1. Review of Multi-variable Calculus

Throughout this course we will be working with the vector space \mathbb{R}^{n}. For this reason we begin with a brief review of its metric space properties

Definition 1.1 (Vector Norm). A function $\nu: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a vector norm on \mathbb{R}^{n} if the following three properties hold.
i. (Positivity): $\quad \nu(x) \geq 0 \forall x \in \mathbb{R}^{n}$ with equality iff $x=0$.
ii. (Homogeneity): $\quad \nu(\alpha x)=|\alpha| \nu(x) \forall x \in \mathbb{R}^{n} \alpha \in \mathbb{R}$
iii. (Triangle inequality): $\quad \nu(x+y) \leq \nu(x)+\nu(y) \forall x, y \in \mathbb{R}^{n}$

We usually denote $\nu(x)$ by $\|x\|$. Norms are convex functions.
Example: l_{p} norms

$$
\begin{aligned}
\|x\|_{p} & :=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, \quad 1 \leq p<\infty \\
\|x\|_{\infty} & =\max _{i=1, \ldots, n}\left|x_{i}\right|
\end{aligned}
$$

- $P=1,2, \infty$ are most important cases

$$
\|x\|_{1}=1
$$

$$
\|x\|_{2}=1
$$

$$
\|x\|_{\infty}=1
$$

- The unit ball of a norm is a convex set.
1.1. Equivalence of Norms. All norms on \mathbb{R}^{n} are comparable, meaning that for any norms $\|\cdot\|_{p}$ and $\|\cdot\|_{q}$, there exist constants $\alpha_{p, q}$ and $\beta_{p, q}$ satisfying

$$
\alpha_{p, q}\|x\|_{q} \leq\|x\|_{p} \leq \beta_{p, q}\|x\|_{q} \quad \text { for all } x \in \mathbb{R}^{n} .
$$

Here are some values of the constants $\alpha_{p, q}$ and $\beta_{p, q}$.

$\alpha_{p, q}$	${ }^{p}$	1	2	3
	1	1	1	1
	2	$n^{-\frac{1}{2}}$	1	1
	3	n^{-1}	$n^{-\frac{1}{2}}$	1

$\beta_{p, q}$	p^{q}	1	2	3
	1	1		n
	2	1	1	$n^{\frac{1}{2}}$
	3	1	1	1

1.2. Continuity and the Weierstrass Theorem.

- A mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be continuous at the point \bar{x} if

$$
\lim _{\|x-\bar{x}\| \rightarrow 0}\|F(x)-F(\bar{x})\|=0
$$

F is said to be continuous on a set $D \subset \mathbb{R}^{n}$ if F is continuous at every point of D.

- A subset $D \subset \mathbb{R}^{n}$ is said to be open if for every $x \in D$ there exists $\epsilon>0$ such that $\mathbb{B}_{\epsilon}(x) \subset D$ where

$$
\mathbb{B}_{\epsilon}(x)=\left\{y \in \mathbb{R}^{n}:\|y-x\|<\epsilon\right\} .
$$

- A subset $D \subset \mathbb{R}^{n}$ is said to be closed if every point x satisfying

$$
\mathbb{B}_{\epsilon}(x) \cap D \neq \emptyset
$$

for all $\epsilon>0$, must be a point in D.

- A subset $D \subset \mathbb{R}^{n}$ is said to be bounded if there exists $m>0$ such that

$$
\|x\| \leq m \text { for all } x \in D
$$

(Notice: the choice of the norm is irrelevant in the definition.)

- A subset $D \subset \mathbb{R}^{n}$ is said to be compact, if it is closed and bounded.
- A point $x \in \mathbb{R}^{n}$ is said to be a cluster point of the set $D \subset \mathbb{R}^{n}$ if

$$
\left(\mathbb{B}_{\epsilon}(x) \backslash\{x\}\right) \cap D \neq \emptyset
$$

for every $\epsilon>0$.
For example, for the set $D:=(0,1] \cup\{2\}$, the set of cluster points is the set $[0,1]$.
Theorem 1.1 (Weierstrass Compactness Theorem). A set $D \subset \mathbb{R}^{n}$ is compact if and only if every infinite subset of D has a cluster point in D.

