
1. Review of Multi-variable Calculus

Throughout this course we will be working with the vector space R
n. For this reason we

begin with a brief review of its metric space properties

Definition 1.1 (Vector Norm). A function ν : R
n → R is a vector norm on R

n if the
following three properties hold.

i. (Positivity): ν(x) ≥ 0 ∀ x ∈ R
n with equality iff x = 0.

ii. (Homogeneity): ν(αx) = |α|ν(x) ∀ x ∈ R
n α ∈ R

iii. (Triangle inequality): ν(x+ y) ≤ ν(x) + ν(y) ∀ x, y ∈ R
n

We usually denote ν(x) by ‖x‖. Norms are convex functions.

Example: lp norms

‖x‖p := (
∑n

i=1 |xi|p)
1

p , 1 ≤ p < ∞
‖x‖∞ = maxi=1,...,n |xi|

– P = 1, 2,∞ are most important cases

‖x‖1 = 1 ‖x‖2 = 1 ‖x‖∞ = 1

– The unit ball of a norm is a convex set.

1.1. Equivalence of Norms. All norms on R
n are comparable, meaning that for any norms

‖ · ‖p and ‖ · ‖q, there exist constants αp,q and βp,q satisfying

αp,q‖x‖q ≤ ‖x‖p ≤ βp,q‖x‖q for all x ∈ R
n.

Here are some values of the constants αp,q and βp,q.
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1.2. Continuity and the Weierstrass Theorem.

– A mapping F : Rn → R
m is said to be continuous at the point x if

lim
‖x−x‖→0

‖F (x)− F (x)‖ = 0.

F is said to be continuous on a set D ⊂ R
n if F is continuous at every point of D.

– A subset D ⊂ R
n is said to be open if for every x ∈ D there exists ǫ > 0 such that

Bǫ(x) ⊂ D where
Bǫ(x) = {y ∈ R

n : ‖y − x‖ < ǫ}.
– A subset D ⊂ R

n is said to be closed if every point x satisfying

Bǫ(x) ∩D 6= ∅
for all ǫ > 0, must be a point in D.

– A subset D ⊂ R
n is said to be bounded if there exists m > 0 such that

‖x‖ ≤ m for all x ∈ D.

(Notice: the choice of the norm is irrelevant in the definition.)
– A subset D ⊂ R

n is said to be compact, if it is closed and bounded.
– A point x ∈ R

n is said to be a cluster point of the set D ⊂ R
n if

(Bǫ(x) \ {x}) ∩D 6= ∅
for every ǫ > 0.

For example, for the set D := (0, 1] ∪ {2}, the set of cluster points is the set [0, 1].

Theorem 1.1 (Weierstrass Compactness Theorem). A set D ⊂ R
n is compact if and only

if every infinite subset of D has a cluster point in D.

Next, we recall the notions of the supremum and infimum of a function. To this end,
consider a function f : Rn → R and a set D ⊂ R

n. Define the set of upper bounds

U = {r ∈ R : f(x) ≤ r for all x ∈ D}.
One can prove that U is a closed subinterval of the real line, namely we may write U =
[α,+∞) for some α. (Note α can be finite or infinite.) The value α is called the supremum
of f on D. Intuitively this quantity is the “least upper bound” of f on D. Note that for any
r > α, there cannot exist a point x ∈ D satisfying r = f(x) (Why?). On the other hand,
when there exists some point x̄ in D satisfying α = f(x̄), we call α the maximal value of f
on D, and we say that the maximum of f on D is attained at x̄. Moreover, this point x̄ is
called a maximizer of f on D.
The definition of the infimum of f onD as the “greatest lower bound” is entirely analogous.

Namely the set of lower bounds

L = {r ∈ R : f(x) ≥ r for all x ∈ D}
can be shown to be an interval (−∞, β] for some β. This value β is called the infimum of f
on D. Minimal values, minimizers, and attainment of the minimum are defined analogously.
The following theorem, which we will use extensively, establishes a connection between con-
tinuous functions on compact sets and attainment of the minimum and the maximum.
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Theorem 1.2 (Weierstrass Extreme Value Theorem). Every continuous function on a com-
pact set attains its extreme values (maximum and minimum) on that set.

