Exercises: Do the following exercises, justifying all steps.

1. Consider the system

$$
\begin{aligned}
& 4 x_{1}-x_{3}=200 \\
& 9 x_{1}+x_{2}-x_{3}=200 \\
& 7 x_{1}-x_{2}+2 x_{3}=200 .
\end{aligned}
$$

(a) (1 point) Write the augmented matrix corresponding to this system.
(b) (3 point) Reduce the augmented system in part (a) to echelon form.
(c) (2 point) Describe the set of solutions to the given system.
2. (6 points) Solve the following system of linear equations

$$
\begin{aligned}
x_{1}+2 x_{2} & =1 \\
-x_{1}-4 x_{2}+x_{3} & =2 \\
2 x_{2}+x_{3} & =0
\end{aligned}
$$

3. (3 points) Represent the linear span of the four vectors as the range space of some matrix:

$$
x_{1}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
4
\end{array}\right], \quad x_{2}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
5
\end{array}\right], \quad x_{3}=\left[\begin{array}{c}
-1 \\
1 \\
1 \\
-2
\end{array}\right], \quad x_{4}=\left[\begin{array}{l}
7 \\
2 \\
1 \\
1
\end{array}\right] .
$$

4. (3 points) Compute a basis for $\operatorname{Nul}\left(A^{T}\right)^{\perp}$ where A is the matrix

$$
A=\left[\begin{array}{cccc}
1 & 1 & -1 & 7 \\
2 & 2 & 1 & 2 \\
2 & 2 & 1 & 1 \\
4 & 5 & -2 & 1
\end{array}\right]
$$

5. Consider the matrix

$$
A=\left[\begin{array}{ccc}
2 & 1 & -1 \\
1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]
$$

(a) (3 points) Find the eigenvalues of the matrix A. Is any eigenvalue repeated?
(b) (4 points) Find three eigenvectors u_{1}, u_{2}, u_{3} of A that are orthonormal.
(c) (1 point) State a spectral (eigenvalue) decomposition of A.
6. Recall that for a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ the gradient is the vector of partial derivatives

$$
\nabla f(x)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(x) \\
\frac{\partial f}{\partial x_{2}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(x)
\end{array}\right)
$$

Compute the gradient of the following functions.
(a) (2 points) $f(x)=x_{1}^{3}+x_{2}^{3}-3 x_{1}-15 x_{2}+25$ on \mathbb{R}^{2}
(b) (2 points) $f(x)=x_{1}^{2}+x_{2}^{2}-\sin \left(x_{1} x_{2}\right)$ on \mathbb{R}^{2}
(c) (2 points) $f(x)=\|x\|^{2}=\sum_{j=1}^{n} x_{j}^{2}$ on \mathbb{R}^{n}
(d) (2 points) $f(x)=e^{\|x\|^{2}}$ on \mathbb{R}^{n}
(e) (2 points) $f(x)=x_{1} x_{2} x_{3} \cdots x_{n}$ on \mathbb{R}^{n}
(f) (2 points) $f(x)=-\log \left(x_{1} x_{2} x_{3} \cdots x_{n}\right)$ on the set $\left\{x \in \mathbb{R}^{n}: x_{i}>0\right.$ for all $i=$ $1, \ldots, n\}$
7. (12 points) Recall that that the Hessian matrix of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is the matrix of second partial derivatives:

$$
\nabla^{2} f(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \ldots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}(x) & \ldots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(x) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(x) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(x) & \ldots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}(x)
\end{array}\right] .
$$

Compute the Hessian of the functions given in problem 6 above.