Next, we recall the notions of the supremum and infimum of a function. To this end, consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a set $D \subset \mathbb{R}^{n}$. Define the set of upper bounds

$$
U=\{r \in \mathbb{R}: f(x) \leq r \text { for all } x \in D\}
$$

One can prove that U is a closed subinterval of the real line, namely we may write $U=$ $[\alpha,+\infty)$ for some α. (Note α can be finite or infinite.) The value α is called the supremum of f on D. Intuitively this quantity is the "least upper bound" of f on D. Note that for any $r>\alpha$, there cannot exist a point $x \in D$ satisfying $r=f(x)$ (Why?). On the other hand, when there exists some point \bar{x} in D satisfying $\alpha=f(\bar{x})$, we call α the maximal value of f on D, and we say that the maximum of f on D is attained at \bar{x}. Moreover, this point \bar{x} is called a maximizer of f on D.

The definition of the infimum of f on D as the "greatest lower bound" is entirely analogous. Namely the set of lower bounds

$$
L=\{r \in \mathbb{R}: f(x) \geq r \text { for all } x \in D\}
$$

can be shown to be an interval $(-\infty, \beta]$ for some β. This value β is called the infimum of f on D. Minimal values, minimizers, and attainment of the minimum are defined analogously. The following theorem, which we will use extensively, establishes a connection between continuous functions on compact sets and attainment of the minimum and the maximum.

Theorem 1.2 (Weierstrass Extreme Value Theorem). Every continuous function on a compact set attains its extreme values (maximum and minimum) on that set.
1.3. Dual Norms. Let $\|\cdot\|$ be a given norm on \mathbb{R}^{n} with associated closed unit ball \mathbb{B}. For each $x \in \mathbb{R}^{n}$ define

$$
\|x\|_{*}:=\max _{y \in \mathbb{R}^{n}}\left\{x^{T} y:\|y\| \leq 1\right\} .
$$

Since the transformation $y \mapsto x^{T} y$ is continuous (in fact, linear) and \mathbb{B} is compact (can you prove this?), Weierstrass's Theorem says that the maximum in the definition of $\|x\|_{*}$ is attained. Thus, in particular, the function $x \rightarrow\|x\|_{*}$ is well defined and finite-valued. Indeed, the mapping defines a norm on \mathbb{R}^{n}. This norm $\|\cdot\|_{*}$ is said to be the norm dual to the norm $\|\cdot\|$. Thus, every norm has a norm dual to it.

We now show that the mapping $x \mapsto\|x\|_{*}$ is a norm.
(a) It is easily seen that $\|x\|_{*}=0$ if $x=0$. On the other hand, if $x \neq 0$, then

$$
\|x\|_{*}=\max \left\{x^{T} y:\|y\| \leq 1\right\} \geq x^{T}\left(\frac{x}{\|x\|}\right)=\frac{\|x\|_{2}^{2}}{\|x\|}>0 .
$$

(b) From part (a), we have $\|0 \cdot x\|_{*}=0=0 \cdot\|x\|_{*}$. Next suppose $\alpha \in \mathbb{R}$ with $\alpha \neq 0$. Then

$$
\begin{aligned}
\|\alpha x\|_{*} & =\max \left\{x^{T}(\alpha y):\|y\| \leq 1\right\}, \quad(\text { set } z:=\alpha y) \\
& =\max \left\{x^{T} z: \left.1 \geq\left\|\frac{z}{\alpha}\right\|=\frac{1}{|\alpha|} \right\rvert\,\|z\|=\left\|\frac{z}{|\alpha|}\right\|\right\}, \quad\left(\text { set } w:=\frac{z}{|\alpha|}\right) \\
& =\max \left\{x^{T}(|\alpha| w): 1 \geq\|w\|\right\} \\
& =|\alpha|\|x\|_{*} .
\end{aligned}
$$

In order to establish the triangle inequality, we make use of the following elementary, but very useful, fact.

FACT: For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and sets $C \subset D \subset \mathbb{R}^{n}$, it holds:

$$
\sup _{x \in C} f(x) \leq \sup _{x \in D} f(x)
$$

That is, the supremum over a larger set must be larger. Similarly, the infimum over a larger set must be smaller.
(c) $\|x+z\|_{*}=\max \left\{x^{T} y+z^{T} y:\|y\| \leq 1\right\}$

$$
=\max \left\{x^{T} y_{1}+z^{T} y_{2}: \begin{array}{l}
\left\|y_{1}\right\| \leq 1 \\
\left\|y_{2}\right\| \leq 1
\end{array}, y_{1}=y_{2}\right\}
$$

(max over a larger set)

$$
\begin{aligned}
& =\leq \max \left\{x^{T} y_{1}+z^{T} y_{2}:\left\|y_{1}\right\| \leq 1,\left\|y_{2}\right\| \leq 1\right\} \\
& =\|x\|_{*}+\|z\|_{*}
\end{aligned}
$$

