x∥2

and Q2(y) = f(x) + ∇f(x), y − x⟩ − β
2 ∥y − x∥2, respectively.

63 / 171



Proof

Fix x, y ∈ Rd and define the function φ(t) = f(x+ t(y − x)). Then the
fundamental theorem of calculus gives

φ(1) = φ(0) +
∫ 1

0
φ′(t) dt

= φ(0) + φ′(0) +
∫ 1

0
(φ′(t) − φ′(0)) dt.

Noting the equality φ′(t) = ⟨∇f(x+ t(y − x)), y − x⟩, we deduce
|φ′(t) − φ′(0)| ≤ β∥y − x∥2 · t, thereby completing the proof. □

64 / 171



Gradient descent for smooth minimization
Setting y = x− η∇f(x) yields an estimate on functional improvement.

Lemma (Descent)

The gradient step x+ = x− η∇f(x) satisfies

f(x) − f(x+) ≥ η
(

1 − ηβ

2

)
∥∇f(x)∥2.

The term η
(
1 − ηβ

2

)
is maximized by setting η = 1

β
, yielding

f(x) − f(x+) ≥ 1
2β ∥∇f(x)∥2 .

Theorem (Complexity)
Suppose f is β-smooth. Then gradient descent iterates xt with η = 1

β
satisfy

min
i=1,...,t

∥∇f(xi)∥2 ≤ 1
t

t∑
i=1

∥∇f(xi)∥2 ≤ 2β(f(x1) − f⋆)
t

65 / 171



Proof

From the descent lemma, we have

f(x1) − f⋆ ≥ f(x1) − f(xt+1) =
t∑
i=1

f(xi) − f(xi+1) ≥ 1
2β

t∑
i=1

∥∇f(xi)∥2.

Dividing both sides by t and using that the average of t positive numbers is
bigger than their minimum completes the proof. □

66 / 171



Convexity
Gradient descent turns to be much faster for convex problems.

Definition (Convexity)
A function f : Rd ! R∪ {∞} is called convex if it satisfies the secant inequality

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) ∀x, y ∈ Rd, λ ∈ [0, 1].

x yλx + (1 − λ)y

λf(x) + (1 − λ)f(y)

f(x)

f(y)

Figure: Secant inequality.

More generally, we say that f is α-strongly convex if the perturbed function
g(x) = f(x) − α

2 ∥x∥2 is convex.
67 / 171



Preservation of convexity

Convexity is preserved under the following operations (check this!).

1. If f is convex and λ ≥ 0, then g(x) = λf(x) is convex.

2. If f and g are convex, the f + g is convex

3. If f is convex, then g(y) = f(Ay) is convex for any linear map A.

4. If fi are convex for all i ∈ I, where I is an arbitrary set, then the function
f(x) = supi∈I fi(x) is convex.

5. If f(x, y) is convex, then so is the function g(x) = infy f(x, y).

6. If f is convex and A is a linear map, then the following function is convex:

g(x) = inf
y

{f(y) : subject to Ay = x}.

68 / 171



Convexity and tangent lines
We will need the following characterization of smooth convex functions in
terms of tangent lines.

Theorem (Convexity and tangent lines)
A C1-smooth function f is α-strongly convex if and only if

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + α

2 ∥x− y∥2 ∀x, y. (5)

x

f

qx

Qx

Figure: Qx(y) := f(x) + ⟨∇f(x), y − x⟩ + β
2 ∥y − x∥2 is an upper estimator based at

x and qx(y) := f(x) + ⟨∇f(x), y − x⟩ + α
2 ∥y − x∥2 is a lower estimator based at x.

In particular, if x̄ is a minimizer of a α-strongly convex function g, then

g(x) ≥ g(x̄) + α

2 ∥x− x̄∥2.

We will use this often in convergence proofs with certain auxiliary functions g! 69 / 171



Proof
It suffices to establish the theorem with µ = 0, since the general statement
follows by applying it to f − µ

2 ∥ · ∥2. Suppose first that f is convex. Then for
any t ∈ (0, 1), convexity implies

f(x+ t(y − x)) = f(ty + (1 − t)x) ≤ tf(y) + (1 − t)f(x),

while the definition of the derivative yields

f(x+ t(y − x)) = f(x) + t⟨∇f(x), y − x⟩ + o(t).

Combining the two expressions and dividing by t yields the relation

f(y) − f(x) ≥ ⟨∇f(x), y − x⟩ + o(t)/t.

Letting t tend to zero yields property (5). Conversely, suppose (5) holds. Then
we may write (why?)

f(y) = sup
x∈Rd

{f(x) + ⟨∇f(x), y − x⟩}

for any y ∈ Rd. Since a pointwise supremum of an arbitrary collection of
convex functions is convex, the function f must be convex. □

70 / 171



Examples
The following univariate functions are convex (check this!):

1. (Boltzmann-Shannon entropy)

f(x) =


x log x if x > 0

0 if x = 0

+∞ if x < 0

2. (Fermi-Dirac entropy)

f(x) =


x log(x) + (1 − x) log(1 − x) if x ∈ (0, 1)

0 if x ∈ {0, 1}

+∞ otherwise

3. (Hellinger)

f(x) =

{
−

√
1 − x2 if x ∈ [−1, 1]

+∞ otherwise

4. (Exponential) f(x) = ex

5. (Log-exp) f(x) = log(1 + ex)
71 / 171



Polyak- Lojasiewicz inequality

Strongly convex functions satisfy the following useful property.

