Throughout this course we will be working with the vector space \mathbb{R}^n . For this reason we begin with a brief review of its metric space properties

Definition 1.1 (Vector Norm). A function $\nu : \mathbb{R}^n \to \mathbb{R}$ is a vector norm on \mathbb{R}^n if the following three properties hold.

- i. (Positivity): $\nu(x) \ge 0 \ \forall x \in \mathbb{R}^n$ with equality iff x = 0.
- ii. (Homogeneity): $\nu(\alpha x) = |\alpha|\nu(x) \ \forall \ x \in \mathbb{R}^n \ \alpha \in \mathbb{R}$
- iii. (Triangle inequality): $\nu(x+y) \le \nu(x) + \nu(y) \ \forall \ x, y \in \mathbb{R}^n$

We usually denote $\nu(x)$ by ||x||. Norms are convex functions.

EXAMPLE: l_p norms

$$\begin{aligned} \|x\|_p &:= (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}, & 1 \le p < \infty \\ \|x\|_{\infty} &= \max_{i=1,\dots,n} |x_i| \end{aligned}$$

 $-P = 1, 2, \infty$ are most important cases

– The unit ball of a norm is a convex set.

1.1. Equivalence of Norms. All norms on \mathbb{R}^n are comparable, meaning that for any norms $\|\cdot\|_p$ and $\|\cdot\|_q$, there exist constants $\alpha_{p,q}$ and $\beta_{p,q}$ satisfying

 $\alpha_{p,q} \|x\|_q \le \|x\|_p \le \beta_{p,q} \|x\|_q \qquad \text{for all } x \in \mathbb{R}^n.$

Here are some values of the constants $\alpha_{p,q}$ and $\beta_{p,q}$.

1.2. Continuity and the Weierstrass Theorem.

- A mapping $F: \mathbb{R}^n \to \mathbb{R}^m$ is said to be *continuous at the point* \overline{x} if

$$\lim_{\|x-\overline{x}\|\to 0} \|F(x) - F(\overline{x})\| = 0.$$

F is said to be *continuous on a set* $D \subset \mathbb{R}^n$ if F is continuous at every point of D.

- A subset $D \subset \mathbb{R}^n$ is said to be *open* if for every $x \in D$ there exists $\epsilon > 0$ such that $\mathbb{B}_{\epsilon}(x) \subset D$ where

$$\mathbb{B}_{\epsilon}(x) = \{ y \in \mathbb{R}^n : \|y - x\| < \epsilon \}.$$

- A subset $D \subset \mathbb{R}^n$ is said to be *closed* if every point x satisfying

$$\mathbb{B}_{\epsilon}(x) \cap D \neq \emptyset$$

for all $\epsilon > 0$, must be a point in D.

- A subset $D \subset \mathbb{R}^n$ is said to be *bounded* if there exists m > 0 such that

 $||x|| \le m$ for all $x \in D$.

- (Notice: the choice of the norm is irrelevant in the definition.)
- A subset $D \subset \mathbb{R}^n$ is said to be *compact*, if it is closed and bounded.
- A point $x \in \mathbb{R}^n$ is said to be a *cluster point* of the set $D \subset \mathbb{R}^n$ if

$$(\mathbb{B}_{\epsilon}(x) \setminus \{x\}) \cap D \neq \emptyset$$

for every $\epsilon > 0$.

For example, for the set $D := (0, 1] \cup \{2\}$, the set of cluster points is the set [0, 1].

Theorem 1.1 (Weierstrass Compactness Theorem). A set $D \subset \mathbb{R}^n$ is compact if and only if every infinite subset of D has a cluster point in D.