FACTS:

(i) $x^{T} y \leq\|x\|\|y\|_{*}$ (apply definition)
(ii) $\left(\|x\|_{p}\right)_{*}=\|x\|_{q}$ where $\frac{1}{p}+\frac{1}{q}=1,1 \leq p \leq \infty$
(iii) Hölder's Inequality: $\left|x^{T} y\right| \leq\|x\|_{p}\|y\|_{q}$

$$
\frac{1}{p}+\frac{1}{q}=1
$$

(iv) Cauchy-Schwartz Inequality:

$$
\left|x^{T} y\right| \leq\|x\|_{2}\|y\|_{2}
$$

1.4. Operator Norms. For the a matrix $A \in \mathbb{R}^{m \times n}$, the p-operator norm is given by

$$
\|A\|_{p}:=\max \left\{\|A x\|_{p}:\|x\|_{p} \leq 1\right\}
$$

Example: $\|A\|_{2}=\max \left\{\|A x\|_{2}:\|x\|_{2} \leq 1\right\}$

$$
\|A\|_{\infty}=\max \left\{\|A x\|_{\infty}:\|x\|_{\infty} \leq 1\right\}
$$

$$
=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right|, \text { max row form }
$$

$$
\|A\|_{1}=\max \left\{\|A x\|_{1}:\|x\|_{1} \leq 1\right\}
$$

$$
=\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|a_{i j}\right|, \text { max column sum }
$$

FACT: $\|A x\|_{p} \leq\|A\|_{p}\|x\|_{p}$.
(a) $\|A\| \geq 0$ with equality iff $A \equiv 0$.
(b) $\|\alpha A\|=\max \{\|\alpha A x\|:\|x\| \leq 1\}$

$$
=\max \{|\alpha|\|A x\|:\|x\| \leq 1\}=|\alpha|\|A\|
$$

(c) $\|A+B\|=\max \{\|A x+B x\|:\|x\| \leq 1\} \leq \max \{\|A x\|+\|B x\|:\|x\| \leq 1\}$
$=\max \left\{\left\|A x_{1}\right\|+\left\|B x_{2}\right\|: x_{1}=x_{2},\left\|x_{1}\right\| \leq 1,\left\|x_{2}\right\| \leq 1\right\}$
$\leq \max \left\{\left\|A x_{1}\right\|+\left\|B x_{2}\right\|:\left\|x_{1}\right\| \leq 1,\left\|x_{2}\right\| \leq 1\right\}$
$=\|A\|+\|B\|$
1.4.1. Condition number. The condition number of a matrix $A \in \mathbb{R}^{n \times n}$ is defined by

$$
\kappa(A):=\left\{\begin{array}{cl}
\|A\|\left\|A^{-1}\right\| & \text { if } A^{-1} \text { exists } \\
\infty & \text { otherwise }
\end{array}\right.
$$

FACT: [Error estimates in the solution of linear equations] If $A x_{1}=b$ and $A x_{2}=b+e$, then

$$
\frac{\left\|x_{1}-x_{2}\right\|}{\left\|x_{1}\right\|} \leq \kappa(A) \frac{\|e\|}{\|b\|}
$$

Proof. $\|b\|=\left\|A x_{1}\right\| \leq\|A\|\left\|x_{1}\right\| \Rightarrow \frac{1}{\left\|x_{1}\right\|} \leq \frac{\|A\|}{\|b\|}$, so

$$
\frac{\left\|x_{1}-x_{2}\right\|}{\left\|x_{1}\right\|} \leq \frac{\|A\|}{\|b\|} \| A^{-1}\left(A\left(x_{1}-x_{2}\right)\|\leq\| A\| \| A^{-1}\left\|\frac{1}{\|b\|}\right\| A x_{1}-A x_{2} \|\right.
$$

