
Nonlinear Optimization Homework 2 (Solutions)
MATH 408 Spring 2019

Reading in the supplementary text (Nonlinear Optimization): All of Chapter 3 and
Section 6 in Chapter 4.

Exercises: Do the following exercises, justifying all steps.

1 Linear least squares problems

We will first focus on the linear least squares problem

LLS min
x∈Rn

1

2
‖Ax− b‖22 ,

where A ∈ Rm×n and b ∈ Rm.

1. Listed below are two functions. In each case write the problem minx f(x) as a linear
least squares problem by specifying the matrix A and the vector b, and then solve the
associated problem.

(a) (2 points) f(x) = (2x1 − x2 + 1)2 + (x2 − x3)2 + (x3 − 1)2

Most people ignored the 1
2

in the objective function f(x) above, yielding the following
nicer expressions for A, b for the equivalent problem minx∈Rn ‖Ax− b‖22 .

A =

2 −1 0
0 1 −1
0 0 1

 , b =

−1
0
1



Solution: x̄ =

0
1
1


(b) (4 points) f(x) = (1− x1)2 +

∑3
j=1(xj − xj+1)

2

A =


1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1

 , b =


1
0
0
0

 or A =


−1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1

 , b =


−1
0
0
0



Solution: x̄ =


1
1
1
1


1
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2. (5 points) Find the quadratic polynomial p(t) = x0+x1t+x2t
2 that best fits the following

data in the least-squares sense:

t −2 −1 0 1 2
y 2 −10 0 2 1

.

A =


1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

 and b =


2
−10

0
2
1

. Solving the normal equations for the LLS problem

specified by these yields (x0, x1, x2) = (−3, 1, 1) so the best fit quadratic is p(t) = −3 +
t+ t2.

3. Consider the problem LLS with

A =


1 −1 0
1 1 2
1 −1 0
1 1 2

 and b =


1
1
1
0

 .
(a) (2 point) What are the normal equations for this A and b.

ATAx = AT b4 0 4
0 4 4
4 4 8

x =

 3
−1
2


(b) (2 point) Solve the normal equations to obtain a solution to the problem LLS for

this A and b.

Solution set to the normal equations is 1-dimensional and are given by (3/4 −
x3,−1/4− x3, x3) for x3 ∈ R

(c) (2 point) Write down the matrix that represents the orthogonal projection onto the
range of A. 

1
2

0 1
2

0
0 1

2
0 1

2
1
2

0 1
2

0
0 1

2
0 1

2


4. Consider the matrix

A =


1 1 1
1 1 0
1 0 0
1 0 1

 .
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(a) (2 point) Compute the orthogonal projection onto Ran(A).

PRange(A) =


3
4

1
4
−1

4
1
4

1
4

3
4

1
4
−1

4

−1
4

1
4

3
4

1
4

1
4
−1

4
1
4

3
4


(b) (2 point) Compute the orthogonal projection onto Null(AT ).

By FTA, Null(AT ) = Range(A)⊥ so

PNull(AT ) = I4 −


3
4

1
4
−1

4
1
4

1
4

3
4

1
4
−1

4

−1
4

1
4

3
4

1
4

1
4
−1

4
1
4

3
4

 =


1
4
−1

4
1
4
−1

4

−1
4

1
4
−1

4
1
4

1
4
−1

4
1
4
−1

4

−1
4

1
4
−1

4
1
4


5. (5 points)1 Generate thirty points (xi, yi) for i = 1, . . . , 30, by the MATLAB code:

randn(′seed′, 314);

x = linspace(0, 1, 30);

y = 2 ? x. ∧ 2− 3 ? x+ 1 + 0.05 ? randn(size(x));

Find the quadratic function y = ax2 + bx+ c that best fits the points in the least squares
sense. Indicate what are the parameters a,b,c found by the least squares solution, and
plot the points along with the derived quadratic function.

Results will vary but you should find a ≈ 2, b ≈ −3, c ≈ 1. You should have included your
code and used the process of finding Vandermonde matrix and solving normal equations
as discussed in class (not just using the built in polyfit command).

2 Quadratic optimization problems

Next, we will focus on the optimization problem

Q min
x∈Rn

1

2
xTHx+ gTx+ b ,

where H ∈ Rn×n is symmetric, g ∈ Rn, and b ∈ R.

1. Each of the following functions can be written in the form f(x) = 1
2
xTHx+ gTx+ b with

H symmetric. For each of these functions what are H and g.