Next, we recall the notions of the supremum and infimum of a function. To this end, consider a function $f \colon \mathbb{R}^n \to \mathbb{R}$ and a set $D \subset \mathbb{R}^n$. Define the set of upper bounds

$$U = \{ r \in \mathbb{R} : f(x) \le r \text{ for all } x \in D \}.$$

One can prove that U is a closed subinterval of the real line, namely we may write $U = [\alpha, +\infty)$ for some α . (Note α can be finite or infinite.) The value α is called the *supremum* of f on D. Intuitively this quantity is the "least upper bound" of f on D. Note that for any $r > \alpha$, there cannot exist a point $x \in D$ satisfying r = f(x) (Why?). On the other hand, when there exists some point \bar{x} in D satisfying $\alpha = f(\bar{x})$, we call α the maximal value of f on D, and we say that the maximum of f on D is attained at \bar{x} . Moreover, this point \bar{x} is called a maximizer of f on D.

The definition of the *infimum of* f on D as the "greatest lower bound" is entirely analogous. Namely the set of lower bounds

$$L = \{ r \in \mathbb{R} : f(x) \ge r \text{ for all } x \in D \}$$

can be shown to be an interval $(-\infty, \beta]$ for some β . This value β is called the *infimum of f* on *D*. Minimal values, minimizers, and attainment of the minimum are defined analogously. The following theorem, which we will use extensively, establishes a connection between continuous functions on compact sets and attainment of the minimum and the maximum.

1.3. **Dual Norms.** Let $\|\cdot\|$ be a given norm on \mathbb{R}^n with associated closed unit ball \mathbb{B} . For each $x \in \mathbb{R}^n$ define

$$||x||_* := \max_{y \in \mathbb{R}^n} \{ x^T y : ||y|| \le 1 \}.$$

Since the transformation $y \mapsto x^T y$ is continuous (in fact, linear) and \mathbb{B} is compact (can you prove this?), Weierstrass's Theorem says that the maximum in the definition of $||x||_*$ is attained. Thus, in particular, the function $x \to ||x||_*$ is well defined and finite-valued. Indeed, the mapping defines a norm on \mathbb{R}^n . This norm $|| \cdot ||_*$ is said to be the *norm dual* to the norm $|| \cdot ||$. Thus, every norm has a norm dual to it.

We now show that the mapping $x \mapsto ||x||_*$ is a norm.

(a) It is easily seen that $||x||_* = 0$ if x = 0. On the other hand, if $x \neq 0$, then

$$||x||_* = \max\{x^T y : ||y|| \le 1\} \ge x^T \left(\frac{x}{||x||}\right) = \frac{||x||_2^2}{||x||} > 0.$$

(b) From part (a), we have $\|0 \cdot x\|_* = 0 = 0 \cdot \|x\|_*$. Next suppose $\alpha \in \mathbb{R}$ with $\alpha \neq 0$. Then

$$\begin{aligned} \|\alpha x\|_{*} &= \max\{x^{T}(\alpha y) : \|y\| \leq 1\}, \quad (\text{set } z := \alpha y) \\ &= \max\left\{x^{T} z : 1 \geq \left\|\frac{z}{\alpha}\right\| = \frac{1}{|\alpha|} \|z\| = \left\|\frac{z}{|\alpha|}\right\|\right\}, \quad \left(\text{set } w := \frac{z}{|\alpha|}\right) \\ &= \max\{x^{T}(|\alpha|w) : 1 \geq \|w\|\} \\ &= |\alpha| \|x\|_{*}. \end{aligned}$$

In order to establish the triangle inequality, we make use of the following elementary, but very useful, fact.

FACT: For a function $f : \mathbb{R}^n \to \mathbb{R}$ and sets $C \subset D \subset \mathbb{R}^n$, it holds:

$$\sup_{x \in C} f(x) \le \sup_{x \in D} f(x).$$

That is, the supremum over a larger set must be larger. Similarly, the infimum over a larger set must be smaller.