1.5. The Frobenius Norm. There is one further norm for matrices that is very useful. It is called the Frobenius norm.

Observe that we can identify $\mathbb{R}^{m \times n}$ with $\mathbb{R}^{(m n)}$ by simply stacking the columns of a matrix one on top of the other to create a very long vector in $\mathbb{R}^{(m n)}$. The Frobenius norm is then the 2 -norm of this vector. It can be verified that

$$
\|A\|_{F}^{2}=\operatorname{tr} A^{2}
$$

1.6. Review of Differentiation.

1) Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and let $x, d \in \mathbb{R}^{n}$. If the limit

$$
\lim _{t \downarrow 0} \frac{F(x+t d)-F(x)}{t}=: F^{\prime}(x ; d)
$$

exists, it is called the directional derivative of F at x in the direction d. If this limit exists for all $d \in \mathbb{R}^{n}$ and is linear in the d argument, meaning

$$
F^{\prime}\left(x ; \alpha d_{1}+\beta d_{2}\right)=\alpha F^{\prime}\left(x ; d_{1}\right)+\beta F^{\prime}\left(x ; d_{2}\right)
$$

then F is said to be Gâteaux differentiable at x.
2) Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and let $x \in \mathbb{R}^{n}$. If there exists a matrix $J \in \mathbb{R}^{m \times n}$ such that

$$
\lim _{\|y-x\| \rightarrow 0} \frac{\|F(y)-(F(x)+J(y-x))\|}{\|y-x\|}=0
$$

then F is said to be Fréchet differentiable at x and J is said to be its Fréchet derivative. We denote J by $J=F^{\prime}(x)$.

FACTS:

(i) If $F^{\prime}(x)$ exists, it is unique.
(ii) If $F^{\prime}(x)$ exists, then $F^{\prime}(x ; d)$ exists for all d and

$$
F^{\prime}(x ; d)=F^{\prime}(x) d
$$

(iii) If $F^{\prime}(x)$ exists, then F is continuous at x.
(iv) (Matrix Representation)

Suppose $F^{\prime}(x)$ exists for all x near \bar{x} and that the mapping $x \mapsto F^{\prime}(x)$ is continuous at \bar{x}, meaning as usual

$$
\lim _{\|x-\bar{x}\| \rightarrow 0}\left\|F^{\prime}(x)-F^{\prime}(\bar{x})\right\|=0
$$

then the partial derivatives $\partial F_{i} / \partial x_{j}$ exist for each $i=1, \ldots, m, j=1, \ldots, n$ and with respect to the standard basis the linear operator $F^{\prime}(\bar{x})$ has the representation

$$
\nabla F(\bar{x})=\left[\begin{array}{cccc}
\frac{\partial F_{1}}{\partial x_{1}} & \frac{\partial F_{1}}{\partial x_{2}} & \cdots & \frac{\partial F_{1}}{\partial x_{n}} \\
\frac{\partial F_{2}}{\partial x_{1}} & \frac{\partial F_{2}}{\partial x_{2}} & \cdots & \frac{\partial F_{2}}{\partial x_{n}} \\
\vdots & & & \\
\frac{\partial F_{n}}{\partial x_{1}} & \cdots & \cdots & \frac{\partial F_{m}}{\partial x_{n}}
\end{array}\right]^{T}=\left[\frac{\partial F_{i}}{\partial x_{j}}\right]^{T}
$$

where each partial derivative is evaluated at $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)^{T}$. This matrix is called the Jacobian matrix for F at \bar{x}.

Notation: For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and the vector $f^{\prime}(x):=\left[\frac{\partial f_{1}}{\partial x_{1}}, \ldots, \frac{\partial f_{*}}{\partial x_{n}}\right]$ we write $\nabla f(x)=f^{\prime}(x)^{T}$.
(v) If $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has continuous partials $\partial F_{i} / \partial x_{i}$ on an open set $D \subset \mathbb{R}^{n}$, then F is differentiable on D. Moreover, in the standard basis the matrix representation for $F^{\prime}(x)$ is the Jacobian of F at x.
(vi) (Chain Rule) Let $F: A \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ be differentiable on the open set A and let $G: B \subset \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be differentiable on the open set B. If $F(A) \subset B$, then the composite function $G \circ F$ is differentiable on A and

$$
(G \circ F)^{\prime}\left(x_{0}\right)=G^{\prime}\left(F\left(x_{0}\right)\right) \circ F^{\prime}\left(x_{0}\right) .
$$

REmARKs: Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be differentiable. If $L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ denotes the set of linear maps from \mathbb{R}^{n} to \mathbb{R}^{m}, then

$$
F^{\prime}: \mathbb{R}^{n} \rightarrow L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)
$$

(v) The Mean Value Theorem:
(a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}$ there exists z between x and y such that

$$
f(y)=f(x)+f^{\prime}(z)(y-x) .
$$

(b) If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}$ there is a $z \in[x, y]$ such that

$$
f(y)=f(x)+\nabla f(z)^{T}(y-x) .
$$

(c) If $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ continuously differentiable, then for every $x, y \in \mathbb{R}$

$$
\|F(y)-F(x)\| \leq\left[\sup _{z \in[x, y]}\left\|F^{\prime}(z)\right\|\right]\|x-y\|
$$