Lemma (P L-condition)
Any C1-smooth and α-strongly convex function f satisfies

f(x) − f∗ ≤ 1
2α∥∇f(x)∥2 ∀x.

Proof: Define the function

Qx(y) = f(x) + ⟨∇f(x), y − x⟩ + α

2 ∥y − x∥2.

Then we know

f(x̄) ≥ Qx(x̄) ≥ min
y
Qx(y) = f(x) − 1

2α∥∇f(x)∥2.

Rearranging completes the proof. □

72 / 171



Gradient descent for smooth strongly convex functions

For any β-smooth and α-strongly convex function, the quotient

κ = β

α

is called the condition number of f .

Theorem (Gradient descent under strong convexity)

Let f be an α-strongly convex and β-smooth function. Then the gradient
descent iterates with η = 1

β
satisfy

f(xt+1) − f∗ ≤
(

1 − 1
2κ

)
(f(xt) − f∗), (6)

∥xt+1 − x̄∥2 ≤
(
κ− 1
κ+ 1

)
∥xt − x̄∥2. (7)

The linear rate is very sensitive to κ and in particular to small values of α.

73 / 171



Proof
The PL condition and the descent lemma yield

f(xt+1) − f(xt) ≤ − 1
2β ∥∇f(xt)∥2 ≤ − 1

2κ (f(xt) − f∗).

Adding and subtracting f∗ from both sides and rearranging gives (6).
Next, we prove (7). To this end, we successively compute

∥xt+1 − x̄∥2 = ∥(xt − x̄) − β−1∇f(xt)∥2

= ∥xt − x̄∥2 + 2
β

⟨∇f(xt), x̄− xt⟩ + 1
β2 ∥∇f(xt)∥2

≤ ∥xt − x̄∥2 + 2
β

(
f∗ − f(xt) − α

2 ∥xt − x̄∥2
)

+ 1
β2 ∥∇f(xt)∥2

=
(

1 − α

β

)
∥xt − x̄∥2 + 2

β

(
f∗ − f(xt) + 1

2β ∥∇f(xt)∥2
)
. (8)

Namely, strong convexity and the descent lemma imply

f∗ + α
2 ∥xt+1 − x̄∥2 ≤ f(xt+1) ≤ f(xt) − 1

2β ∥∇f(xt)∥2,

and therefore

f∗ − f(xt) + 1
2β ∥∇f(xt)∥2 ≤ −α

2 ∥xt+1 − x̄∥2.

Combining this estimate with (8) and rearranging yields (7).
74 / 171



Sublinear rate for smooth and convex problems
Theorem (Gradient descent under convexity)

Let f : Rd ! R be a convex and β-smooth function. Then the iterates
generated by gradient descent with η = 1

β
satisfy

f(xt) − f∗ ≤ β∥x0 − x̄∥2

2t .

Thus gradient descent satisfies the guarantee:

f(xt) − f∗ ≤ min
{

1
2t ,
(
1 − 1

2κ

)t} · β∥x0 − x̄∥2 for all t ≥ 0.

1

x

0.95x

50 100 150 200

10-4

0.001

0.010

0.100

1

Typically, the sublinear rate is observed in the early iterations of the algorithm,
while the linear rate is observed towards the end (if at all). 75 / 171



Proof
Note that xt+1 is the minimizer of the β-strongly convex function

Q(y) = f(xt) + ⟨∇f(xt), y − xt⟩ + β
2 ∥y − xt∥2.

Therefore

f(xt+1) ≤ Q(xt+1)

≤ Q(x̄) − β

2 ∥xt+1 − x̄∥2

= f(xt) + ⟨∇f(xt), x̄− xt⟩ + β
2 ∥xt − x̄∥2 − β

2 ∥xt+1 − x̄∥2

≤ f∗ + β
2

(
∥xt − x̄∥2 − ∥xt+1 − x̄∥2) .

Subtracting f∗ from both sides and summing, the terms on the right telescope:
t−1∑
i=0

(f(xi+1) − f∗) ≤ β
2 ∥x0 − x̄∥2.

Since the values {f(xi)}i≥0 are nonincreasing, we deduce

f(xt) − f∗ ≤ 1
t

t−1∑
i=0

(f(xi+1) − f∗) ≤ β∥x0−x̄∥2

2t ,

as claimed. □
76 / 171



Accelerated gradient descent
Is there an algorithm that is guaranteed to succeed with fewer gradient
evaluations? Yes!

Accelerated gradient method:
Initialization: t = 0 and a0 = a−1 = 1, x−1 = x0

For t = 1, . . . , T do
ut = xt + at(a−1

t−1 − 1)(xt − xt−1)

xt+1 = ut − 1
β

∇f(ut)

at+1 =
√
a4
t + 4a2

t − a2
t

2


.

Theorem (Accelerated gradient method)
Let f be β-smooth and convex. Then the iterates generated by the accelerated
gradient method satisfy

f(xt+1) − f(x) ≤ 2β∥x0 − x∥2

(t+ 2)2 ∀x.

77 / 171



Proof
We will need the following basic lemma (check it!).

Lemma (Growth of at)

The following are true.

1. The relation 1−at+1
a2

t+1
= 1

a2
t

holds for all t ≥ 0.