(c)
$$||x + z||_* = \max\{x^T y + z^T y : ||y|| \le 1\}$$

$$= \max\left\{x^T y_1 + z^T y_2 : \frac{||y_1|| \le 1}{||y_2|| \le 1}, y_1 = y_2\right\}$$
(max over a larger set)

$$= \le \max\{x^T y_1 + z^T y_2 : ||y_1|| \le 1, ||y_2|| \le 1\}$$

$$= ||x||_* + ||z||_*$$

FACTS:

(i)
$$x^T y \le ||x|| ||y||_*$$
 (apply definition)
(ii) $(||x||_p)_* = ||x||_q$ where $\frac{1}{p} + \frac{1}{q} = 1, 1 \le p \le \infty$

(iii) Hölder's Inequality: $|x^Ty| \leq \|x\|_p \|y\|_q$

$$\frac{1}{p} + \frac{1}{q} = 1$$

(iv) Cauchy-Schwartz Inequality:

$$|x^T y| \le ||x||_2 ||y||_2$$

1.4. **Operator Norms.** For the a matrix $A \in \mathbb{R}^{m \times n}$, the *p*-operator norm is given by

$$||A||_p := \max\{||Ax||_p : ||x||_p \le 1\}$$

EXAMPLE:
$$||A||_2 = \max\{||Ax||_2 : ||x||_2 \le 1\}$$

 $||A||_{\infty} = \max\{||Ax||_{\infty} : ||x||_{\infty} \le 1\}$
 $= \max_{1 \le i \le m} \sum_{j=1}^n |a_{ij}|, \max \text{ row form}$
 $||A||_1 = \max\{||Ax||_1 : ||x||_1 \le 1\}$
 $= \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|, \max \text{ column sum}$

FACT: $||Ax||_p \le ||A||_p ||x||_p$.

(a)
$$||A|| \ge 0$$
 with equality iff $A \equiv 0$.
(b) $||\alpha A|| = \max\{||\alpha Ax|| : ||x|| \le 1\}$
 $= \max\{|\alpha| ||Ax|| : ||x|| \le 1\} = |\alpha| ||A||$
(c) $||A + B|| = \max\{||Ax + Bx|| : ||x|| \le 1\} \le \max\{||Ax|| + ||Bx|| : ||x|| \le 1\}$
 $= \max\{||Ax_1|| + ||Bx_2|| : x_1 = x_2, ||x_1|| \le 1, ||x_2|| \le 1\}$
 $\le \max\{||Ax_1|| + ||Bx_2|| : ||x_1|| \le 1, ||x_2|| \le 1\}$
 $= ||A|| + ||B||$

1.4.1. Condition number. The condition number of a matrix $A \in \mathbb{R}^{n \times n}$ is defined by

$$\kappa(A) := \begin{cases} \|A\| \|A^{-1}\| & \text{if } A^{-1} \text{ exists} \\ \infty & \text{otherwise} \end{cases}$$

FACT: [Error estimates in the solution of linear equations] If $Ax_1 = b$ and $Ax_2 = b + e$, then

$$\frac{\|x_1 - x_2\|}{\|x_1\|} \le \kappa(A) \frac{\|e\|}{\|b\|}$$

Proof.
$$||b|| = ||Ax_1|| \le ||A|| ||x_1|| \Rightarrow \frac{1}{||x_1||} \le \frac{||A||}{||b||}$$
, so
$$\frac{||x_1 - x_2||}{||x_1||} \le \frac{||A||}{||b||} ||A^{-1}(A(x_1 - x_2))|| \le ||A|| ||A^{-1}||\frac{1}{||b||} ||Ax_1 - Ax_2||$$

4

1.5. The Frobenius Norm. There is one further norm for matrices that is very useful. It is called the Frobenius norm.

Observe that we can identify $\mathbb{R}^{m \times n}$ with $\mathbb{R}^{(mn)}$ by simply stacking the columns of a matrix one on top of the other to create a very long vector in $\mathbb{R}^{(mn)}$. The Frobenius norm is then the 2-norm of this vector. It can be verified that

$$||A||_F^2 = \operatorname{tr} A^2.$$

1.6. Review of Differentiation.

1) Let $F : \mathbb{R}^n \to \mathbb{R}^m$ and let $x, d \in \mathbb{R}^n$. If the limit

$$\lim_{t \downarrow 0} \frac{F(x+td) - F(x)}{t} =: F'(x;d)$$

exists, it is called the *directional derivative* of F at x in the direction d. If this limit exists for all $d \in \mathbb{R}^n$ and is linear in the d argument, meaning

$$F'(x;\alpha d_1 + \beta d_2) = \alpha F'(x;d_1) + \beta F'(x;d_2),$$

then F is said to be *Gâteaux differentiable* at x.