1This is problem 3.2 in Beck’s book.
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(a) (2 points) f(x) = x21 − 4x1 + 2x22 + 7

H =

(
2 0
0 4

)
, g =

(
−4
0

)
, b = 7

(c) (2 points) f(x) = x21 − 2x1x2 + 1
2
x22 − 8x2

H =

(
2 −2
−2 1

)
, g =

(
0
−8

)
, b = 0

(d) (2 points) f(x) = (2x1 − x2)2 + (x2 − x3)2 + (x3 − 1)2

H =

 8 −4 0
−4 4 −2
0 −2 4

 , g =

 0
0
−2

 , b = 1

(e) (2 points) f(x) = x21 + 16x1x2 + 4x2x3 + x22

H =

 2 16 0
16 2 4
0 4 0

 , g =

0
0
0

 , b = 0

2. Consider the matrix

H =

4 3 2
3 9 3
2 3 4

 .
(a) (2 points) Compute the eigenvalues of H.

λ1 = 12, λ2 = 3, λ3 = 2

(b) (2 points) Compute and orthonormal basis of eigenvectors for H.

u1 =
1√
6

1
2
1

 , u2 =
1√
3

 1
−1
1

 , u3 =
1√
2

−1
0
1


(c) (2 points) Compute the eigenvalue decomposition of H.

A = UΛUT where U =

 | | |
u1 u2 u3
| | |

 from above and Λ =

12 0 0
0 3 0
0 0 2


3. For each of the matrices H and vectors g below determine the optimal value in Q. If an

optimal solution exists, compute the complete set of optimal solutions.
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(a) (3 points)

H =

2 1 0
1 2 1
0 1 2

 and g =

3
1
1

 .
Solve Hx = −g to find x̄ = (−2, 1,−1) which yields optimal value −3.

(b) (3 points)

H =

2 1 0
1 2 1
0 1 −2

 and g =

3
1
1

 .
H is indefinite so optimal value is −∞

(c) (3 points)

H =

 5 2 −1
2 1 −1
−1 −1 2

 and g =

3
1
0

 .
Solution set: {(−1− s, 1 + 3s, s) : s ∈ R} with optimal value −1.

4. (5 points) Consider the matrix H ∈ R3×3 and vector g ∈ R3 given by

H =

1 4 1
4 20 2
1 2 2

 and g =

1
0
1

 .
Does there exists a vector u ∈ R3 such that f(tu)

t↑∞−→ −∞? If yes, construct u.

Let u =

−6
1
2

 inNull(H) so that

f(tu) = (tu)TH(tu) + gT (tu)

= t2uTHu+ tgTu

= 0t2 − 4t

As t↗∞, f(tu)↘ −∞.

5. Determine whether the following matrices are positive definite, positive semi-definite, or
neither. (2 points each)

(a) H =

2 1 0
1 2 1
0 1 2

 � 0 (b) H =

2 1 0
1 2 1
0 1 −2

 indefinite

(c) H =

 5 2 −1
2 1 −1
−1 −1 2

 � 0 (d) H =

1 4 1
4 20 2
1 2 2

 � 0 .
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6. (3 points)2 Let A ∈ Rm×n, b ∈ Rm, L ∈ Rp×n, and λ > 0. Consider the regularized least
squares problem

min
x∈Rn

‖Ax− b‖2 + λ‖Lx‖2.

Show that the problem has a unique solution if and only if Null(A) ∩ Null(L) = {0}.
Answer: First rewrite the objective as

‖Ax− b‖2 + λ‖Lx‖2 = xT (ATA+ λLTL)x− 2(AT b)Tx+ ‖b‖2

Recall that the above problem has a unique solution if and only if ATA + λLTL � 0.
Thus we wish to show that ATA+ λLTL � 0 if and only if Null(A) ∩ Null(L) = {0}.
(⇐=) Suppose Null(A) ∩ Null(L) = {0} and let z 6= 0. Then either Az 6= 0 or Lz 6= 0,
hence either ‖Az‖ > 0 or ‖Lz‖. In either case,

zT (ATA+ λLTL)z = ‖Az‖2 + λ‖Lz‖2 > 0

Therefore ATA+ λLTL � 0

(=⇒) Suppose ATA+ λLTL � 0 and let z ∈ Null(A) ∩ Null(L). Observe that

zT (ATA+ λLTL)z = ‖Az‖2 + λ‖Lz‖2 = ‖0‖2 + λ‖0‖2 = 0

which can only occur for z = 0, hence Null(A) ∩ Null(L) = {0}

2This is problem 3.1 in Beck’s book.
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