Proof of (b): Set $\varphi(t)=f(x+t(y-x))$. Then, by the chain rule, $\varphi^{\prime}(t)=\nabla f(x+t(y-$ $x))^{T}(y-x)$ so that φ is differentiable. Moreover, $\varphi: \mathbb{R} \rightarrow \mathbb{R}$. Thus, by (a), there exists $\bar{t} \in(0,1)$ such that

$$
\varphi(1)=\varphi(0)+\varphi^{\prime}(\bar{t})(1-0),
$$

or equivalently,

$$
f(y)=f(x)+\nabla f(z)^{T}(y-x)
$$

where $z=x+\bar{t}(y-x)$.
1.6.1. The Implicit Function Theorem. Let $F: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$ be continuously differentiable on an open set $E \subset \mathbb{R}^{n+m}$. Further suppose that there is a point $(\bar{x}, \bar{y}) \in \mathbb{R}^{n+m}$ at which $F(\bar{x}, \bar{y})=0$. If $\nabla_{x} F(\bar{x}, \bar{y})$ is invertable, then there exist open sets $U \subset \mathbb{R}^{n+m}$ and $W \subset \mathbb{R}^{m}$, with $(\bar{x}, \bar{y}) \in U$ and $\bar{y} \in W$, having the following property:
To every $y \in W$ corresponds a unique $x \in \mathbb{R}^{n}$ such that

$$
(x, y) \in U \quad \text { and } \quad F(x, y)=0
$$

Moreover, if x is defined to be $G(y)$, then G is a continuously differentiable mapping of W into \mathbb{R}^{n} satisfying

$$
G(\bar{y})=\bar{x}, \quad F(G(y), y)=0 \forall y \in W, \quad \text { and } \quad G^{\prime}(\bar{y})=-\left(\nabla_{x} F(\bar{x}, \bar{y})\right)^{-1} \nabla_{y} F(\bar{x}, \bar{y}) .
$$

1.6.2. Some facts about the Second Derivative. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function. Then ∇f is a mapping from \mathbb{R}^{n} to \mathbb{R}^{n}. The second derivative of f is by definition the first derivative of the gradient mapping $x \mapsto \nabla f(x)$, if it exists, that is the second derivative of f at x is the mapping $\nabla^{2} f(x):=\nabla[\nabla f](x)$.
(i) If $\nabla^{2} f(x)$ exists and is continuous at x, then with respect to the standard basis, it is given as the matrix of second partial derivatives:

$$
\nabla^{2} f(x)=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)\right]
$$

Moreover, $\frac{\partial f}{\partial x_{i} \partial x_{j}}=\frac{\partial f}{\partial x_{j} \partial x_{i}}$ for all $i, j=1, \ldots, n$. The matrix $\nabla^{2} f\left(x_{2}\right)$ is called the Hessian of f at x. It is a symmetric matrix.
(ii) Second-Order Taylor Theorem:

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable on an open set containing the interval $[x, y]$, then there is a point $z \in[x, y]$ such that

$$
f(y)=f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x) .
$$

We also obtain

$$
\|f(y)-(f(x)+\nabla f(x)(y-x))\| \leq \frac{1}{2}\|x-y\|^{2} \sup _{z \in[x, y]}\left\|\nabla^{2} f(z)\right\|
$$

1.6.3. Integration. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable and set $\varphi(t):=f(x+t(y-x))$ so that $\varphi: \mathbb{R} \rightarrow \mathbb{R}$. Then

$$
\begin{aligned}
f(y)-f(x) & =\varphi(1)-\varphi(0)=\int_{0}^{1} \varphi^{\prime}(t) d t \\
& =\int_{0}^{1} \nabla f(x+t(y-x))^{T}(y-x) d t
\end{aligned}
$$

Similarly, for a mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we have

$$
\begin{aligned}
F(y)-F(x) & =\left[\begin{array}{c}
\int_{0}^{1} \nabla F_{1}(x+t(y-x))^{T}(y-x) d t \\
\vdots \\
\int_{0}^{1} \nabla F_{m}(x+t(y-x))^{T}(y-x) d t
\end{array}\right] \\
& =\int_{0}^{1} \nabla F(x+t(y-x))(y-x) d t
\end{aligned}
$$