2) Let $F : \mathbb{R}^n \to \mathbb{R}^m$ and let $x \in \mathbb{R}^n$. If there exists a matrix $J \in \mathbb{R}^{m \times n}$ such that

$$\lim_{\|y-x\|\to 0} \frac{\|F(y) - (F(x) + J(y-x))\|}{\|y-x\|} = 0,$$

then F is said to be Fréchet differentiable at x and J is said to be its Fréchet derivative. We denote J by J = F'(x).

FACTS:

- (i) If F'(x) exists, it is unique.
- (ii) If F'(x) exists, then F'(x; d) exists for all d and

$$F'(x;d) = F'(x)d.$$

- (iii) If F'(x) exists, then F is continuous at x.
- (iv) (Matrix Representation)

Suppose F'(x) exists for all x near \overline{x} and that the mapping $x \mapsto F'(x)$ is continuous at \overline{x} , meaning as usual

$$\lim_{\|x-\overline{x}\|\to 0} \|F'(x) - F'(\overline{x})\| = 0,$$

then the partial derivatives $\partial F_i/\partial x_j$ exist for each $i = 1, \ldots, m, j = 1, \ldots, n$ and with respect to the standard basis the linear operator $F'(\overline{x})$ has the representation

$$\nabla F(\overline{x}) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_2}{\partial x_n} \\ \vdots & & & \\ \frac{\partial F_n}{\partial x_1} & \cdots & \cdots & \frac{\partial F_m}{\partial x_n} \end{bmatrix}^T = \begin{bmatrix} \frac{\partial F_i}{\partial x_j} \end{bmatrix}^T$$

where each partial derivative is evaluated at $\overline{x} = (\overline{x}_1, \ldots, \overline{x}_n)^T$. This matrix is called the *Jacobian matrix* for F at \overline{x} . NOTATION: For a function $f : \mathbb{R}^n \to \mathbb{R}$ and the vector $f'(x) := \left[\frac{\partial f_1}{\partial x_1}, \dots, \frac{\partial f_*}{\partial x_n}\right]$ we write $\nabla f(x) = f'(x)^T$.

- (v) If $F : \mathbb{R}^n \to \mathbb{R}^m$ has continuous partials $\partial F_i / \partial x_i$ on an open set $D \subset \mathbb{R}^n$, then F is differentiable on D. Moreover, in the standard basis the matrix representation for F'(x) is the Jacobian of F at x.
- (vi) (Chain Rule) Let $F : A \subset \mathbb{R}^m \to \mathbb{R}^k$ be differentiable on the open set A and let $G : B \subset \mathbb{R}^k \to \mathbb{R}^n$ be differentiable on the open set B. If $F(A) \subset B$, then the composite function $G \circ F$ is differentiable on A and

$$(G \circ F)'(x_0) = G'(F(x_0)) \circ F'(x_0).$$

REMARKS: Let $F : \mathbb{R}^n \to \mathbb{R}^m$ be differentiable. If $L(\mathbb{R}^n, \mathbb{R}^m)$ denotes the set of linear maps from \mathbb{R}^n to \mathbb{R}^m , then

$$F': \mathbb{R}^n \to L(\mathbb{R}^n, \mathbb{R}^m).$$

- (v) <u>The Mean Value Theorem</u>:
 - (a) If $f : \mathbb{R} \to \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}$ there exists z between x and y such that

$$f(y) = f(x) + f'(z)(y - x).$$

(b) If $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}$ there is a $z \in [x, y]$ such that

$$f(y) = f(x) + \nabla f(z)^T (y - x).$$

(c) If $F : \mathbb{R}^n \to \mathbb{R}^m$ continuously differentiable, then for every $x, y \in \mathbb{R}$

$$||F(y) - F(x)|| \le [\sup_{z \in [x,y]} ||F'(z)||] ||x - y||.$$

PROOF OF (b): Set $\varphi(t) = f(x + t(y - x))$. Then, by the chain rule, $\varphi'(t) = \nabla f(x + t(y - x))^T (y - x)$ so that φ is differentiable. Moreover, $\varphi : \mathbb{R} \to \mathbb{R}$. Thus, by (a), there exists $\overline{t} \in (0, 1)$ such that

$$\varphi(1) = \varphi(0) + \varphi'(\overline{t})(1-0),$$

or equivalently,

$$f(y) = f(x) + \nabla f(z)^T (y - x)$$

where $z = x + \overline{t}(y - x)$.

