MATH 516
CH. 1 SOLUTIONS
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These solutions are being shared for the benefit of future Math 516 graders; please do not
circulate among other students. Note also that these solutions may have typos and they may
be incomplete - many problems can be solved with more than one approach.

Exercise 1.1. Given a collection of real m x n matrices A, As, ..., A;, define the linear
mapping A: R™*" — R’ by setting

A(X) = (<A17 X)v <A27 X>7 R <Al7 X))
Show that the adjoint is the mapping A*y = y1 A1 + y2 A2 + ... + YA

Proof. Let X € R™" and y € R’. Then
(A(X),Y) = (((A1, X), ..., (4, X)), 9)

¢
=Z<Ai,X> " Yi

O

Exercise 1.2. Given a positive definite linear operator A on E, show that the assignment
(v,w)4 := (Av,w) is an inner product on E, with the induced norm ||v||4 = /(Av,v).
Show that the dual norm with respect to the original inner product is |[v||% = [|v[|a-1 =

V(A v ).

Proof. (Symmetry) Since A is self-adjoint and the original inner product is symmetric, we
have

(v,wy 4 = (Av, w) = (v, A*w) = (v, Aw) = (Aw,v) = (w, v) 4.
(Bilinearity) Follows from the fact that 4 is a linear operator and the original inner product
is bilinear:
(avy 4 vy, w) 4 = (A(avy + buvg), w) = (a.Avy + bAvy, w)
= a{Avy, w) + b{Avy, w)
= (I<U1, U))_A + b(’l}g, 'lU>A.
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(Positive Definiteness) Follows immediately from the positive definiteness of A.

The induced norm is as stated (by definition), and the dual norm is
Jolls = max{ (v, ) : o]l < 1}
= max{(v,z) : (Az,z) <1}
Using the Lagrangian, you can show that the x obtaining the maximum above is
Ay
r=-——
[0].4-1

which yields
" Aty
v = ’U’— = v —1.
|| ||A < HUHA—1> || ||A

Alternatively, do a change of variables with y = A2z and apply Cauchy-Schwarz. 0J

Exercise 1.3. Equip R" and R™ with the /,-norms. Then for any matrix A € R™*", show
the equalities

[All = max [[Ael
7j=1,...n

| Al = max ||Asell1
i=1,...,n

where A,; and A;, denote the j’th column and i’th row of A, respectively.

Proof. First we show the second equality:

[Alloo = max | Az ][
Jalloe <1

= max max |(Ax);]
llzlloo<1 i=1,...,m

= max max |A;z|
=L et

= max |[|A; |
where the last line follows from the definition of the dual norm to || - || in R™.
Now we consider the first equality in the exercise. Using the fact that || - ||« and || - ||«
are dual in R", we have
[All = max [|Az]],

llzll1 <1

= max max (Azx,y)
[[z]l1 <1 [Jylloo <1

= max max (z, A"y)
[9lloo<1 ||z[1<1

= max [|[A"Y|s
llylloo<1

= max max [(A%y);
Hy\looglsz_.,,n’( Y);l

= max max |A;y|
J=Lmlyllee <1

= max Ayl
n

goor
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Exercise 1.6. Define the function
f(z) = 3(Az,z) + (v,z) + ¢
where A: E — E is a linear operator, v is lies in E, and ¢ is a real number.

(1) Show that if A is replaced by the self-adjoint operator (A-+.4%)/2, the function values
f(z) remain unchanged.
(2) Assuming A is self-adjoint derive the equations:

Vf(x)=Az+v and Vif(r) = A
(3) Using parts 1 and 2, describe Vf(z) and V2f(z) when A is not necessarily self-

adjoint.

Proof. (1) We have

<(A2A*

) T, x) = %(Ax,@ + %(A*m,@
1 1
= §<Al‘, x) + §<JI,AI>
= (Az, x)

and thus f(z) is unchanged by replacing .4 with
(2) Assuming A = A*, we have

flz+h)—f(z) — (Azx + v, h)

A+A*
5 -

N %<A(:E+ h), + h) — %Mx,x) + (v, +h) = (v,2) — {(Az + 0, h)
- %(Ax,m + %(Ah,@ + %(Ah, h) + (v, h) = (Az + v, h)
1 1 1
= 5 (A, h) + 5 (h, Ax) + S (AR, B) = (A, h)
_ %(Ah,m