1.6.4. More Facts about Continuity. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

- We say that F is continuous relative to a set $D \subset \mathbb{R}^{n}$ if for every $x \in D$ and $\epsilon>0$ there exists a $\delta(x, \epsilon)>0$ such that

$$
\|F(y)-F(x)\| \leq \epsilon \text { whenever }\|y-x\| \leq \delta(x, \epsilon) \quad \text { and } \quad y \in D
$$

- We say that F is uniformly continuous on $D \subset \mathbb{R}^{n}$ if for every $\epsilon>0$ there exists $\delta(\epsilon)>0$ such that

$$
\|F(y)-F(x)\| \leq \epsilon \text { whenever }\|y-x\| \leq \delta(\epsilon) \quad \text { and } \quad x, y \in D
$$

FACT: If F is continuous on a compact set $D \subset \mathbb{R}^{n}$, then F is uniformly continuous on D.

- We say that F is Lipschitz continuous on a set $D \subset \mathbb{R}^{n}$ if there exists a constant $K \geq 0$ such that

$$
\|F(x)-F(y)\| \leq K\|x-y\|
$$

for all $x, y \in D$.
FACT: Lipschitz continuity implies uniform continuity.

Proof. Set $\delta=\epsilon / K$.

Examples:

(1) $4(x)=x^{-1}$ is continuous on $(0,1)$, but it is not uniformly continuous on $(0,1)$.
(2) $f(x)=\sqrt{x}$ is uniformly continuous on $[0,1]$, but it is not Lipschitz continuous on $[0,1]$.

FACT: If ∇F exists and is continuous on a compact convex set $D \subset \mathbb{R}^{m}$, then F is Lipschitz continuous on D.

Proof. Mean value Theorem:

$$
\|F(x)-F(y)\| \leq\left(\sup _{z \in[x, y]}\|\nabla F(z)\|\right)\|x-y\|
$$

Apply Weierstrass Compactness Theorem to ∇F.
Lipschitz continuity is almost but not quite a differentiability hypothesis. The Lipschitz constant provides bounds on rate of change.

1.6.5. Quadratic Bound Lemma. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be such that ∇F is Lipschitz continuous on the convex set $D \subset \mathbb{R}^{n}$. Then

$$
\|F(y)-(F(x)+\nabla F(x)(y-x))\| \leq \frac{K}{2}\|y-x\|^{2}
$$

for all $x, y \in D$ where K is a Lipschitz constant for ∇F on D.

Proof. $F(y)-F(x)-\nabla F(x)(y-x)=\int_{0}^{1} \nabla F(x+t(y-x))(y-x) d t-\nabla F(x)(y-x)$

$$
=\int_{0}^{1}[\nabla F(x+t(y-x))-\nabla F(x)](y-x) d t
$$

$$
\begin{aligned}
\|F(y)-(F(x)+\nabla F(x)(y-x))\| & =\left\|\int_{0}^{1}[\nabla F(x+t(y-x))-\nabla F(x)](y-x) d t\right\| \\
& \leq \int_{0}^{1} \|(\nabla F(x+t(y-x)-\nabla F(x))(y-x) \| d t \\
& \leq \int_{0}^{1}\|\nabla F(x+t(y-x))-\nabla F(x)\|\|y-x\| d t \\
& \leq \int_{0}^{1} K t\|y-x\|^{2} d t \\
& =\frac{K}{2}\|y-x\|^{2} .
\end{aligned}
$$

1.6.6. Some Facts about Symmetric Matrices. Let $H \in \mathbb{R}^{n \times n}$ be symmetric, i.e. $H^{T}=H$
(1) There exists an orthonormal basis of eigen-vectors for H, i.e. if $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ are the n eigenvalues of H (not necessarily distinct), then there exist vectors q_{1}, \ldots, q_{n} such that $\lambda_{i} q_{i}=H q_{i} i=1, \ldots, n$ with $q_{i}^{T} q_{j}=\delta_{i j}$. Equivalently, there exists an orthogonal transformation $Q=\left[q_{1}, \ldots, q_{n}\right]\left(Q^{T} Q=I\right)$ such that

$$
H=Q \Lambda Q^{T}
$$

where $\Lambda=\operatorname{diag}\left[\lambda_{1}, \ldots, \lambda_{n}\right]$.
(2) $H \in \mathbb{R}^{n \times n}$ is positive semi-definite, i.e.

$$
x^{T} H x \geq 0 \text { for all } x \in \mathbb{R}^{n},
$$

if and only if all the eigenvalues of H are nonnegative.