1.6.1. The Implicit Function Theorem. Let $F : \mathbb{R}^{n+m} \to \mathbb{R}^n$ be continuously differentiable on an open set $E \subset \mathbb{R}^{n+m}$. Further suppose that there is a point $(\bar{x}, \bar{y}) \in \mathbb{R}^{n+m}$ at which $F(\bar{x}, \bar{y}) = 0$. If $\nabla_x F(\bar{x}, \bar{y})$ is invertable, then there exist open sets $U \subset \mathbb{R}^{n+m}$ and $W \subset \mathbb{R}^m$, with $(\bar{x}, \bar{y}) \in U$ and $\bar{y} \in W$, having the following property: To every $y \in W$ corresponds a unique $x \in \mathbb{R}^n$ such that

 $(x, y) \in U$ and F(x, y) = 0.

Moreover, if x is defined to be G(y), then G is a continuously differentiable mapping of W into \mathbb{R}^n satisfying

$$G(\bar{y}) = \bar{x}, \quad F(G(y), y) = 0 \ \forall \ y \in W, \text{ and } G'(\bar{y}) = -(\nabla_x F(\bar{x}, \bar{y}))^{-1} \nabla_y F(\bar{x}, \bar{y}) \ .$$

1.6.2. Some facts about the Second Derivative. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Then ∇f is a mapping from \mathbb{R}^n to \mathbb{R}^n . The second derivative of f is by definition the first derivative of the gradient mapping $x \mapsto \nabla f(x)$, if it exists, that is the second derivative of f at x is the mapping $\nabla^2 f(x) := \nabla [\nabla f](x)$.

(i) If $\nabla^2 f(x)$ exists and is continuous at x, then with respect to the standard basis, it is given as the matrix of second partial derivatives:

$$\nabla^2 f(x) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right]$$

Moreover, $\frac{\partial f}{\partial x_i \partial x_j} = \frac{\partial f}{\partial x_j \partial x_i}$ for all $i, j = 1, \ldots, n$. The matrix $\nabla^2 f(x_2)$ is called the *Hessian* of f at x. It is a symmetric matrix.

(ii) Second-Order Taylor Theorem:

If $f : \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable on an open set containing the interval [x, y], then there is a point $z \in [x, y]$ such that

$$f(y) = f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}(y-x)^{T}\nabla^{2}f(z)(y-x).$$

We also obtain

$$||f(y) - (f(x) + \nabla f(x)(y - x))|| \le \frac{1}{2} ||x - y||^2 \sup_{z \in [x,y]} ||\nabla^2 f(z)||.$$

1.6.3. Integration. Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable and set $\varphi(t) := f(x + t(y - x))$ so that $\varphi : \mathbb{R} \to \mathbb{R}$. Then

$$\begin{array}{rcl} f(y) - f(x) &=& \varphi(1) - \varphi(0) = \int_0^1 \varphi'(t) \, dt \\ &=& \int_0^1 \nabla f(x + t(y - x))^T (y - x) \, dt \end{array}$$

Similarly, for a mapping $F : \mathbb{R}^n \to \mathbb{R}^m$, we have

$$F(y) - F(x) = \begin{bmatrix} \int_0^1 \nabla F_1(x + t(y - x))^T (y - x) dt \\ \vdots \\ \int_0^1 \nabla F_m(x + t(y - x))^T (y - x) dt \end{bmatrix}$$

=
$$\int_0^1 \nabla F(x + t(y - x)) (y - x) dt$$

1.6.4. More Facts about Continuity. Let $F : \mathbb{R}^n \to \mathbb{R}^m$.

- We say that F is continuous relative to a set $D \subset \mathbb{R}^n$ if for every $x \in D$ and $\epsilon > 0$ there exists a $\delta(x, \epsilon) > 0$ such that

$$||F(y) - F(x)|| \le \epsilon$$
 whenever $||y - x|| \le \delta(x, \epsilon)$ and $y \in D$.

