Problem 8.2 Let $C=B\left[x_{0}, r\right]$, where $x_{0} \in \mathbb{R}^{n}$ and $r>0$ are given. Find a formula for the orthogonal projection operator P_{C}.

You can easily derive this formula from the projection onto $B[0, r]$ using an affine change of coordinates.

Problem 10.6 Consider the maximization problem

$$
\begin{aligned}
\max & x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}-3 x_{1}+x_{2} \\
\text { s.t. } & x_{1}+x_{2}=1 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(1) Is the problem convex?
(2) Find all KKT points of the problem
(3) Find the optimal solution of the problem

Observe the maximization problem is equivalent to the minimization problem

$$
\begin{aligned}
-\min & -\left(x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}-3 x_{1}+x_{2}\right) \\
\text { s.t. } & x_{1}+x_{2}=1 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

The Hessian of the objective $\left(\begin{array}{ll}-1 & -1 \\ -1 & -2\end{array}\right)$ is not psd, so the problem is not convex. The Lagrangian is

$$
L\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right)=-\left(x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}-3 x_{1}\right)+x_{2}+y_{1}\left(x_{1}+x_{2}-1\right)-y_{2} x_{1}-y_{3} x_{2}
$$

defined on $\mathbb{R}^{2} \times \mathbb{R} \times \mathbb{R}_{+}^{2}$. The KKT conditions are

$$
\begin{align*}
& \nabla_{x} L(x, y)=\left(-2 x_{1}-2 x_{2}+3+y_{1}-y_{2}\right. \tag{1}\\
&\left.-2 x_{1}-4 x_{2}-1+y_{1}-y_{3}\right)=0 \tag{2}\\
& y_{2} x_{1}=0 \tag{3}\\
& y_{3} x_{2}=0 \tag{4}\\
& x_{1}+x_{2}=1 \tag{5}\\
& x_{1}, x_{2} \geq 0 \tag{6}\\
& y_{2}, y_{3} \geq 0
\end{align*}
$$

Combining (4) with (1), we find $y_{1}=y_{2}-1$ and $-2 x_{2}-2+y_{1}-y_{3}=0$. If $y_{2}=0$, then $y_{1}=-1$ and $-2 x_{2}-3-y_{3}=0$, but this cannot happen because $y_{3}=-\left(2 x_{2}+3\right)$ cannot be nonnegative if $x_{2} \geq 0$. Thus to satisfy (2), we must have $x_{1}=0$, so $x_{2}=1$ by (4) and $y_{3}=0$ by (3). By (1), we get that $-2+3+y_{1}-y_{2}=0$ and $-4-1+y_{1}=0$. Putting the pieces
together, $(0,1)$ is the only KKT point with multipliers $\left(y_{1}, y_{2}, y_{3}\right)=(5,6,0)$. Certainly there exist feasible \hat{x} such that $\hat{x}_{1}, \hat{x}_{2}>0$, so by Slater's condition, MFCQ holds for all feasible x and KKT are necessary conditions for optimality. Furthermore the extreme value theorem implies the existence of a global optimizer, so we conclude that the only KKT point $(0,1)$ solves the problem.

Problem 10.11 Use the KKT conditions to solve the problem

$$
\begin{array}{cl}
\min & x_{1}^{2}+x_{2}^{2} \\
\text { s.t. } & -2 x_{1}-x_{2}+10 \leq 0 \\
& x_{2} \geq 0
\end{array}
$$

The objective is convex and the constraints are affine, hence the problem is convex. The Lagrangian is

$$
L\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=x_{1}^{2}+x_{2}^{2}+y_{1}\left(-2 x_{1}-x_{2}+10\right)-y_{2} x_{2}
$$

and the KKT conditions are

$$
\begin{align*}
\nabla_{x} L(x, y)=\binom{2 x_{1}-2 y_{1}}{2 x_{2}-y_{1}-y_{2}} & =0 \tag{1}\\
y_{1}\left(-2 x_{1}-x_{2}+10\right) & =0 \tag{2}\\
y_{2} x_{2} & =0 \tag{3}\\
-2 x_{1}-x_{2}+10 & \leq 0 \tag{4}\\
x_{2} & \geq 0 \tag{5}\\
y_{1}, y_{2} & \geq 0 \tag{6}
\end{align*}
$$

If $y_{1}=0$, then $x_{1}=0$ and $y_{2}=2 x_{2}$ by (1), which implies $x_{2}=y_{2}=0$ by (3), but $(0,0)$ is not feasible.

If $y_{1}, y_{2} \neq 0$, then $x_{2}=0$, and $-2 x_{1}-x_{2}+10=0$ implies $x_{1}=5$. Substituting into (1), the unique solution $x_{1}=5, x_{2}=0, y_{1}=5, y_{2}=-5$ is dual infeasible

If $y_{1} \neq 0$ and $y_{2}=0$, then the remaining system of linear equations has solution $x_{1}=$ $4, x_{2}=2, y_{1}=4, y_{2}=0$, which is therefore a KKT point. Since this problem is convex, if you had found this point first, then sufficiency of the KKT conditions mean that you have found a globally optimal point and you can stop looking for more points.

Problem 11.1 Consider the optimization problem

$$
\begin{aligned}
\min & x_{1}-4 x_{2}+x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+2 x_{3}=-2 \\
& x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq 1
\end{aligned}
$$

The problem is convex so the KKT conditions are sufficient for optimality. There is a unique KKT point with irrational coordinates.

Problem 11.4 Consider the problem

$$
\begin{aligned}
\min & x_{1}^{2}-x_{2}^{2}-x_{3}^{2} \\
\text { s.t. } & x_{1}^{4}+x_{2}^{4}+x_{3}^{4} \leq 2
\end{aligned}
$$

Problem is nonconvex and there are many KKT points. You must compare their respective values to determine optimal solution.