Dividing by ||h|| and letting A — 0, we obtain 0, and thus V f(z) = Az +v as desired.
Next we consider
Vf(x+h)—Vf(z)— Ah
=Alz+h)+v—Ax—v— Ah
=0

which is clearly o(||h]|), and thus V2f(z) = A.
(3) Using parts (1) and (2), when A is not necessarily self-adjoint we have

V() = (AZA*)HU

and A A
V2f(x) = z .
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O

Exercise 1.7. Define the function f(z) = 3||F(2)||?, where F: E — Y is a C'-smooth

mapping. Prove the identity Vf(z) = VF(z)"F(x).
Proof. We have
f(@+h)=f(x) = (VF(x)" F(x), h)

= SIF G+ B~ S F@)IP ~ (V@) F(z), by
= JIF @) + VR@h + o1 ~ SIF@)IP ~ (VF() Fl), b
= (F(2), V@) + ol [1]) + 5 IVF () + ol[[AIDI? ~ (VF ()" F(), b

= (F(x), of[IAl])) + % IV E(2)h + o(||- )|
= o([[n]})
and thus V f(z) = VF(x)*F(x) as desired. O

Exercise 1.8. Consider a function f: U — R and a linear mapping A: Y — E and define
the composition h(x) = f(Ax).
(1) Show that if f is differentiable at Ax, then
Vh(z) = A"V f(Azx).
(2) Show that if f is twice differentiable at Ax, then
V2h(z) = A*V?f(Ar)A.

Proof. (1) We have
h(z + €)—h(x) — (A*V f(Azx),€)
= f(Ax + Ae) — f(Ax) — (A*V f(Azx),¢€)
f(Az) +(Vf(Az), Ae) + o([[Ae])) — f(Az) — (A"V f(Az), €)
(A'Vf(Azx), €) + of[|Ael]) = (AV f(Az), €)

0o
(0]

(Il Aell)
= o([lell)

and thus Vh(x) = A*V f(Axz).
(2) Now using part (1), we have

Vh(z + €)—Vh(z) — (A V?f(Az)A) €
= AV f(Ax + Ae) — A*V f(Azx) — A*V?f(Az)Ae
= A" (Vf(Az + Ae) — Vf(Az)) — A*V?f(Az)Ae
= A" (V?f(Az)Ae + o(|| Ae]])) — AV f(Az)Ae
= o([|Ae]])
= o([lell)
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and thus V2h(z) = A*V?f(Azx)A as desired.
U

Exercise 1.9. Consider a mapping F'(x) = G(H(z)) where H is differentiable at = and G
is differentiable at H(x). Derive the formula VF(z) = VG(H (z))V H (z).

Proof. To derive the chain rule, we first use differentiability of H and then differentiability
of G:

F(x+h)=G(H(xz)+ VH(z)h + o(||h]))
= G(H(z)) + VG(H(2))(VH (z)h + o([|h]])) + o ([VH (2)h + o(|[R[)]])
= F(z) + VG(H(x))VH(x)h + o(]|h]]).
This shows that VF(z) = VG(H (z))VH(x) as desired. O

Exercise 1.10. Define the two sets
R}, ={zrecR":2;>0foralli=1,...,n},
S, ={XeS": X >0}

Consider the two functions f: R}, — R and F': S, — R given by

fx) = —znjlogxi and F(X) = —Indet(X),
i=1

respectively. Note, from basic properties of the determinant, the equality F'(X) = f(A(X)),
where we set A(X) := (A(X), ..., \(X)).

(1) Find the derivatives V f(z) and V*f(z) for € R} .
(2) Using the property tr(AB) = tr(BA), prove VF(X) = —X~! and V?F(X)[V] =
XWX~ for any X = 0.
[Hint: To compute VF(X), justify

F(X +1V) = F(X) + X7, V) = ~Indet(I + X~ 2VX ) + tr (X V2V X 12),

By rewriting the expression in terms of eigenvalues of X /21X ~1/2 deduce that the
right-hand-side is o(t). To compute the Hessian, observe

(X + V) =XV (T4 XXV X2
and then use the expansion
-1 _ 2 3 _ 2
I+A) " =1-A+A A +...=1-A+O0(JAl5,),

whenever || A, < 1. |
(3) Show
(VIF(X)V]V) = | X2V 2[5

for any X = 0 and V € 8". Deduce that the operator V2F(X): S® — S" is positive
definite.
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Proof. (1) Straightforward calculations give

V() = <_Ii1_xin>

1
V2f(x) = Diag (x_%’ ce _m_%>
(2) To check the formula for VF(X), we show
FX +tV)—F(X)+t(XLV)
= —Indet(X +tV) +Indet(X) +t- tr (X 'V)
_ (det(X +tV)
det(X)

