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These solutions are being shared for the benefit of future Math 516 graders; please do not
circulate among other students. Note also that these solutions may have typos and they may
be incomplete - many problems can be solved with more than one approach.

Exercise 1.1. Given a collection of real m × n matrices A1, A2, . . . , Al, define the linear
mapping A : Rm×n → Rl by setting

A(X) := (〈A1, X〉, 〈A2, X〉, . . . , 〈Al, X〉).
Show that the adjoint is the mapping A∗y = y1A1 + y2A2 + . . .+ ylAl.

Proof. Let X ∈ Rm×n and y ∈ R`. Then

〈A(X), Y 〉 = 〈(〈A1, X〉, . . . , 〈A`, X〉), y〉

=
∑̀
i=1

〈Ai, X〉 · yi

= 〈
∑̀
i=1

yiAi, X〉

= 〈A∗y,X〉.
�

Exercise 1.2. Given a positive definite linear operator A on E, show that the assignment
〈v, w〉A := 〈Av, w〉 is an inner product on E, with the induced norm ‖v‖A =

√
〈Av, v〉.

Show that the dual norm with respect to the original inner product is ‖v‖∗A = ‖v‖A−1 =√
〈A−1v, v〉.

Proof. (Symmetry) Since A is self-adjoint and the original inner product is symmetric, we
have

〈v, w〉A = 〈Av, w〉 = 〈v,A∗w〉 = 〈v,Aw〉 = 〈Aw, v〉 = 〈w, v〉A.
(Bilinearity) Follows from the fact that A is a linear operator and the original inner product
is bilinear:

〈av1 + bv2, w〉A = 〈A(av1 + bv2), w〉 = 〈aAv1 + bAv2, w〉
= a〈Av1, w〉+ b〈Av2, w〉
= a〈v1, w〉A + b〈v2, w〉A.
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(Positive Definiteness) Follows immediately from the positive definiteness of A.

The induced norm is as stated (by definition), and the dual norm is

‖v‖∗A = max{〈v, x〉 : ‖x‖A ≤ 1}
= max{〈v, x〉 : 〈Ax, x〉 ≤ 1}

Using the Lagrangian, you can show that the x obtaining the maximum above is

x =
A−1v
‖v‖A−1

which yields

‖v‖∗A = 〈v, A
−1v

‖v‖A−1

〉 = ‖v‖A−1 .

Alternatively, do a change of variables with y = A1/2x and apply Cauchy-Schwarz. �

Exercise 1.3. Equip Rn and Rm with the lp-norms. Then for any matrix A ∈ Rm×n, show
the equalities

‖A‖1 = max
j=1,...,n

‖A•j‖1

‖A‖∞ = max
i=1,...,n

‖Ai•‖1

where A•j and Ai• denote the j’th column and i’th row of A, respectively.

Proof. First we show the second equality:

‖A‖∞ = max
‖x‖∞≤1

‖Ax‖∞

= max
‖x‖∞≤1

max
i=1,...,m

|(Ax)i|

= max
i=1,...,m

max
‖x‖∞≤1

|Ai·x|

= max
i=1,...,m

‖Ai·‖1

where the last line follows from the definition of the dual norm to ‖ · ‖∞ in Rn.
Now we consider the first equality in the exercise. Using the fact that ‖ · ‖∞ and ‖ · ‖∞

are dual in Rn, we have

‖A‖1 = max
‖x‖1≤1

‖Ax‖1

= max
‖x‖1≤1

max
‖y‖∞≤1

〈Ax, y〉

= max
‖y‖∞≤1

max
‖x‖1≤1

〈x,A∗y〉

= max
‖y‖∞≤1

‖A∗y‖∞

= max
‖y‖∞≤1

max
j=1,...,n

|(A∗y)j|

= max
j=1,...,n

max
‖y‖∞≤1

|A·jy|

= max
j=1,...,n

‖A·jy‖1.
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Exercise 1.6. Define the function

f(x) = 1
2
〈Ax, x〉+ 〈v, x〉+ c

where A : E→ E is a linear operator, v is lies in E, and c is a real number.

(1) Show that if A is replaced by the self-adjoint operator (A+A∗)/2, the function values
f(x) remain unchanged.