1.3. Dual Norms. Let ‖ · ‖ be a given norm on R
n with associated closed unit ball B. For

each x ∈ R
n define

‖x‖∗ := max
y∈Rn

{xTy : ‖y‖ ≤ 1}.

Since the transformation y 7→ xTy is continuous (in fact, linear) and B is compact (can
you prove this?), Weierstrass’s Theorem says that the maximum in the definition of ‖x‖∗
is attained. Thus, in particular, the function x → ‖x‖∗ is well defined and finite-valued.
Indeed, the mapping defines a norm on R

n. This norm ‖ · ‖∗ is said to be the norm dual to
the norm ‖ · ‖. Thus, every norm has a norm dual to it.
We now show that the mapping x 7→ ‖x‖∗ is a norm.

(a) It is easily seen that ‖x‖∗ = 0 if x = 0. On the other hand, if x 6= 0, then

‖x‖∗ = max{xTy : ‖y‖ ≤ 1} ≥ xT

(

x

‖x‖

)

=
‖x‖22
‖x‖ > 0.

(b) From part (a), we have ‖0 · x‖∗ = 0 = 0 · ‖x‖∗. Next suppose α ∈ R with α 6= 0.
Then

‖αx‖∗ = max{xT (αy) : ‖y‖ ≤ 1}, (set z := αy)

= max
{

xT z : 1 ≥
∥

∥

z
α

∥

∥ = 1
|α|
‖z‖ =

∥

∥

∥

z
|α|

∥

∥

∥

}

,
(

set w := z
|α|

)

= max{xT (|α|w) : 1 ≥ ‖w‖}
= |α| ‖x‖∗.

In order to establish the triangle inequality, we make use of the following elementary, but
very useful, fact.

Fact: For a function f : Rn → R and sets C ⊂ D ⊂ R
n, it holds:

sup
x∈C

f(x) ≤ sup
x∈D

f(x).

That is, the supremum over a larger set must be larger. Similarly, the infimum over a larger
set must be smaller.

(c) ‖x+ z‖∗ = max{xTy + zT y : ‖y‖ ≤ 1}
= max

{

xTy1 + zT y2 :
‖y1‖ ≤ 1
‖y2‖ ≤ 1

, y1 = y2

}

(max over a larger set)
= ≤ max{xTy1 + zT y2 : ‖y1‖ ≤ 1, ‖y2‖ ≤ 1}
= ‖x‖∗ + ‖z‖∗

Facts:

(i) xT y ≤ ‖x‖ ‖y‖∗ (apply definition)
(ii) (‖x‖p)∗ = ‖x‖q where 1

p
+ 1

q
= 1, 1 ≤ p ≤ ∞
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(iii) Hölder’s Inequality: |xTy| ≤ ‖x‖p‖y‖q
1

p
+

1

q
= 1

(iv) Cauchy-Schwartz Inequality:

|xT y| ≤ ‖x‖2‖y‖2

1.4. Operator Norms. For the a matrix A ∈ R
m×n, the p-operator norm is given by

‖A‖p := max{‖Ax‖p : ‖x‖p ≤ 1}

Example: ‖A‖2 = max{‖Ax‖2 : ‖x‖2 ≤ 1}
‖A‖∞ = max{‖Ax‖∞ : ‖x‖∞ ≤ 1}

= max
1≤i≤m

∑n

j=1 |aij|,max row form

‖A‖1 = max{‖Ax‖1 : ‖x‖1 ≤ 1}
= max

1≤j≤n

∑m

i=1 |aij |,max column sum

Fact: ‖Ax‖p ≤ ‖A‖p‖x‖p.
(a) ‖A‖ ≥ 0 with equality iff A ≡ 0.
(b) ‖αA‖ = max{‖αAx‖ : ‖x‖ ≤ 1}