2. We have
∑t

i=0
1
ai

= 1
a2

t
and at ≤ 2

t+2 , for each t ≥ 0.

Define mt(y) := f(ut) + ⟨∇f(ut), y − ut⟩ for each index t. Since xt+1 is the
minimizer of the β-strongly convex function mt + β

2 ∥ · −ut∥2, we estimate

f(xt+1) ≤ mt(xt+1) + β

2 ∥xt+1 − ut∥2

≤ mt(atx+ (1 − at)xt) + β

2 ∥atx+ (1 − at)xt − ut∥2

− β

2 ∥atx+ (1 − at)xt − xt+1∥2

≤ atmt(x) + (1 − at)mt(xt)

+ βa2
t

2
(
∥x− [xt − a−1

t (xt − ut)]∥2 − ∥x− [xt − a−1
t (xt − xt+1)]∥2)

78 / 171



Subtracting f(x) from both sides and dividing by a2
t then yields

1
a2
t

(f(xt+1) − φ(x)) ≤ 1 − at
a2
t

(f(xt) − f(x))

+ β

2

(
∥x− [xt − a−1

t (xt − ut)]∥2

− ∥x− [xt − a−1
t (xt − xt+1)]∥2

)
.

(9)

The update rule for ut makes the last two lines of (9) telescope. Indeed, define
an auxiliary sequence zt = xt − a−1

t (xt − ut). Observe that zt+1 then satisfies

zt+1 = xt+1 − a−1
t+1(xt+1 − ut+1) = xt+1 + (a−1

t − 1)(xt+1 − xt)

= xt − a−1
t (xt − xt+1).

Thus the inequality (9) becomes
1
a2
t

(f(xt+1) − f(x)) + β

2 ∥x− zt+1∥2 ≤ 1 − at
a2
t

(f(xt) − f(x)) + β

2 ∥x− zt∥2

= 1
a2
t−1

(f(xt) − f(x)) + β

2 ∥x− zt∥2,

where the last equality uses the definition of at. Iterating the recurrence yields
1
a2
t

(f(xt+1) − f(x)) ≤ 1 − a0

a0
(f(x0) − f(x)) + β

2 ∥x− z0∥2.

thereby completing the proof. □
79 / 171



Summary

It is possible to modify the accelerated algorithm for β-smooth and α-strongly
convex functions to have a rate of convergence

f(xt) − f⋆ ≤ C(1 −
√
κ)t∥x0 − x̄∥2.

for some numerical constant C. The following table summarizes our findings.

Grad. Descent Accelerated Grad. Descent

β-smooth and convex β∥x0−x̄∥2

ϵ

√
β∥x0−x̄∥2

ϵ

β-smooth and α-convex β
α

log
(
f(x0)−f∗

ϵ

) √
β
α

log
(

∥x0−x̄∥2

ϵ

)
Table: Number of iterations t to reach f(xt) − f∗ ≤ ϵ

80 / 171



Subgradients
We will next look at algorithms for nonsmooth convex optimization.

Definition (Subdifferential)
Consider a convex function f : Rd ! R ∪ {∞} and a point x, with f(x) finite.
Then a vector v ∈ Rd is called a subgradient of f at x if the inequality holds:

f(y) ≥ f(x) + ⟨v, y − x⟩ ∀y. (10)

The set of all such vectors v is called the subdifferential of f at x, and is
denoted by ∂f(x). For points x at which f(x) is infinite, we set ∂f(x) = ∅.

x

`(y) = f(x) + 〈v, y − x〉

81 / 171



Calculus rules

Subdifferentials van be computed easily through the following calculus rule. For
any convex function f : Rd ! R ∪ {∞} define domf = {x : f(x) < ∞}.

Theorem (Calculus)
Let f : Rm ! R ∪ {+∞} and g : Rd ! R ∪ {+∞} be lower-semicontinuous
convex functions, and let A : Rd ! Rm be a linear map and b ∈ Rm a vector.
Suppose the regularity condition

−b ∈ int(dom f) −A(int(dom g)).

Then the subdifferential of the function

h(x) = f(Ax− b) + g(x)

is given by
∂h(x) = A⊤∂f(Ax− b) + ∂g(x) ∀x.

The proof requires a bit of background and we will omit it.

82 / 171



Projections

It will be important for the problems we consider to work on constrained
problems. We will incorporate a constraint set into algorithms through the
nearest point projection. Along with any set Q ⊂ Rd define the distance

distQ(y) := inf
x∈Q

∥x− y∥,

and the projection

projQ(y) := {x ∈ Q : distQ(y) = ∥x− y∥}.

Q

y

z1 z2

zi ∈ projQ(y)

‖zi − y‖ = distQ(y)

Figure: Nearest-point projection

83 / 171



Properties of projections
We will need the following basic theorem.

Theorem (Properties of the projection)

For any nonempty, closed, convex set Q ⊂ Rd, the set projQ(y) is a singleton.
Moreover, the closest point z ∈ Q to y is characterized by the property:

⟨y − z, x− z⟩ ≤ 0 for all x ∈ Q. (11)

Consequently, the projection is 1-Lipschitz:

∥projQ(y) − projQ(x)∥ ≤ ∥y − x∥ ∀x, y.