- We say that F is uniformly continuous on $D \subset \mathbb{R}^n$ if for every $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that

$$||F(y) - F(x)|| \le \epsilon$$
 whenever $||y - x|| \le \delta(\epsilon)$ and $x, y \in D$

FACT: If F is continuous on a compact set $D \subset \mathbb{R}^n$, then F is uniformly continuous on D.

- We say that F is Lipschitz continuous on a set $D \subset \mathbb{R}^n$ if there exists a constant K > 0 such that

$$||F(x) - F(y)|| \le K||x - y||$$

for all $x, y \in D$.

FACT: Lipschitz continuity implies uniform continuity.

Proof. Set
$$\delta = \epsilon/K$$
.

EXAMPLES:

- (1) $4(x) = x^{-1}$ is continuous on (0, 1), but it is not uniformly continuous on (0, 1).
- (2) $f(x) = \sqrt{x}$ is uniformly continuous on [0, 1], but it is not Lipschitz continuous on [0, 1].

FACT: If ∇F exists and is continuous on a compact convex set $D \subset \mathbb{R}^m$, then F is Lipschitz continuous on D.

Proof. Mean value Theorem:

$$||F(x) - F(y)|| \le (\sup_{z \in [x,y]} ||\nabla F(z)||) ||x - y||.$$

Apply Weierstrass Compactness Theorem to ∇F .

Lipschitz continuity is almost but not quite a differentiability hypothesis. The Lipschitz constant provides bounds on rate of change.

$$||F(y) - (F(x) + \nabla F(x)(y - x))|| \le \frac{K}{2} ||y - x||^2$$

for all $x, y \in D$ where K is a Lipschitz constant for ∇F on D.

$$\begin{array}{rcl} Proof. & F(y) - F(x) - \nabla F(x)(y-x) &=& \int_{0}^{1} \nabla F(x+t(y-x))(y-x)dt - \nabla F(x)(y-x) \\ &=& \int_{0}^{1} [\nabla F(x+t(y-x)) - \nabla F(x)](y-x)dt \\ \|F(y) - (F(x) + \nabla F(x)(y-x))\| &=& \|\int_{0}^{1} [\nabla F(x+t(y-x)) - \nabla F(x)](y-x)dt\| \\ &\leq& \int_{0}^{1} \|(\nabla F(x+t(y-x)) - \nabla F(x))(y-x)\|dt \\ &\leq& \int_{0}^{1} \|\nabla F(x+t(y-x)) - \nabla F(x)\| \|y-x\|dt \\ &\leq& \int_{0}^{1} Kt\|y-x\|^{2}dt \\ &=& \frac{K}{2} \|y-x\|^{2}. \end{array}$$

- 1.6.6. Some Facts about Symmetric Matrices. Let $H \in \mathbb{R}^{n \times n}$ be symmetric, i.e. $H^T = H$
 - (1) There exists an orthonormal basis of eigen-vectors for H, i.e. if $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ are the *n* eigenvalues of H (not necessarily distinct), then there exist vectors q_1, \ldots, q_n such that $\lambda_i q_i = H q_i$ $i = 1, \ldots, n$ with $q_i^T q_j = \delta_{ij}$. Equivalently, there exists an orthogonal transformation $Q = [q_1, \ldots, q_n]$ ($Q^T Q = I$) such that

$$H = Q\Lambda Q^T$$

where $\Lambda = \operatorname{diag}[\lambda_1, \ldots, \lambda_n].$

(2) $H \in \mathbb{R}^{n \times n}$ is positive semi-definite, i.e.

$$x^T H x \ge 0$$
 for all $x \in \mathbb{R}^n$,

if and only if all the eigenvalues of H are nonnegative.