= max{|α| ‖Ax‖ : ‖x‖ ≤ 1} = |α| ‖A‖
(c) ‖A+B‖ = max{‖Ax+Bx‖ : ‖x‖ ≤ 1} ≤ max{‖Ax‖+ ‖Bx‖ : ‖x‖ ≤ 1}

= max{‖Ax1‖+ ‖Bx2‖ : x1 = x2, ‖x1‖ ≤ 1, ‖x2‖ ≤ 1}
≤ max{‖Ax1‖+ ‖Bx2‖ : ‖x1‖ ≤ 1, ‖x2‖ ≤ 1}
= ‖A‖+ ‖B‖

1.4.1. Condition number. The condition number of a matrix A ∈ R
n×n is defined by

κ(A) :=

{

‖A‖ ‖A−1‖ if A−1 exists
∞ otherwise

Fact: [Error estimates in the solution of linear equations] If Ax1 = b and Ax2 = b+ e, then

‖x1 − x2‖
‖x1‖

≤ κ(A)
‖e‖
‖b‖

Proof. ‖b‖ = ‖Ax1‖ ≤ ‖A‖ ‖x1‖ ⇒ 1
‖x1‖

≤ ‖A‖
‖b‖

, so

‖x1 − x2‖
‖x1‖

≤ ‖A‖
‖b‖ ‖A−1(A(x1 − x2)‖ ≤ ‖A‖ ‖A−1‖ 1

‖b‖‖Ax1 − Ax2‖

�
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1.5. The Frobenius Norm. There is one further norm for matrices that is very useful. It
is called the Frobenius norm.
Observe that we can identify R

m×n with R
(mn) by simply stacking the columns of a matrix

one on top of the other to create a very long vector in R
(mn). The Frobenius norm is then

the 2-norm of this vector. It can be verified that

‖A‖2F = trA2.

1.6. Review of Differentiation.

1) Let F : Rn → R
m and let x, d ∈ R

n. If the limit

lim
t↓0

F (x+ td)− F (x)

t
=: F ′(x; d)

exists, it is called the directional derivative of F at x in the direction d. If this limit
exists for all d ∈ R

n and is linear in the d argument, meaning

F ′(x;αd1 + βd2) = αF ′(x; d1) + βF ′(x; d2),

then F is said to be Gâteaux differentiable at x.
2) Let F : Rn → R

m and let x ∈ R
n. If there exists a matrix J ∈ R

m×n such that

lim
‖y−x‖→0

‖F (y)− (F (x) + J(y − x))‖
‖y − x‖ = 0,

then F is said to be Fréchet differentiable at x and J is said to be its Fréchet derivative.
We denote J by J = F ′(x).

Facts:

(i) If F ′(x) exists, it is unique.
(ii) If F ′(x) exists, then F ′(x; d) exists for all d and

F ′(x; d) = F ′(x)d.

(iii) If F ′(x) exists, then F is continuous at x.
(iv) (Matrix Representation)

Suppose F ′(x) exists for all x near x and that the mapping x 7→ F ′(x) is continuous
at x, meaning as usual

lim
‖x−x‖→0

‖F ′(x)− F ′(x)‖ = 0,

then the partial derivatives ∂Fi/∂xj exist for each i = 1, . . . , m, j = 1, . . . , n and
with respect to the standard basis the linear operator F ′(x) has the representation

∇F (x) =













∂F1

∂x1

∂F1

∂x2

· · · ∂F1

∂xn

∂F2

∂x1

∂F2

∂x2

· · · ∂F2

∂xn

...
∂Fn

∂x1

· · · · · · ∂Fm

∂xn













T

=

[

∂Fi

∂xj

]T

where each partial derivative is evaluated at x = (x1, . . . , xn)
T . This matrix is called

the Jacobian matrix for F at x.
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Notation: For a function f : Rn → R and the vector f ′(x) :=
[

∂f1
∂x1

, . . . , ∂f∗
∂xn

]

we write

∇f(x) = f ′(x)T .

(v) If F : Rn → R
m has continuous partials ∂Fi/∂xi on an open set D ⊂ R

n, then F
is differentiable on D. Moreover, in the standard basis the matrix representation for
F ′(x) is the Jacobian of F at x.

(vi) (Chain Rule) Let F : A ⊂ R
m → R

k be differentiable on the open set A and let
G : B ⊂ R

k → R
n be differentiable on the open set B. If F (A) ⊂ B, then the

composite function G ◦ F is differentiable on A and

(G ◦ F )′(x0) = G′(F (x0)) ◦ F ′(x0).

Remarks: Let F : Rn → R
m be differentiable. If L(Rn,Rm) denotes the set of linear maps

from R
n to R

m, then
F ′ : Rn → L(Rn,Rm).

(v) The Mean Value Theorem:
(a) If f : R → R is differentiable, then for every x, y ∈ R there exists z between x

and y such that

f(y) = f(x) + f ′(z)(y − x).

(b) If f : Rn → R is differentiable, then for every x, y ∈ R there is a z ∈ [x, y] such
that

f(y) = f(x) +∇f(z)T (y − x).

(c) If F : Rn → R
m continuously differentiable, then for every x, y ∈ R

‖F (y)− F (x)‖ ≤ [ sup
z∈[x,y]

‖F ′(z)‖]‖x− y‖.

Proof of (b): Set ϕ(t) = f(x+ t(y − x)). Then, by the chain rule, ϕ′(t) = ∇f(x+ t(y −
x))T (y − x) so that ϕ is differentiable. Moreover, ϕ : R → R. Thus, by (a), there exists
t ∈ (0, 1) such that

ϕ(1) = ϕ(0) + ϕ′(t)(1− 0),

or equivalently,
f(y) = f(x) +∇f(z)T (y − x)

where z = x+ t(y − x). �

1.6.1. The Implicit Function Theorem. Let F : R
n+m → R

n be continuously differentiable
on an open set E ⊂ R

n+m. Further suppose that there is a point (x̄, ȳ) ∈ R
n+m at which

F (x̄, ȳ) = 0. If ∇xF (x̄, ȳ) is invertable, then there exist open sets U ⊂ R
n+m and W ⊂ R

m,
with (x̄, ȳ) ∈ U and ȳ ∈ W , having the following property:
To every y ∈ W corresponds a unique x ∈ R

n such that

(x, y) ∈ U and F (x, y) = 0 .

Moreover, if x is defined to be G(y), then G is a continuously differentiable mapping of W
into R

n satisfying

G(ȳ) = x̄, F (G(y), y) = 0 ∀ y ∈ W, and G′(ȳ) = −(∇xF (x̄, ȳ))−1∇yF (x̄, ȳ) .



7

1.6.2. Some facts about the Second Derivative. Let f : Rn → R be a differentiable function.
Then ∇f is a mapping from R

n to R
n. The second derivative of f is by definition the first

derivative of the gradient mapping x 7→ ∇f(x), if it exists, that is the second derivative of
f at x is the mapping ∇2f(x) := ∇[∇f ](x).

(i) If ∇2f(x) exists and is continuous at x, then with respect to the standard basis, it is
given as the matrix of second partial derivatives:

∇2f(x) =

[

∂2f

∂xi∂xj

(x)

]

Moreover, ∂f

∂xi∂xj
= ∂f

∂xj∂xi
for all i, j = 1, . . . , n. The matrix ∇2f(x2) is called the

Hessian of f at x. It is a symmetric matrix.
(ii) Second-Order Taylor Theorem:

If f : Rn → R is twice continuously differentiable on an open set containing the
interval [x, y], then there is a point z ∈ [x, y] such that

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(z)(y − x).

We also obtain

‖f(y)− (f(x) +∇f(x)(y − x))‖ ≤ 1

2
‖x− y‖2 sup

z∈[x,y]

‖∇2f(z)‖.

1.6.3. Integration. Let f : Rn → R be differentiable and set ϕ(t) := f(x+ t(y − x)) so that
ϕ : R → R. Then

f(y)− f(x) = ϕ(1)− ϕ(0) =
∫ 1

0
ϕ′(t) dt

=
∫ 1

0
∇f(x+ t(y − x))T (y − x) dt

Similarly, for a mapping F : Rn → R
m, we have

F (y)− F (x) =







∫ 1

0
∇F1(x+ t(y − x))T (y − x)dt

...
∫ 1

0
∇Fm(x+ t(y − x))T (y − x)dt







=
∫ 1

0
∇F (x+ t(y − x))(y − x)dt

1.6.4. More Facts about Continuity. Let F : Rn → R
m.

– We say that F is continuous relative to a set D ⊂ R
n if for every x ∈ D and ǫ > 0

there exists a δ(x, ǫ) > 0 such that

‖F (y)− F (x)‖ ≤ ǫ whenever ‖y − x‖ ≤ δ(x, ǫ) and y ∈ D.

– We say that F is uniformly continuous on D ⊂ R
n if for every ǫ > 0 there exists

δ(ǫ) > 0 such that

‖F (y)− F (x)‖ ≤ ǫ whenever ‖y − x‖ ≤ δ(ǫ) and x, y ∈ D.

Fact: If F is continuous on a compact set D ⊂ R
n, then F is uniformly continuous on D.
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– We say that F is Lipschitz continuous on a set D ⊂ R
n if there exists a constant

K ≥ 0 such that

‖F (x)− F (y)‖ ≤ K‖x− y‖
for all x, y ∈ D.

Fact: Lipschitz continuity implies uniform continuity.

Proof. Set δ = ǫ/K. �

Examples:

(1) 4(x) = x−1 is continuous on (0, 1), but it is not uniformly continuous on (0, 1).
(2) f(x) =

√
x is uniformly continuous on [0, 1], but it is not Lipschitz continuous on

[0, 1].

Fact: If ∇F exists and is continuous on a compact convex set D ⊂ R
m, then F is Lipschitz

continuous on D.

Proof. Mean value Theorem:

‖F (x)− F (y)‖ ≤ ( sup
z∈[x,y]

‖∇F (z)‖)‖x− y‖.

Apply Weierstrass Compactness Theorem to ∇F . �

Lipschitz continuity is almost but not quite a differentiability hypothesis. The Lipschitz
constant provides bounds on rate of change.

(-k)slope

slope k

1.6.5. Quadratic Bound Lemma. Let F : Rn → R
m be such that ∇F is Lipschitz continuous

on the convex set D ⊂ R
n. Then

‖F (y)− (F (x) +∇F (x)(y − x))‖ ≤ K

2
‖y − x‖2

for all x, y ∈ D where K is a Lipschitz constant for ∇F on D.
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Proof. F (y)− F (x)−∇F (x)(y − x) =
∫ 1

0
∇F (x+ t(y − x))(y − x)dt−∇F (x)(y − x)

=
∫ 1

0
[∇F (x+ t(y − x))−∇F (x)](y − x)dt

‖F (y)− (F (x) +∇F (x)(y − x))‖ = ‖
∫ 1

0
[∇F (x+ t(y − x))−∇F (x)](y − x)dt‖

≤
∫ 1

0
‖(∇F (x+ t(y − x)−∇F (x))(y − x)‖dt

≤
∫ 1

0
‖∇F (x+ t(y − x))−∇F (x)‖ ‖y − x‖dt

≤
∫ 1

0
Kt‖y − x‖2dt

= K
2
‖y − x‖2.

�

1.6.6. Some Facts about Symmetric Matrices. Let H ∈ R
n×n be symmetric, i.e. HT = H

(1) There exists an orthonormal basis of eigen-vectors forH , i.e. if λ1 ≥ λ2 ≥ · · · ≥ λn are
the n eigenvalues of H (not necessarily distinct), then there exist vectors q1, . . . , qn
such that λiqi = Hqi i = 1, . . . , n with qTi qj = δij . Equivalently, there exists an
orthogonal transformation Q = [q1, . . . , qn] (Q

TQ = I) such that

H = QΛQT

where Λ = diag[λ1, . . . , λn].
(2) H ∈ R

n×n is positive semi-definite, i.e.

xTHx ≥ 0 for all x ∈ R
n,

if and only if all the eigenvalues of H are nonnegative.