Q

z

y
x

Figure: Nearest-point projection for convex sets
84 / 171



Proof
Fix a point y /∈ Q. The claim that any point z satisfying (11) lies in projQ(y)
is an easy exercise (verify it!). We therefore prove the converse. To this end,
fix a point z ∈ projQ(y) and an arbitrary x ∈ Q. For each t ∈ [0, 1], define the
point xt := z+ t(x− z) and define the function φ(t) := 1

2 ∥y− xt∥2. Convexity
implies xt ∈ Q for all t ∈ [0, 1] and therefore

φ(t) ≥ 1
2 dist2

Q(y) = φ(0).

Taking the derivative of φ, we therefore deduce

0 ≤ lim
t↘0

φ(t) − φ(0)
t

= φ′(0) = −⟨y − z, x− z⟩,

as claimed. Thus, a points z lies in projQ(y) if and only if (11) holds.

To see that projQ(y) is a singleton, consider any two points z, z′ ∈ projQ(y).
Then, the estimate (11) for z and z′ (with x = z′ and x = z, respectively)
becomes

⟨y − z, z′ − z⟩ ≤ 0 and ⟨y − z′, z − z′⟩ ≤ 0.

Adding the two inequalities yields 0 ≥ ⟨z − z′, z − z′⟩ = ∥z − z′∥2, and
therefore z = z′ as we had to show.

85 / 171



Proof (continued)

Now fix two point x and y and set x+ = projQ(x) and y+ = projQ(y).
Compute

∥x+ − y+∥2 − ⟨x+ − y+, x− y⟩ = ⟨x+ − y+, (x+ − x) − (y+ − y)⟩

= ⟨y+ − x+, x− x+⟩︸ ︷︷ ︸
≤0

+ ⟨x+ − y+, y − y+⟩︸ ︷︷ ︸
≤0

.

Rearranging and applying Cauchy–Schwarz inequality completes the proof. □

86 / 171



Subgradient method

We now focus on the optimization problem

min
x∈Q

f(x), (12)

where f : Rd ! R is a convex function that is L-Lipschitz continuous on a
neighborhood of a closed convex set Q ⊂ Rd. We let x̄ denote the minimizer of
the problem and set f∗ = f(x̄).

The projected subgradient method proceeds according to the rule:

For t = 1, . . . , T do {
Choose vt ∈ ∂f(xt)

Set xt+1 = projQ(xt − ηtvt)

}
.

where ηt > 0 are to be chosen.

87 / 171



Subgradient method under convexity

Theorem (Subgradient method under convexity)

Let f : Rd ! R be a convex function that is L-Lipschitz continuous on a
neighborhood of a closed convex set Q ⊂ Rd. Then the iterates satisfy

f

(
1∑t

i=0 ηi

t∑
i=0

ηixi

)
− f∗ ≤

∥x0 − x̄∥2 + L2∑t

i=0 η
2
i

2
∑t

i=0 ηi
. (13)

In particular, when using the constant parameter ηt = R
L

√
T+1 for a fixed

R ≥ ∥x0 − x̄∥, the efficiency estimate becomes

f

(
1

T + 1

T∑
t=0

xt

)
− f∗ ≤ RL√

T + 1
. (14)

88 / 171



Proof
We successively compute

∥xt+1 − x̄∥2 = ∥projQ(xt − ηtvt) − x̄∥2

= ∥projQ(xt − ηtvt) − projQ(x̄)∥2

≤ ∥(xt − x̄) − ηtvt∥2 (15)

= ∥xt − x̄∥2 − 2ηt⟨vt, xt − x̄⟩ + η2
t ∥vt∥2, (16)

≤ ∥xt − x̄∥2 − 2ηt(f(xt) − f∗) + η2
tL

2, (17)

where (23) uses that projQ is 1-Lipschitz continuous and (17) uses convexity
and Lipschitz continuity of f . Iterating the recursion yields

∥xT+1 − x̄∥2 ≤ ∥x0 − x∗∥2 − 2
T∑
t=0

ηt(f(xt) − f∗) + L2
T∑
t=0

η2
t .

Lower-bounding the left side by zero and rearranging, we conclude

T∑
t=0

ηt(f(xt) − f∗) ≤
∥x0 − x̄∥2 + L2∑T

t=0 η
2
t

2 . (18)

89 / 171



Proof continued

Finally using convexity, observe

f

(
1∑T

t=0 ηt

T∑
t=0

ηtxt

)
− f∗ ≤

∑T

t=0 ηt(f(xt) − f∗)∑t

i=0 ηt
.

Combining this estimate with (25) completes the proof of (13). Setting ηt = η

for all t = 0, . . . , T − 1 in (13) yields the guarantee

f

(
1

T + 1

T∑
t=0

xt

)
− f∗ ≤ ∥x0 − x∗∥2

2(T + 1)η + L2η

2 .

Optimizing the right side of (13) in η yields the choice η = R
L

√
T+1 and the

guarantee (14). □

90 / 171



Subgradient method under strong convexity

A faster convergence rate is possible under strong convexity.

Theorem (Subgradient method under strong convexity)

Let f : Rd ! R be an α-strongly convex function that is L-Lipschitz
continuous on a neighborhood of a closed convex set Q ⊂ Rd. Then the
iterates with ηt = 2

α(t+1) satisfy

f

(
2

t(t+1)

t∑
i=1

ixi

)
− f∗ ≤ 2L2

α(t+ 1) .