= —Indet (X 2(X +tV)XV2) +¢- tr (X 2V X2
= —Indet (I +tXV2VX7V2) +t- tr (X VPV XT12)

——In (ﬁ (1+t\) >+tz>\
=1

-1/2.

and

> +t-tr (X V2V X2

where ); are the eigenvalues of X 1/2V X Thus we have

F(X +tV) - F(X)+ (X V) Zlnl—l—t)\ +tz>\

To show that the right hand side is o(t), we use the Taylor series of In(1 + x):
— -1 | . .
F(X+tV)—-F(X)+ X" V) _ limz n(l+t\;) +t\

lim
t\O t t\0 — t
R (tN)? (th)?
n 32 33
e (AR ()
N0 — 2t 3t

From this, we conclude that VF(X) = —X !, as desired.
Now we consider the Hessian. First we note that

(X + V)fl — x-12 (1— 4 X71/2VX71/2)*1 x-1/2
Assuming || X Y2V X~12||,, < 1, we can expand the middle term as
(T+ X PVXY2) T = [ — XY X2 (XY X122 (XY X2
Thus for ¢ sufficiently small, we have
V(X +tV) = —(X +tV)™!
—XTP (1=t XTVPVX TP 4 2(XTPYXTRR (XY XTI ) X
= X' XWX XTIV 4 B(XV)3X T -
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This gives us
VE(X +tV)-VF(X) - tX VX!
=X WVEX T+ B8XTVEX -
=XV (T +tXTV-2(XTV)P - )X
— (X TW? (T4+txV) T X
which is o(t) as desired.
(3) Using part (2), we have
(VPF(X)[V],V) = (X'VX L V)

and since X is positive definite, we can write X 1 = X /2X Y2 with X ~'/2 being
self-adjoint. Thus we get

(VPF(X)[V],V) =(XT1PX1PVXT12X 12 )
— <X_1/2VX_1/2,X_1/2VX_1/2>
— ||X71/2VX71/2H2

This shows that V2F(X) is a positive definite operator on S™, since the above quan-
tity is always nonnegative and is zero if and only if X~ V2V X~Y2 = 0, which is
equivalent to V' = 0.

O

Exercise 1.11. Consider a function f: U — R and two points z,y € U. Define the uni-
variate function ¢: [0,1] — R given by ¢(t) = f(z +t(y — x)) and let x;, := z +t(y — ) for
any t.

(1) Show that if f is C'-smooth, then equality
O'(t) = (Vf(xy),y —x) holds for any ¢ € (0,1).
(2) Show that if f is C*-smooth, then equality
©"(t) = (V2f(z)(y — x),y — ) holds for any ¢ € (0, 1).

Proof. Both parts follow from Exercise 1.9 (the chain rule).

(1) Set F'= ¢, G = f and H = x; as a function of ¢.
(2) Set F =¢', G=(Vf(:),y —x) and H = z; as a function of ¢.
[

Exercise 1.15. Consider a C'-smooth mapping F: U — R™ and two points z,y € U.
Derive the equations

F(y) - F(z) = / VF(@ 4+ ty — 2))(y — o) dt.

Fly) = F(x) + VF(x)(y — x) +/0 (VE(x +t(y —x)) = VF(2))(y — x) dt.
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Proof. To see the first equation, fix an arbitrary basis and apply Theorem 1.12 coordinate-
wise to each (F(y)); and (F(x));. To see the second equation, simply add and subtract the
term VF(z)(y — ) and note that this is a constant with respect to ¢, so we can bring it
inside the integral of length 1. 0

Exercise 1.16. Show that a C'-smooth mapping F': U — Y is L-Lipschitz continuous if
and only if ||VF(z)|| < L for all z € U.

Proof. First suppose that F'is L—Lipschitz. Then for any y # x we have
1F(y) — F(z)
ly — ||
which implies by differentiability of F' that
IVE(z)(y — ) + oflly — =[]
y—a

ly — =]
E
which implies ||[VF(z)|| < L as desired.
For the reverse direction, suppose we have |[VF(z)|| < L for all x € E. Then by Exercise
1.12, we have

[

<L

Letting y — x, we obtain
(y — )
ly — |

VFE(x)

lim

umw—F@m:\

/01 VF(z +t(y — 2))(y — z) dtH

SA!WF@+Ky—@NWW—xHﬁ

1
s/“Lwy—xnw
0
_L-fy—al

which shows that F'is L—Lipschitz as desired.