(2) Assuming A is self-adjoint derive the equations:

∇f(x) = Ax+ v and ∇2f(x) = A.
(3) Using parts 1 and 2, describe ∇f(x) and ∇2f(x) when A is not necessarily self-

adjoint.

Proof. (1) We have

〈
(
A+A∗

2

)
x, x〉 =

1

2
〈Ax, x〉+

1

2
〈A∗x, x〉

=
1

2
〈Ax, x〉+

1

2
〈x,Ax〉

= 〈Ax, x〉

and thus f(x) is unchanged by replacing A with A+A∗
2

.
(2) Assuming A = A∗, we have

f(x+ h)−f(x)− 〈Ax+ v, h〉

=
1

2
〈A(x+ h), x+ h〉 − 1

2
〈Ax, x〉+ 〈v, x+ h〉 − 〈v, x〉 − 〈Ax+ v, h〉

=
1

2
〈Ax, h〉+

1

2
〈Ah, x〉+

1

2
〈Ah, h〉+ 〈v, h〉 − 〈Ax+ v, h〉

=
1

2
〈Ax, h〉+

1

2
〈h,Ax〉+

1

2
〈Ah, h〉 − 〈Ax, h〉

=
1

2
〈Ah, h〉

Dividing by ‖h‖ and letting h→ 0, we obtain 0, and thus ∇f(x) = Ax+v as desired.
Next we consider

∇f(x+ h)−∇f(x)−Ah
= A(x+ h) + v −Ax− v −Ah
= 0

which is clearly o(‖h‖), and thus ∇2f(x) = A.
(3) Using parts (1) and (2), when A is not necessarily self-adjoint we have

∇f(x) =

(
A+A∗

2

)
x+ v

and

∇2f(x) =
A+A∗

2
.
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Exercise 1.7. Define the function f(x) = 1
2
‖F (x)‖2, where F : E → Y is a C1-smooth

mapping. Prove the identity ∇f(x) = ∇F (x)∗F (x).

Proof. We have

f(x+ h)−f(x)− 〈∇F (x)∗F (x), h〉

=
1

2
‖F (x+ h)‖2 − 1

2
‖F (x)‖2 − 〈∇F (x)∗F (x), h〉

=
1

2
‖F (x) +∇F (x)h+ o(‖h‖)‖2 − 1

2
‖F (x)‖2 − 〈∇F (x)∗F (x), h〉

= 〈F (x),∇F (x)h+ o(‖h‖)〉+
1

2
‖∇F (x)h+ o(‖h‖)‖2 − 〈∇F (x)∗F (x), h〉

= 〈F (x), o(‖h‖)〉+
1

2
‖∇F (x)h+ o(‖h‖)‖2

= o(‖h‖)
and thus ∇f(x) = ∇F (x)∗F (x) as desired. �

Exercise 1.8. Consider a function f : U → R and a linear mapping A : Y → E and define
the composition h(x) = f(Ax).

(1) Show that if f is differentiable at Ax, then

∇h(x) = A∗∇f(Ax).

(2) Show that if f is twice differentiable at Ax, then

∇2h(x) = A∗∇2f(Ax)A.

Proof. (1) We have

h(x+ ε)−h(x)− 〈A∗∇f(Ax), ε〉
= f(Ax+Aε)− f(Ax)− 〈A∗∇f(Ax), ε〉
= f(Ax) + 〈∇f(Ax),Aε〉+ o(‖Aε‖)− f(Ax)− 〈A∗∇f(Ax), ε〉
= 〈A∗∇f(Ax), ε〉+ o(‖Aε‖)− 〈A∗∇f(Ax), ε〉
= o(‖Aε‖)
= o(‖ε‖)

and thus ∇h(x) = A∗∇f(Ax).
(2) Now using part (1), we have

∇h(x+ ε)−∇h(x)−
(
A∗∇2f(Ax)A

)
ε

= A∗∇f(Ax+Aε)−A∗∇f(Ax)−A∗∇2f(Ax)Aε
= A∗ (∇f(Ax+Aε)−∇f(Ax))−A∗∇2f(Ax)Aε
= A∗

(
∇2f(Ax)Aε+ o(‖Aε‖)

)
−A∗∇2f(Ax)Aε

= o(‖Aε‖)
= o(‖ε‖)
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and thus ∇2h(x) = A∗∇2f(Ax)A as desired.
�

Exercise 1.9. Consider a mapping F (x) = G(H(x)) where H is differentiable at x and G
is differentiable at H(x). Derive the formula ∇F (x) = ∇G(H(x))∇H(x).