91 / 171



Proof
From (16) and Lipschitz continuity and strong convexity of f , we compute

∥xt+1 − x̄∥2 ≤ ∥xt − x̄∥2 + 2ηt⟨vt, x̄− xt⟩ + η2
t ∥vt∥2

≤ ∥xt − x̄∥2 + 2ηt
(
f∗ − f(xt) − α

2 ∥x∗ − xt∥2)+ η2
tL

2.

Rearranging and diving through by 2ηt yields the expression

f(xt) − f∗ ≤
(

1 − αηt
2ηt

)
∥xt − x̄∥2

2 − 1
2ηt

∥xt+1 − x̄∥2
2 + ηt

2 L
2.

Plugging in ηt := 2
α(t+1) and multiplying through by t, we obtain

t
(
f(xt) − f(x̄)

)
≤ αt(t− 1)

4 ∥xt −x∗∥2 − αt(t+ 1)
4 ∥xt+1 − x̄∥2 + t

α(t+ 1)L
2.

Summing for i = 1 . . . , t, the first two terms on the right telescope, yielding
t∑
i=1

i
(
f(xi) − f(x̄)

)
≤

t∑
i=1

i
α(i+1)L

2 ≤ tL2

α
.

Dividing through by
∑t

i=1 i = t(t+1)
2 and using convexity of f we conclude

f

(
2

t(t+1)

t∑
i=1

ixi

)
− f∗ ≤

(
1∑t

i=1 i

)
·

t∑
i=1

i
(
f(xi) − f(x̄)

)
≤ 2L2

α(t+ 1) ,

as claimed. □ 92 / 171



Lower bounds for convex optimization

Summary of what we have so far:

convex, β-smooth α-strongly convex, β-smooth
Gradient descent β∥x0−x∗∥2

ϵ
κ · log( f(x0)−f∗

ϵ
)

Accel. grad. descent
√

β∥x0−x∗∥2

ϵ

√
κ · log( f(x0)−f∗

ϵ
)

Table: Number of gradient evaluations to find x satisfying f(x) − f∗ ≤ ϵ

convex, L-Lipschitz α-strongly convex, L-Lipschitz
Subgrad. method L2R2

ϵ2
L2

αϵ

Table: Number of subgradient evaluations to find x satisfying f(x) − f∗ ≤ ϵ, where an
upper bound R ≥ ∥x0 − x∗∥ is assumed to be known.

We will next see that the accelerated gradient method is minimax optimal for
smooth minimization and the subgrdient method is minimax optimal for
nonsmooth optimization. We omit all proofs since they are quite tedious.

93 / 171



Lower bounds for convex optimization

We will focus on the problem minx∈Rd f(x). The algorithms we consider
access information about f by querying a “first-order oracle”, which on input
x ∈ Rd returns some subgradient v ∈ ∂f(x). We will prove lower-complexity
bounds for a large class of algorithms, summarized in the following definition.

Definition (Linearly-expanding first-order method)
An algorithm is called a linearly-expanding first-order method if it generates an
iterate sequence {xk} satisfying

xt ∈ x0 + span{v0, . . . , vt−1} for t ≥ 1,

where vi ∈ ∂f(xi) is generated by a first-order oracle of f with input xi.

The lower-bounds that appear next hold for a wider class of algorithms, but the
statements become more cumbersome.

94 / 171



Lower bounds for convex optimization

Theorem (Lower-complexity bound for smooth convex optimization)

Fix a dimension d ∈ N, a counter 1 ≤ t ≤ (n− 1)/2, and a constant β > 0.
Then there exists a convex β-smooth function f : Rd ! R so that the iterates
generated by any linearly-expanding first-order method started at x0 satisfy

f(xt) − min f ≥ 3β∥x0 − x̄∥2

32(t+ 1)2 , (19)

where x∗ is any minimizer of f .

An entirely analogous statement holds for α-strongly convex and β-smooth
functions with the lower-complexity bound becoming

f(xt) − f∗ ≥
(√

κ− 1√
κ+ 1

)2t

∥x0 − x̄∥2. (20)

95 / 171



Lower bounds for convex optimization
Theorem (Lower-complexity bound for nonsmooth convex optimization)

Fix a dimension d ∈ N, an iteration counter t ≤ d, and a real L > 0. Then
there exists a convex function f : Rd ! R that is L-Lipschitz continuous on a
ball BR(0), for some R > 0, and such that any linear expanding first-order
method initialized at the origin satisfies

min
k=1,...,t−1

f(xk) − min
x∈BR(0)

f(x) ≥ RL

2(1 +
√
t)
.

An entirely analogous statement holds for α-strongly convex and L-Lipschitz
functions on BR(0) with the lower-complexity bound becoming

min
k=1,...,t−1

f(xk) − min
x∈BR(0)

f(x) ≥ L2

8αt

Conclusion: There is a huge gap between efficiency of algorithms for smooth
optimization and nonsmooth optimization: O( 1√

ϵ
) vs O( 1

ϵ2 ). We will later see
nonsmooth problems that are highly structured and algorithms that use this
structure have rates that are close to that for smooth optimization.

96 / 171



Stochastic gradient for least squares
Problem:

min
x

f(x) = 1
2 E

(a,b)∼P
(a⊤x− b)2,

where b = ⟨a, x̄⟩ + ϵ for some fixed x̄ ∈ Rd and random noise ϵi.

Stochastic gradient method (Online Least Squares):{
Draw (at, bt) ∼ P

Set xt+1 = xt − ηt(a⊤
t xt − bt)at

}
.

Throughout Et = E[· | xt] will denote the conditional expectation.

Theorem (One step improvement)
Define the covariance matrix Σ := Eaa⊤ and suppose:

E[ϵ | a] = 0, E[ϵ | a] ≤ σ2, αI ⪯ Σ, E[aa⊤∥a∥2] ⪯ R2Σ.

Then it holds:

Et∥xt+1 − x̄∥2 ≤ (1 − αηt(2 − ηtR
2))∥xt − x̄∥2 + η2

t σ
2tr(Σ).

97 / 171



Proof
We compute

∥xt+1 − x̄∥2 = ∥(xt − x̄) − ηt(a⊤
t xt − bt)at∥2

= ∥xt − x̄∥ − 2ηt ⟨(a⊤
t xt − bt)at, xt − x̄⟩︸ ︷︷ ︸

P1

+η2
t ∥(a⊤

t xt − bt)at∥2︸ ︷︷ ︸
P2

.

Taking the conditional expectation yields

E[P1 | at, xt] = ⟨(a⊤
t xt − a⊤

t x̄)at, xt − x̄⟩ = (a⊤
t (xt − x̄))2

and

E[P2 | at, xt] = E[(a⊤
t xt − bt)2 | at, xt] · ∥at∥2

= (a⊤
t (xt − x̄))2 · ∥at∥2 + E[ϵ2 | at] · ∥at∥2.

Taking expectation now with respect to at, get

E[P1 | xt] = ∥xt − x̄∥2
Σ, E[P2 | xt] ≤ R2∥xt − x̄∥2

Σ + σ2tr(Σ)

Thus we conclude

Et∥xt+1 − x̄∥2 ≤ (1 − αηt(2 − ηtR
2))∥xt − x̄∥2 + η2

t σ
2tr(Σ),

as claimed. □
98 / 171



Stochastic gradient for least squares
After unrolling the recursion, one possible choice of ηt is on the order of 1/t.
The resulting convergence rate becomes the following.

Theorem (Convergence rate)
Set ηt = 2

αt+2R2 . Then the iterates xt satisfy

E∥xt − x̄∥2 ≤
max{α2(1 + 2R2

α
)∥x1 − x̄∥2, 4σ2tr(Σ)}

α2(t+ 2R2
α

)

Thus, the rate is roughly

E∥xt − x̄∥2 = O

(
σ2tr(Σ)
α2t

)
.

This rate is suboptimal in a number of ways. Looking at the Le Cam’s
asymptotic lower bound, we would expect a rate on the order of
O
(
σ2tr(Σ−1)

t

)
. Similarly, we expect the function gap to be on the order of

E∥xt − x̄∥Σ = O(σ
2d
n

). It turns out these estimates are not achieved by xt but
are achieved by the average iterate x̂t = 1

t

∑t

i=1 xi. We will not prove this
fact, but will see the important role of averaging more generally.

99 / 171



Proof

Taking expectation with respect to a1, . . . , xt and using the tower-rule we get

E∥xt+1 − x̄∥2 ≤ (1 − αηt(2 − ηtR
2))E∥xt − x̄∥2 + η2

t σ
2tr(Σ)

≤
(

1 − 2
t+ 2R2/α

)
E∥xt − x̄∥2 + 4σ2tr(Σ)/α2

(t+ 2R2/α)2

We can now use the following elementary lemma on convergence of sequences,
which can be quickly proved by induction (do it!).

Lemma: Consider a sequence Dt > 0 and constants t0 ≥ 0, a > 0 satisfying

Dt+1 ≤ (1 − 2
t+ t0

)Dt + a

(t+ t0)2 .

Then the estimate Dt ≤ max{(1+t0)D1,a}
t+t0

holds for all t.

Setting t0 = 2R2

α
and a = 4σ2tr(Σ)/α2 completes the proof. □

100 / 171



Stochastic gradient method for convex problems
Problem:

min
x∈Q

f(x)

where Q is closed and convex and f is convex and L-Lipschitz on a
neighborhood of Q.

Stochastic gradient oracle: Suppose that there exists a probability space
(Z,F ,P) and a measurable map G : Rd × Z ! Rd satisfying

Ez[G(x, z)] ∈ ∂f(x) and Ez∥G(x, z)∥2 ≤ L ∀x ∈ Q.

Main example is G(x, z) = ∇ℓ(x, z) or G(x, (z1, . . . , zk)) = 1
k

∑k

i=1 ∇ℓ(x, zi).

Remark: Many variants of stochastic gradient oracles are possible.

Projected stochastic gradient method:{
Draw zk ∼ P

Set xt+1 = projQ(xt − ηtG(xt, zt))

}
.

101 / 171



Stochastic gradient method for convex problems

Theorem (Stochastic subgradient method under convexity)

Suppose that f is convex and L-Lipschitz on a neighborhood of a closed
convex set Q. Then the iterates xt satisfy

Ef

(
1∑t

i=0
ηi

t∑
i=0

ηixi

)
− f∗ ≤

∥x0−x̄∥2+L2
∑t

i=0
η2

i

2
∑t

i=0
ηi

. (21)

In particular, when using the constant parameter ηt = R
L

√
T+1 for a fixed

R ≥ ∥x0 − x̄∥, the efficiency estimate becomes

Ef

(
1

T+1

T∑
t=0

xt

)
− f∗ ≤ RL√

T+1 . (22)

102 / 171



Proof
Set vt := G(xt, zt). We successively compute

∥xt+1 − x̄∥2 = ∥projQ(xt − ηtvt) − x̄∥2

= ∥projQ(xt − ηtvt) − projQ(x̄)∥2

≤ ∥(xt − x̄) − ηtvt∥2 (23)

= ∥xt − x̄∥2 − 2ηt⟨vt, xt − x̄⟩ + η2
t ∥vt∥2,

where (23) uses that projQ is 1-Lipschitz continuous. Taking conditional
expectation Et[·] = E[· | xt], we compute

Et∥xt+1 − x̄∥2 = ∥xt − x̄∥2 − 2ηt⟨EzG(xt, z), xt − x̄⟩ + η2
tEz∥G(xt, z)∥2

≤ ∥xt − x̄∥2 − 2ηt(f(xt) − f∗) + η2
tL

2, (24)

where (24) uses convexity of f and the definition of the stochastic subgradient
oracle. Taking now expectation of both sides with respect to xt and using the
tower rule we deduce

E∥xt+1 − x̄∥2 ≤ E∥xt − x̄∥2 − 2ηtE(f(xt) − f∗) + η2
tL

2.

103 / 171



Proof continued
Iterating the recursion yields

E∥xT+1 − x̄∥2 ≤ ∥x0 − x∗∥2 − 2
T∑
t=0

ηtE(f(xt) − f∗) + L2
T∑
t=0

η2
t .

Lower-bounding the left side by zero and rearranging, we conclude
T∑
t=0

ηtE(f(xt) − f∗) ≤
∥x0 − x̄∥2 + L2∑T

t=0 η
2
t

2 . (25)

Finally using convexity, observe

Ef

(
1∑T

t=0 ηt

T∑
t=0

ηtxt

)
− f∗ ≤

∑T

t=0 ηt(Ef(xt) − f∗)∑t

i=0 ηt
.

Combining this estimate with (25) completes the proof of (21). Setting ηt = η

for all t = 0, . . . , T − 1 in (21) yields the guarantee

Ef

(
1

T + 1

T∑
t=0

xt

)
− f∗ ≤ ∥x0 − x∗∥2

2(T + 1)η + L2η

2 .

Optimizing the right side in η yields η = R
L

√
T+1 and the guarantee (22). □

104 / 171



Stochastic subgradient method under strong convexity

A faster convergence rate is possible under strong convexity.

Theorem (Stochastic subgradient method under strong convexity)
Suppose that f is α-convex and L-Lipschitz on a neighborhood of a closed
convex set Q. Then the iterates xt with ηt = 2

α(t+1) satisfy

Ef

(
2

t(t+1)

t∑
i=1

ixi

)
− f∗ ≤ 2L2

α(t+ 1) .

105 / 171



Proof
The same argument as leading to (24), but now using strong convexity, gives

Et∥xt+1 − x̄∥2 ≤ ∥xt − x̄∥2 + 2ηt
(
f∗ − f(xt) − α

2 ∥x∗ − xt∥2)+ η2
tL

2.

Rearranging, taking expectation in xt, and using the tower rule yields

Ef(xt) − f∗ ≤
(

1 − αηt
2ηt

)
E∥xt − x̄∥2

2 − 1
2ηt

E∥xt+1 − x̄∥2
2 + ηt

2 L
2.

Plugging in ηt := 2
α(t+1) and multiplying through by t, we obtain

t
(
Ef(xt)−f(x̄)

)
≤ αt(t− 1)

4 E∥xt−x∗∥2−αt(t+ 1)
4 E∥xt+1−x̄∥2+ t

α(t+ 1)L
2.

Summing for i = 1 . . . , t, the first two terms on the right telescope, yielding
t∑
i=1

i
(
Ef(xi) − f(x̄)

)
≤

t∑
i=1

i
α(i+1)L

2 ≤ tL2

α
.

Dividing through by
∑t

i=1 i = t(t+1)
2 and using convexity of f we conclude

Ef

(
2

t(t+1)

t∑
i=1

ixi

)
− f∗ ≤

(
1∑t

i=1 i

)
·

t∑
i=1

i
(
Ef(xi) − f(x̄)

)
≤ 2L2

α(t+ 1) ,

as claimed. □
106 / 171



Polyak-Juditsky averaging
As can be seen from the previous theorem, averaging gradients is important. In
fact, the following theorem (stated informally) shows that averaging leads to an
asymptotically optimal algorithm for stochastic optimization. We will omit the
proof since it is quite technical.

Theorem (Polyak-Juditsky ’92 (informal))
Consider minimizing f(x) = Ez∼Pℓ(x, z) over Rd and let x̄ be a minimizer of f
satisfying ∇2f(x̄) ≻ 0. Let xt be the iterates generated by the stochastic
gradient method with ηt = η0t

−γ for some γ ∈ (0.5, 1). Then under mild
moment assumptions, the iterates xt converge to x̄ almost surely and the
average iterate x̂t = 1

t

∑t

i=1 xi satisfies

√
t(x̂t − x̄) d

−! N
(

0,∇2f(x̄)−1 · Cov(∇f(x̄, z)) · ∇2f(x̄)−1
)
.

Conclusion:

• Asymptotics of x̂t match those of the sample average approximation.
• The average iterate x̂t converges at a t−1/2 rate regardless of choice of γ.

107 / 171



Stochastic Variance Reduced Gradient

Recall that empirical risk minimization is a problem of the form:

min
x∈Rd

f(x) := 1
n

n∑
i=1

fi(x).

The (sug)gradient algorithms we have considered used a single gradient
evaluation ∇f(x) in each iteration. Evaluating ∇f(x) in principle requires
evaluating n individual gradients ∇fi(x), which is very expensive when n is
large. Let us therefore instead think of evaluating ∇fi(x) as a single unit of
cost. Then the complexity of gradient descent becomes O(nκ log( f(x0)−f∗

ϵ
)).

We will now show that there exists an algorithm with the much better
complexity O

(
(n+ κ) log( f(x0)−f∗

ϵ
)
)

.

Remark: There are a few algorithms the achieve this improved rate (each
having some advantages). We will focus on just one of them called Stochastic
Variance Reduced Gradient (SVRG).

108 / 171



Variance reduction

Assumption: Each fi is β-smooth and convex, and f is α-strongly convex.

Let us look at an algorithm with an update of the form

xt+1 = xt − ηvt ,

where vt is a random vector to be specified. As usual, we may write

∥xt+1 − x̄∥2 = ∥xt − x̄∥2 − 2η⟨vt, xt − x̄⟩ + η2∥vt∥2.

As long as Et[vt] = ∇f(xt), we may take expectations and obtain

E∥xt+1 − x̄∥2 ≤ E∥xt − x̄∥2 − 2η(f(xt) − f∗) + η2E∥vt∥2. (26)

In order to reach ϵ-accuracy, we must shrink η inversely to E∥vt∥2. In order to
allow larger stepsizes, we can aim to design a random unbiased stochastic
gradient estimator with small variance.

109 / 171



Variance reduction
Here is one conceptually simple choice:

vt = ∇fit (xt) − ∇fit (x̄),

where it is drawn uniformly at random from {1, . . . , n}. Since we do not know
x̄, this vector is not computable directly but it does have a small variance. To
see this, we can use the following lemma.

Lemma
Any β-smooth function g : Rd ! R satisfies

1
2β ∥∇g(x) − ∇g(y)∥2 ≤ g(y) − g(x) − ⟨∇g(x), y − x⟩ ∀x, y

Proof: Invoke descent 0 ≤ Q(y − β−1∇Q(y)) ≤ Q(y) − 1
2β ∥∇Q(y)∥2 for

Q(y) := g(y) − g(x) − ⟨∇g(x), y − x⟩. □

Applying the lemma to each fit yields

Etvt = ∇f(xt) and Et∥vt∥2 ≤ 2β(f(xt) − f∗) .

The second moment tends to zero along the iterates!
110 / 171



Variance reduction

Since we do not know x̄, suppose instead that we have an approximate
minimizer y and form the SVRG estimator

vt = ∇fit (xt) − ∇fit (y) + ∇f(y) .

Then clearly Etvt = ∇f(xt) and we may estimate the variance

Et∥vt∥2 ≤ 2Et∥∇fit (xt) − ∇fit (x̄)∥2 + 2Et∥∇fit (x̄) − ∇fit (y) + ∇f(y)∥2

≤ 4β(f(xt) − f∗) + 2Et∥∇fit (x̄) − ∇fit (y)∥2

≤ 4β(f(xt) − f∗) + 4β(f(y) − f∗),

where the second and third inequalities follow from the lemma.

Let us now initialize x1 = y and see how many iterations are required to drive
the gap f(xt) − f∗ below a fraction of f(x1) − f∗.

111 / 171



Variance reduction

Observe (26) becomes

E∥xt+1 − x̄∥2 ≤ E∥x1 − x̄∥2 − 2η(1 − 2βη)(f(xt) − f∗) + 4βη2(f(y) − f∗).

Iterating gives

E∥xt+1 − x̄∥2 ≤ E∥y− x̄∥2 −2η(1−2βη)
t∑
i=1

E(f(xi)−f∗)+4βη2t(f(y)−f∗).

Lower bounding the left side by zero and noting α
2 ∥y − x̄∥2 ≤ f(y) − f∗ gives

Ef

(
1
t

t∑
i=1

xi

)
− f∗ ≤

(
1

αη(1 − 2βη)t + 2βη
1 − 2βη

)
(f(y) − f∗).

Setting y+ := 1
t

∑t

i=1 xi, η = 1
10β , and t = 20β/α we deduce

Ef(y+) − f∗ ≤ 0.9(f(y) − f∗) .

112 / 171



Variance reduction

Thus in t = β
α

iterations, the method shrinks the suboptimality gap by a
constant fraction. The SVRG algorithm simply repeats this process in epochs.
The cost of each epoch is one computation of the full gradient ∇f(y) and t
computations of the individual gradients ∇fi(x). Thus the method will find a
point y satisfying Ef(y) − f∗ ≤ ϵ after having computed at most

O

((
n+ β

α

)
log
(
f(x1) − f∗

ϵ

))
,

individual gradients ∇fi(x).

113 / 171