Proof. To derive the chain rule, we first use differentiability of H and then differentiability
of G:

F (x+ h) = G(H(x) +∇H(x)h+ o(‖h‖))
= G(H(x)) +∇G(H(x))(∇H(x)h+ o(‖h‖)) + o (‖∇H(x)h+ o(‖h‖)‖)
= F (x) +∇G(H(x))∇H(x)h+ o(‖h‖).

This shows that ∇F (x) = ∇G(H(x))∇H(x) as desired. �

Exercise 1.10. Define the two sets

Rn
++ := {x ∈ Rn : xi > 0 for all i = 1, . . . , n},

Sn
++ := {X ∈ Sn : X � 0}.

Consider the two functions f : Rn
++ → R and F : Sn

++ → R given by

f(x) = −
n∑

i=1

log xi and F (X) = − ln det(X),

respectively. Note, from basic properties of the determinant, the equality F (X) = f(λ(X)),
where we set λ(X) := (λ1(X), . . . , λn(X)).

(1) Find the derivatives ∇f(x) and ∇2f(x) for x ∈ Rn
++.

(2) Using the property tr (AB) = tr (BA), prove ∇F (X) = −X−1 and ∇2F (X)[V ] =
X−1V X−1 for any X � 0.

[Hint: To compute ∇F (X), justify

F (X + tV )− F (X) + t〈X−1, V 〉 = − ln det(I +X−1/2V X−1/2) + tr (X−1/2V X−1/2).

By rewriting the expression in terms of eigenvalues of X−1/2V X−1/2, deduce that the
right-hand-side is o(t). To compute the Hessian, observe

(X + V )−1 = X−1/2
(
I +X−1/2V X−1/2

)−1
X−1/2,

and then use the expansion

(I + A)−1 = I − A+ A2 − A3 + . . . = I − A+O(‖A‖2op),

whenever ‖A‖op < 1. ]
(3) Show

〈∇2F (X)[V ], V 〉 = ‖X−
1
2V X−

1
2‖2F

for any X � 0 and V ∈ Sn. Deduce that the operator ∇2F (X) : Sn → Sn is positive
definite.
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Proof. (1) Straightforward calculations give

∇f(x) =

(
− 1

x1
, . . . ,− 1

xn

)
and

∇2f(x) = Diag

(
1

x21
, . . . ,− 1

x2n

)
(2) To check the formula for ∇F (X), we show

F (X + tV )−F (X) + t〈X−1, V 〉
= − ln det(X + tV ) + ln det(X) + t · tr (X−1V )

= − ln

(
det(X + tV )

det(X)

)
+ t · tr (X−1/2V X−1/2)

= − ln det
(
X−1/2(X + tV )X−1/2

)
+ t · tr (X−1/2V X−1/2)

= − ln det
(
I + tX−1/2V X−1/2)

)
+ t · tr (X−1/2V X−1/2)

= − ln

(
n∏

i=1

(1 + tλi)

)
+ t

n∑
i=1

λi

where λi are the eigenvalues of X−1/2V X−1/2. Thus we have

F (X + tV )− F (X) + t〈X−1, V 〉 = −
n∑

i=1

ln(1 + tλi) + t
n∑

i=1

λi

To show that the right hand side is o(t), we use the Taylor series of ln(1 + x):

lim
t↘0

F (X + tV )− F (X) + t〈X−1, V 〉
t

= lim
t↘0

n∑
i=1

− ln(1 + tλi) + tλi
t

= lim
t↘0

1

t

n∑
i=1

−
[
tλi −

(tλi)
2

2
+

(tλi)
3

3
− . . .

]
+ tλi

= lim
t↘0

n∑
i=1

(tλi)
2

2t
− (tλi)

3

3t
+ . . .

= 0.

From this, we conclude that ∇F (X) = −X−1, as desired.
Now we consider the Hessian. First we note that

(X + V )−1 = X−1/2
(
I +X−1/2V X−1/2

)−1
X−1/2

Assuming ‖X−1/2V X−1/2‖op < 1, we can expand the middle term as(
I +X−1/2V X−1/2

)−1
= I −X−1/2V X−1/2 + (X−1/2V X−1/2)2 − (X−1/2V X−1/2)3 + . . .

Thus for t sufficiently small, we have

∇F (X + tV ) = −(X + tV )−1

= −X−1/2
(
I − tX−1/2V X−1/2 + t2(X−1/2V X−1/2)2 − t3(X−1/2V X−1/2)3 + . . .

)
X−1/2

= −X−1 + tX−1V X−1 − t2(X−1V )2X−1 + t3(X−1V )3X−1 − . . .
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This gives us

∇F (X + tV )−∇F (X)− tX−1V X−1

= −t2(X−1V )2X−1 + t3(X−1V )3X−1 − . . .
= t2(X−1V )2

(
−I + tX−1V − t2(X−1V )2 − . . .

)
X−1

= −t2(X−1V )2
(
I + tX−1V

)−1
X−1

which is o(t) as desired.
(3) Using part (2), we have

〈∇2F (X)[V ], V 〉 = 〈X−1V X−1, V 〉

and since X is positive definite, we can write X−1 = X−1/2X−1/2 with X−1/2 being
self-adjoint. Thus we get

〈∇2F (X)[V ], V 〉 = 〈X−1/2X−1/2V X−1/2X−1/2, V 〉
= 〈X−1/2V X−1/2, X−1/2V X−1/2〉
= ‖X−1/2V X−1/2‖2

This shows that ∇2F (X) is a positive definite operator on Sn, since the above quan-
tity is always nonnegative and is zero if and only if X−1/2V X−1/2 = 0, which is
equivalent to V = 0.

�

Exercise 1.11. Consider a function f : U → R and two points x, y ∈ U . Define the uni-
variate function ϕ : [0, 1]→ R given by ϕ(t) = f(x+ t(y − x)) and let xt := x+ t(y − x) for
any t.

(1) Show that if f is C1-smooth, then equality

ϕ′(t) = 〈∇f(xt), y − x〉 holds for any t ∈ (0, 1).

(2) Show that if f is C2-smooth, then equality

ϕ′′(t) = 〈∇2f(xt)(y − x), y − x〉 holds for any t ∈ (0, 1).

Proof. Both parts follow from Exercise 1.9 (the chain rule).

(1) Set F = ϕ, G = f and H = xt as a function of t.
(2) Set F = ϕ′, G = 〈∇f(·), y − x〉 and H = xt as a function of t.

�

Exercise 1.15. Consider a C1-smooth mapping F : U → Rm and two points x, y ∈ U .
Derive the equations

F (y)− F (x) =

∫ 1

0

∇F (x+ t(y − x))(y − x) dt.

F (y) = F (x) +∇F (x)(y − x) +

∫ 1

0

(∇F (x+ t(y − x))−∇F (x))(y − x) dt.
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Proof. To see the first equation, fix an arbitrary basis and apply Theorem 1.12 coordinate-
wise to each (F (y))i and (F (x))i. To see the second equation, simply add and subtract the
term ∇F (x)(y − x) and note that this is a constant with respect to t, so we can bring it
inside the integral of length 1. �

Exercise 1.16. Show that a C1-smooth mapping F : U → Y is L-Lipschitz continuous if
and only if ‖∇F (x)‖ ≤ L for all x ∈ U .

Proof. First suppose that F is L−Lipschitz. Then for any y 6= x we have

‖F (y)− F (x)‖
‖y − x‖

≤ L

which implies by differentiability of F that

‖∇F (x)(y − x) + o(‖y − x‖)‖
‖y − x‖

≤ L

Letting y → x, we obtain

lim
y→x

∥∥∥∥∇F (x)
(y − x)

‖y − x‖

∥∥∥∥ ≤ L

which implies ‖∇F (x)‖ ≤ L as desired.
For the reverse direction, suppose we have ‖∇F (x)‖ ≤ L for all x ∈ E. Then by Exercise

1.12, we have

‖F (y)− F (x)‖ =

∥∥∥∥∫ 1

0

∇F (x+ t(y − x))(y − x) dt

∥∥∥∥
≤
∫ 1

0

‖∇F (x+ t(y − x))‖ · ‖y − x‖ dt

≤
∫ 1

0

L · ‖y − x‖ dt

= L · ‖y − x‖
which shows that F is L−Lipschitz as desired.

�


